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Downloadable Code

Much of the material for this book has been obtained by means of experiments performed
with test programs. These experiments are described in detail, so that readers can reproduce
the results, if they choose to do so. The test programs can be downloaded at

http://www.opening-windows.com/wmip/testcode/testcode.htm

The download package includes all the source code.

Important Note

These programs include test kernel mode drivers which call undocumented functions to
demonstrate some of the concepts. These drivers must be considered experimental software,
as they are likely to cause instability and system crashes. Also, they work only on Windows 7
x64 RTM (i.e. without service packs) and are almost guaranteed to crash any other version of
Windows. The download package includes source code for all the programs, including the
drivers, so readers can adapt them to different Windows versions.

More details are provided in the description of each experiment.

Analyzed Kernel Build

The analysis presented in this book has been conducted on the kernel included in Windows 7
x64 RTM, without service pack 1 and with no updates installed. All the excerpts from
debugging sessions were obtained for this particular build. The following report, extracted
with the 1m v command of WinDbg provides full details about the analyzed kernel image:

0: kd> 1Im v m nt

start end module name

f££££800°02808000 f££££800°02de5000 nt (pdb symbols)
c:\apps\pw7hp\devpgm\symw7x64retail\ntkrnlmp.pdb\F8E2A8B5CIB74BF4AA6E4A48F180099942\ntkr
nlmp.pdb

Loaded symbol image file: ntkrnlmp.exe
Image path: ntkrnlmp.exe
Image name: ntkrnlmp.exe

Timestamp: Tue Jul 14 01:40:48 2009 (4A5BC600)
CheckSum: 0054B487

ImageSize: 005DD000

File version: 6.1.7600.16385

Product version: 6.1.7600.16385

File flags: 0 (Mask 3F)

File OS: 40004 NT Win32

File type: 1.0 App

File date: 00000000.00000000

Translations: 0409.04b0

CompanyName : Microsoft Corporation



ProductName: Microsoft® Windows® Operating System

InternalName: ntkrnlmp.exe
OriginalFilename: ntkrnlmp.exe

ProductVersion: 6.1.7600.16385

FileVersion: 6.1.7600.16385 (win7 rtm.090713-1255)
FileDescription: NT Kernel & System

LegalCopyright: © Microsoft Corporation. All rights reserved.
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1 Introduction

The aim of Part | is to give just the minimum amount of information about the Intel
architecture needed to fully understand the rest of this book. Nothing Windows-related is
presented here, so readers who are already familiar with how the processor works can safely
skip to part Il

This introduction is by no means a complete description of the processor. Full details can be
found in the Software's Developer Manual, freely available from the Intel website.

Also, this introduction explains how the processor works when it is set up like Windows does.
Several statements made in the following sections are true only when a number of data
structures that the processor uses for itself are set up int the way Windows sees fit. As an
example, we will state later that an interrupt changes the privilege level at which the
processor executes. This is not set in neither in stone, nor in silicon, but stems from how
Windows sets up a data structure called Interrupt Descriptor Table. This approach has been
adopted to keep things simple, considering this is, after all, a book on Windows.

2 Privilege Levels

2.1 Definition of Privilege Level

The processor maintains an internal state called the current privilege level (CPL), which is
used to determine whether certain operations can be executed or not.

Four privilege levels are defined, identified by numerical values ranging from 0 to 3, with 0
being the most privileged one.

Windows configures the processor to use only privilege 0 and 3, so we will restrict our
analysis to these two levels from now on.

At any given time, the processor is executing at one of the possible levels and its effect is to
restrict what can be done:

e Certain instructions can be executed only at CPLO
e Certain memory regions can be configured to be accessible only at CPL O

e 1/0 ports can be configured to be accessible only at CPL 0
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Consider now a program being executed while the CPL is 3. What does it happen if the
program attempts one of these forbidden operations? The processor generates what is called
an exception, which will be explained in greater detail in sec. 4.2 on p. 13. For now, we will
only say that the processor jumps to the address of a function which is part of the operating
system and has the job to deal with the situation. The forbidden operation is not executed,
e.g. an attempt to write to a protected memory location leaves the memory content
untouched.

2.2 Code Privilege Level

According to the definition given in the previous section, the CPL is a state of the processor.
We can also define a privilege level for code, as the CPL of the processor while it executes a
given section of code.

Conceptually, this definition does not assign a single privilege level to a given piece of code in
memory: the same block of instructions could be executed while the processor is at CPLO or
3.

In Windows, however this never happen: certain parts of code are always executed at CPL 0,
others at CPL 3. For code that resides in memory accessible only at CPL 0, this is actually
enforced by the processor: an attempt to execute this code generates an exception. Code
residing in memory accessible at CPL 3 could be executed while the CPL is 0, but Windows is
not designed to do so.

Normally, application code and parts of the operating system are executed at CPL 3, while
CPL O is used only for operating system code (and third party OS extensions lik device
drivers).
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2.3 Definition of Rings

It is common to represent the four privilege levels with the diagram below:

Figure 1 - Privilege Rings

which shows that level 0 is the most protected and level 3 the least protected. This diagram
led to the use of the term ring as a substitute for privilege level, so when we say that the
processor is at ring 0 we actually mean that the CPLis 0.

We will use the terms ring 0 code and ring 3 code with similar meaning.

2.4 Privilege Level Transitions

Now that we know that the processor can be at different privilege levels, we must ask
ourselves how the CPL is changed. This will be the subject of the next sections.

. 2.4.1Instructions for Privilege Control

There are specific instructions for changing the CPL. Examples are syscall, which goes from
CPL 3 to CPL 0 and sysret, which reverts back to CPL 3. These instructions couple the CPL
change with a jump to a new address, which must be loaded into a processor register before
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executing them. Normally, these instructions are used to call ring O code part of the
operating system, so it makes sense to change the CPL and transfer control to somewhere

else at the same time.

The register storing the address to which syscall jumps can be modified only when the CPL
is 0, so ring 3 code cannot change it. This means that application code cannot change the
entry point into operating system code.

syscall saves the current instruction pointer (rip) in the rcx register, so the destination
code can save it somewhere in memory and use it later to return to the calling code with

sysret.

2.4.2 Hardware Interrupts

An hardware interrupt occurring while the processor is executing ring 3 code causes it to
jump to a different address and to set the CPL to O (again, this is how things work in
Windows). We will describe interrupts in more detail in sec. 4.1 on p. 8, but we need to
mention them here, because, as we said, they can cause a CPL change.

When an interrupt occurs, the address at which the processor was executing (that is, the
value of rip) and the CPL (held in the CS processor register) are saved on the stack (more
details on stack handling in Chapter 3 on p. 7), so they can later be used to resume the code
that was interrupted. The iret instruction, which is meant for this, loads rip and CS with
values from the stack, so this instruction can change the CPL from O to 3. By design, the CPL
loaded from the stack by iret can either be the same as the current one (this happens if the
interrupt occurred at ring 0) or be a numerically higher, i.e. less privileged, value. In simple
terms, iret can go from ring 0 to ring 3, but cannot go from ring 3 to ring O.

2.4.3 Processor Exceptions

Processor exceptions are similar to interrupts in the sense that they too result in the
processor jumping to a different address and setting the CPL to O, if it is currently 3.
However, exceptions are generated by the processor itself and caused by the instruction
being executed. An example is a di v (unsigned division) instruction attempting to divide by
0. Since this operation is undefined, the processor generates an exception and transfer
control to its handler. Exceptions will be described in more detail in sec. 4.2 on p. 13, so, for
now, we will just say that, when the processor generates them, it saves the current rip and
CS on the stack, then jumps to ring O code, just like it does for hardware interrupts. If the
exception occurred at ring 3 this result in a privilege level transition.
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iret can also be used to resume code interrupted by exceptions, eventually transitioning
from ring O to ring 3.

3 The Stack

3.1 Basic Concept

The stack is an address range used implicitly by several processor instructions and by other
processor mechanisms, like interrupt handling. When the processor accesses the stack
implicitly, it does so through the rsp register.

As an example, we can consider the call instruction, used to call a function. When
executing a call, the processor performs these steps:

e Decrements rsp by 8 bytes.

® Saves the address of the instruction after the ca11 at the memory address pointed
by rsp.

® Lloads rip with the destination address, specified as part of the instruction.

The end result is that the processor has jumped to a new address, but has saved the address
it was at on the stack. The companion ret instruction can later be used to return to the point
of the call. ret performs the following steps:

® Loads rip with the value found at the address pointed by rsp.
® Increments rsp by 8.
There are a couple of things worth noting about this example.

First, rsp, which is called the stack pointer is decremented when a new value is written to
the stack. In other words, rsp is initialized, e.g. by the OS when a process is started, to a
suitable value and the region below the initial value is used. This is usually expressed saying
that the stack grows downward.

The second, more subtle point concerns the return address. For a programmer used to high
level languages, returning from a function means returning to the statement after the
function call. In a C function, the return statement is used to go to whatever is written after

the function invocation.
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At the processor level, there is no relationship between a ret and the instructions executed
before. ret always performs the same, elementary actions: loads whatever is pointed by
rspinto rip, then moves rsp up by 8 bytes.

Thus, a ret could be used to tansfer control to an entirely different address from the one
saved by the preceding call.

But it does not stop here: a ret could be used even without a preceding call. The processor
does not keep track of calls internally and does not attempt to match a ret with some
internally preserved state representing the fact that a cal1 was executed earlier. It simply
performs the steps we described: load rip, move rsp and on we go, wherever it may be.

The stack is also used implicitly by other processor instructions like push and pop, which
store and load, respectively, data to/from it and update rsp automatically.

Another example of stack usage is the handling of interrupt and exceptions, described in the
next chapter.

3.2 Ring 0 Stack vs Ring 3 Stack

The processor uses different stacks, i.e. different values of rsp for CPL 0 and CPL 3.

rsp is loaded with the address of the right stack when a privilege change occurs. For
interrupt and exceptions, this is done automatically by the processor. For. syscall and
sysret, it is done by OS code.

In general, this is useful to separate application state and variables from OS state. For this
reason, the OS usually sets up the address range used at ring 0 as inaccessible from ring 3.

We will return on the importance of this separation in the upcoming section about interrupts
and exceptions.

4 Interrupts and Exceptions

4.1 Interrupts

4.1.1 Handling an Interrupt

Interrupts are caused by devices sending electric signals to the chipset and processor, to
cause the latter to execute some code which interacts with the devices themselves. An
example could be a disk controller sending an interrupt to signal that it has finished
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transferring data to memory. We will refer to the actions the processor takes in response to
an interrupt as handling or servicing the interrupt.

Each hardware interrupt is associated with a number called the interrupt vector, which is
supplied to the processor when the interrupt is requested. The processor uses the vector as
an index into a data structure called Interrupt Descriptor Table (IDT). Each entry of this table
store a data structure, called a gate, which contains the address to which execution must be
transferred and other control information. In summary, each hardware interrupt causes the
processor to jump to the address specified in its associated IDT entry.

If an hardware interrupt occurs while the processor is at ring 3, the CPL is changed to O (at
least, this is how things work when the IDT is set up like Windows does). If the processor is
already at ring O, the CPL does not change.

The IDT can be modified only at CPL 0. This is the same approach adopted for the destination
address of syscall: application code cannot change the destination address of a
mechanism that switches to CPL 0.

Normally, the code at the address found in the IDT is part of the operating system and is
called an interrupt handler routine. During boot, the OS loads its interrupt handlers in
memory and initializes the IDT to point to them.

When the processor receives an interrupt, it executes the following steps:

e Completes executing the current instruction. Interrupts are always serviced at
instruction boundaries. E.g., if an instruction updates the content of a processor
register and of a memory location, both updates are carried out before the interrupt
is serviced.

e Saves the current stack pointer (rsp) and another stack-related register (Ss) on the
stack. The first saved register (which is actually ss) is not saved at the address
pointed by rsp, but, rather, at the next lower multiple of 16. Afterwards, each
register will be saved 8 bytes below the previous one. Aligning the saved values this
way improves performances.

e Saves a register called rf1ags, which contains status information about the
processor on the stack.

e Saves the CS register, storing the CPL along with other control information, on the
stack
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e Saves the address of the next instruction (after the last one completed before
servicing the interrupt) on the stack. It is usual to refer to this address as the value of

rip.
e Setsthe CPLto O, if it was 3
e Begins executing the instruction at the address found in the IDT

The stack layout resulting from the steps above is called an interrupt frame. It contains all the
data required to be able to resume the code that was suspended as if no interrupt occurred.
The following figure shows the format of an interrupt frame.

rsp at
interrupt
aligned rsp
SS +32
rsp at
interrupt +24
rflags +16
cs +8
rip 0
final rsp

Figure 2 - Interrupt Frame

rsp itself must be saved on the stack because the frame is built at an aligned address. When
execution of the interrupted code will resume, rsp will have to be restored to the value it
had before the interrupt. Without alighment, this would simply be the value above the saved
ss, i.e. it could be computed from the value of rsp at the beginning of the interrupt handler.
However, aligning the frame decreases rsp of an unknown quantity between 0 and 15
depending on its initial value, so the syack pointer must be saved.
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4.1.2 Returning from an Interrupt

Resuming the interrupted code is accomplished with the iret instruction, which reloads all
the saved registers from the stack, thus resuming execution at the saved rip value, with the
other registers restored. Note that the intterrupt/iret mechanism saves and restores only
the registers shown in Figure 2 on p. 10. Any processor register not saved in the interrupt

frame must be saved by the interrupt handler and restored to its original value before
executing the iret.

In sec. 3.1 (p. 7), we saw how a ret instruction performs certains steps regardless of
whether a call instruction had actually been executed before. The same concept applies to
iret, which simply loads the registers shown in Figure 2 (p. 10) with the values found at the

current rsp. No state is maintained by the processor on whether an interrupt occurred or
not before the iret.

iret can change the CPL from O to 3. The processor dects this from the value at rsp + 8, i.e.
the one to be loaded into CS, so that if the interrupt occurred at ring 3 the CPL is restored.

By design, the CPL loaded from the stack by iret can either be the same as the current one
(this happens if the interrupt occurred at ring 0) or a numerically higher, i.e. less privileged,
value. In simple terms, iret can go from ring 0 to ring 3, but cannot go from ring 3 to ring 0.

4.1.3 Stack Switch on Privilege Level Change

As we anticipated in sec. 3.2 on p. 8, when an interrupt occurs at ring 3 and the CPL changes
from 3 to O, rsp is loaded with an address pointing to the ring 0 stack. This is done before

building the stack frame visible in Figure 2 on p- 10, so that the interrupt frame is built on the
ring O stack.

This is a very important feature, because, as we are about to see shortly, the same handling
scheme is used for exceptions, which are generated when the processor detects that the next
instruction cannot be executed. One possible cause of exception is an invalid stack: if an
instruction attempts to use rsp while it is pointing to an invalid address, an exception is
generated. This, in turn, requires that the processor has a working stack to save the

processor state in the interupt frame. By using a different stack for the interrupt handler, this
can be accomplished, at least for exceptions occurring at ring 3. Since the interrupt frame

itself is built on the ring 0 stack, the ring 3 rsp is saved in the frame, but not used at all, so it
does not matter where it is pointing.
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This approach cannot help us if we have an invalid stack at ring 0. This is a serious error
condition and we are not going to analyze it here. A little more information will be provided
in sec. 47.1 on p. 521.

It may not be immediately clear how the address stored into rsp can be invalid and thus
cause an exception. After all, an address is just a number, so any value could be good. There
are two main reasons why an address may be not valid.

The first one is that the address may not be in canonical form, which is defined later in sec.
5.2.2 on p. 17. For now, it is enough to say that not every numerical value in the range O -
OxFFFFFFFF FFFFFFFF is a valid address.

The second one is that the address may not correspond to physical memory. This will be
explained in Chapter 5 (p. 16), so a little more patience is required.

In general, since ring O code is usually the core of an OS, stack switching ensures that this
code is executed with a known good stack.

Now that we know that a different stack is used at ring 0 and why this is important, we must
ask ourselves were is the rsp value loaded from. The processor uses a data structure called
Task Status Segment (TSS) to store certain data about its configuration. The TSS has a slot
reserved for the ring 0 rsp, so, when the CPL changes from 3 to O, rsp is loaded with the
value found there. Note that this does not happen when an interrupt occurs at ring 0 and the
CPL does not change. In this scenario, the current rsp is used and the interrupt frame is built
at the next lower 16 bytes aligned address, as explained in sec. 4.1.1 on p. 8.

The TSS is initialized and updated by operating system code, which stores a proper value for
the ring 0 rsp before executing ring 3 code. This way, whenever an interrupt occurs in
application code, the OS code can count on having rsp pointing to its own, reserved stack.
Furthermore, the OS usually places this stack in memory inaccessible at ring 3, so that
application code cannot touch it.

When an iret is executed, rsp is always loaded with the value at +24 from the interrupt
frame (see Figure 2 on p. 10), so the rsp at the time of interrupt is restored. If the interrupt
occurred at ring 3, the stack for that privilege level will be again available for use to
application code.

Normally, the OS creates a separate TSS for each processor.
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4.2 Exceptions

4.2.1 Basic Concept

Exceptions are similar to interrupts, but are generated by the processor when an instruction
cannot be executed (or a serious malfunctioning is detected). This occurs, for instance, when
a division by 0 is attempted.

When an exception is generated, the processor behaves much in the way it does when it
receives an interrupt.

We know that, when an interrupt is requested, a vector must be supplied to the processor by
the hardware, so that the processor knows which IDT entry must be consulted to find the
address of the interrupt handler (see sec. 4.1.1 on p. 8). Since exceptions are generated by
the processor itself, each exception is, by design, associated with a vector number. Note that
interrupts and exceptions use the same number range for their vectors, so hardware
designers must be careful not to assign to an hardware interrupt the same vector ofa
processor-defined exception. For this reason, the Intel documentation states that vectors O-
31 are reserved for the architecture.

When the processor generates an exception, it builds an interrupt frame much like the one
we saw in Figure 2 on p. 10. Some exceptions (but not all of them) write an additional 8 bytes
arror code with further information about its cause below rip. Since each exception uses a
different IDT entry, each one has its own specific handler, which can be written according to
whether the interrupt frame contains the error code or not.

Given the similarity between exceptions and interrupts, it should not surprise us that iret is
the instruction to be used to return from an exception. If the specific exception pushed an
arror code on the stack, the exception handler must move rsp up by 8 bytes before
executing iret.

4.2.2 Processor Exceptions vs Windows Exceptions

it is important not to confuse the term exception as defined by the Intel architecture with
windows exceptions. The latter are events generated by system code which can divert
execution of a program to some other piece of code, most of the times because the program
did something wrong. Windows exceptions are implemented by OS code and represented by
0S-defined data structures. Processor exceptions are interrupt-like events generated by the
processor in response to invalid instructions. Of course, a processor generated exception may
be at the root of a Windows exception. The oh-so-familiar 0xC0000005 access violation
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exception is almost always Windows way to handle the exception that the processor
generates when an invalid address is referenced. This means that the exception handler that
windows installs for this processor exception does not resume execution at ring 3 at the
instruction which caused the (processor) exception itself. Rather, execution is resumed inside
Windows code which implements the Windows exception mechanism. For readers familiar
with Windows Structured Exception Handling, this will be the code looking for a (structured)
exception handler and, eventually, terminating the process if none is found. This is an
example of an iret which is not used simply to reload the state saved in the interrupt frame.
Rather, the saved state is updated by ring O code so that, when the iret is executed, Ring 3

processing magically resume somewhere else.

4.2.3 Exceptions Classification

The Intel architecture classifies exceptions in the following three categories.

4.2.3.1 Faults

Faults are exceptions generated before an instruction having something wrong is executed.
Given this, the interrupt frame created on the stack holds, in the rip slot, the address of the
instruction causing the fault (called the faulting instruction), which has not been executed. If
the exception handler is able to remove the cause of the fault, executing iret will direct the
processor to re-execute the faulting instruction which, by now, might succeed.

Among the various faults Intel defines is the page fault, which is generated when invalid
memory is referenced. In some sense, most of this book is devoted to explain how Windows
handles this fault. This is a good example of a fault which can be resolved, so that it makes
sense to re-execute the faulting instruction: when a program attempts to reference memory
content which has been moved to the paging file, a page fault is generated. The job of the
VMM is to retrieve the content and re-execute the faulting instruction.

4.2.3.2 Traps

Traps are exceptions generated after the "trapped” instruction has been executed. The saved
rip points to the instruction following the trapped one. The most common example is the |
debug trap: the processor can be configured to generate it on every instruction it executes,

to implement single stepping with a debugger. When an instruction of the debuggee must be
executed, the debugger code executes an iret, which transfers control to the next
instruction of the debuggee. After this instruction is executed, a new trap is generated, with

the saved rip pointing at the next instruction, etc.
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Note: [1] defines, on p. 85, a trap in abstract terms, not directly related to the Intel
architecture. That definition is not equivalent to the one given here.

4.2.3.3 Aborts

Aborts are generated when severe error conditions are detected and don't guarantee that
the interrupted code can be resumed, because the saved rip may not point at the exact
instruction which caused the exception. The exception handler for an abort should normally
try to terminate the process as gracefully as possible.

4.3 Interruptions

The terms interrupt, exception, fault, trap and abort are defined by the Intel architecture. In
this book the term interruption will be used to refer generically to an event belonging to one
of these categories, when the specific type it is not relevant.

4.4 Software Interrupts

4.4.1 Basic Concept

The Intel architecture also defines software interrupts, which are not actual interruptions of
program execution.

The int n instruction causes the processor to invoke the handler pointed by entry n in the
IDT. This instruction is similar to an interrupt in the sense that it invokes an handler.
However, this invocation is explicitly coded in the program itself, because the int instruction
is part of the code being executed.

This instruction is actually a form of indirect call to another portion of code. Instead of
providing the address to be called, the index of an IDT entry is given. The destination address
will be retrieved from the IDT.

With int, the vector to be used is explicitly specified as part of the instruction.

The processor treats int as an interrupt in the sense that it creates an interrupt frame on
the stack. Since the instruction explicitly specifies the vector to be used, it is possible to call
handlers of processor exceptions. The result is not exactly the same we have when the actual
exception occurs, because int n never pushes an error code on the stack. Thus, if it is used
with the vector of an exception that does push an error code, the interrupt frame is not the
same one created by the actual exception. Since there is no easy way to communicate to the
handler whether the error code is present or not, the handler itself is normally written under

—
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the assumption that the error code must be on the stack, so it will malfunction when called
| with int.

int does not provide a means for ring 3 code to call into handlers at will, because most IDT
entries are configured to be accessible only by an (eventual) int instruction executed at ring
0. Attempting an int for a protected entry while at ring 3 will generate a general protection
exception, resulting in the execution of the related handler which will punish the misbehaving
code, usually by terminating the process.

4.4.2 Processor Software Interrupts vs. Windows Software
Interrupts

; Windows define its own concept of software interrupt, which we are going to examine later,
and is completely different from the processor defined one. It is very important not to
confuse them, since they have nothing in common even though they, quite unfortunately,
share the same name.

5 Paging

5.1 Paging Overview

Paging is the set of functionalities offered by the processor memory management unit which
allow to implement virtual memory. With paging, it is possible to mark a given address as not
valid, i.e. not pointing to actual memory and to have the processor generate an exception
when an instruction attempts to access the address. The exception handler can then make
the address valid and resume the faulting instruction, which will then be executed as if
memory had always been there.

5.2 Address Translation

5.2.1 Address Translation Overview

Paging is based on the concept of address translation. Every address used in the code being
executed is translated into a different one before actually referencing memory. This does not
simply include the addresses of instruction operands: the address stored in the stack pointer
(rsp) is translated too, so any reference to the stack, including implicit ones due to calls and
interrupts go through translation before making it to memory; addresses of instructions are
translated as well. Instruction addresses are found in the instruction pointer (rip) and as
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operands of instructions that transfer execution to another point in code (jumps and calls,
which, ultimately, load the destination address into rip).

In short, any reference to memory is translated. There is no processor instruction which
allows to specify an address to be used "as is" to access memory.

Paging can, however, be disabled altogether, which means that all the address values used in
code are the actual ones used to reference memory. This is done during system initialization
to set up processor data structures, including those used by paging itself. Actually, after a
reset or power on, the p_rocessor is initialized with paging disabled. However, when Windows

is up and running, paging is always enabled.
Given this, we can define two distinct types of address.

The virtual address is the address before translation and used in processor instructions,
sither explicitly or implicitly (rsp, rip, etc.).

The physical address is the one resulting from the translation and actually used to refer to
memory. Physical and virtual addresses can be completely different and this allows to have
virtual addresses much higher than the amount of memory on the system. Windows
normally uses addresses above OxFFEF8000° 00000000 or 16,777,088TB for system code and
data, regardless of the amount memory installed.

5.2.2 Canonical Address Form

8efore explaining how a virtual address is translated into a physical one, we must understand
that the processor imposes a limitation on virtual addresses.

A 64 bit value can address 2** bytes of memory, i.e. 16 Exabytes or 16 Gigabytes of GigaBytes.
This is an enormous address space, much greater than what is needed in real systems so far.
This size comes with a cost: since virtual addresses must be translated, the memory
management unit must deal with every address bit, so its complexity increases with the
address size.

Given this, current x64 processors actually limit the number of usable bits to 48, but do so in
a clever way.

Simply disallowing the use of bits 48-63 would result in limiting virtual addresses below
256TB, which would complicate operating system design. As an example, in 32 bit Windows,
were the full 32 bits of virtual addresses are available, system code and data are placed in the
upper half of the virtual address space, i.e. above 2GB, giving a clean separation between
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application and system code. This would not be possible in x64 if addresses were limited to
256TB, well below the half size mark at 8EB.

The solution comes with realizing that forcing bits 48-63 to be clear is not the only way to
make them unimportant. A better way is to require that they be equal to bit 47. This means
that we have two valid address ranges:

® 0-Ox7FFF FFFFFFFF, where bit 47 is 0 and so are bits 48-63.
e OxFFFF8000'00000000 - FFFFFFFF FFFFFFFF, where bits 47-63 are all set.

We can picture this as an invalid range in the middle of the valid ones as in the following
figure:

0x1°00000000°00000000 A
upper valid range
128TB

OxFFFF8000°00000000

16,776,960TB

0x00008000°00000000

lower valid range

128TB

0x00000000°00000000

Figure 3 - Canonical Address Ranges

This way, the memory management unit can be simplified, because bits 48-63 are not used in
the translation but, at the same time, the higher portion of the virtual range can be used.
Also, future processors will have the possibility to use more bits of the virtual address,
narrowing the gap between the two valid ranges.

A virtual address is said to be canonical if it has bits 47-63 either all set or clear.

All addresses used in x64 code must be canonical. Attempting to use a non canonical address
causes a Page Fault exception.
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5.2.3 Virtual to Physical Translation

5.2.3.1 Valid and Invalid Addresses

The processor uses tables stored in memory to translate addresses. These tables can either
specify a translation for an address or mark it as invalid, which means that it cannot be
translated to a physical address. A virtual address for which a translation exists is called valid.

2.2.3.2 Access to Invalid Addresses

Any attempt to reference an invalid address generates a Page Fault exception, so an interrupt
frame is pushed on the stack, with the saved rip pointing to the instruction attempting the
memory reference. This particular exception also pushes an error code with additional
information about the type of access attempted: read, write or instruction fetch.
Furthermore, the CR2 register is set to the address that the code was attempting to access.

The exception handler for the Page Fault has all the information needed to resolve the fault.
It can, for instance, set up a valid translation and reissue the faulting instruction, or

determine that the attempted access is not allowed and transfer control to operating system
code which terminates the offending process.

5.2.3.3 Translation of Valid Addresses

The processor uses a set of tables in memory to determine the physical address

corresponding to a virtual one as depicted in Figure 4 on p. 20. Translation is performed as
follows:

* Register CR3 of the processor stores the physical address of the first level table,
which is called Page Map Level 4 (PML4). The PMLA4 is 4kB in size and contains 8-
bytes entries called PMLAEs. The other tables we are about to see have the same size
and structure.

e Bits 39-47 of the virtual address are used as an index into the PMLA4 to select a
PMLAE. Since each PMLAE is 8 bytes long, its offset from the beginning of the table is
index * 8, or the index shifted left by 3 positions.

e The selected PMLAE stores the physical address of the next level table, called Page
Directory Pointer Table (PDPT), which has the same structure of the PMLA4.

e Bits 30-38 of the virtual address are used to select a PDPT entry (PDPTE), storing the
physical address of the next level table, called the Page Directory (PD).
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e Bits 21-29 select a PDE, which has the physical address of the last level table, the
Page Table (PT).

e Bits 12-20 selects a PTE which stores yet another physical address. This will be the
base for the computation of the final physical address.

e Bits 0-11 are added to the physical address obtained in the previous step, i.e. they
are an offset from that address. The result is the final memory address which is
actually accessed.

63:48 47:39 38:30 29:21 20:12 11:0

virtual address unused PML4 index PDPT index PD index PT index offset

()

CR3

PMLAE PDPTE jL PDE L\\b PTE —-\kb byte

PML4 PDPT PD PT physical
page

Figure 4 - Virtual to Physical Translation

We will use the term paging structure (PS) to refer to any of the tables used in the translation
and the acronym PxE to refer to a generic entry from any of them. As we said, paging
structures are 4kB in size and each entry is 8 byte long, so a PS can store up to 512 entries
and thus 9 bits from the virtual address are used to index into it.

By design, the starting address of a paging structure must be a multiple of 4kB. Such an
address has bits 0-11 set to 0 and this fact is exploited in the paging structure entries, where
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these bits are used for control information about the translation. The same requirement
applies to the physical address stored in the PTE, were similar control bits are used.

We saw that 12 bits of the virtual address are used as an offset from the physical address
found in the PTE. This means that the same virtual to physical translation applies to an
address range where bits 12-63 have the same values. Such a range is 2" i.e. 4kB long.

So, to summarize, this translation scheme uses bits 12-47 of the virtual address to retrieve a
4kB aligned physical address and uses bits 0-11 as an offset from this address, covering a
range of 4kB.

The memory range addressed by a translation is therefore 4kB aligned and 4kB long. We will
call such a memory block a physical page. The starting address of a physical page divided by
4k is called the physical page number (PFN). Since physical pages are 4kB aligned, PFNs are
integer values: the first physical page has PFN O, the second has PFN 1 and so on. Another
way of looking at this is that the PFN is the physical address shifted right by 12 positions,
which discards the zeored bits.

A paging structure, given its alignment and size requirements, occupies exactly one physical
page. This allows an operating system to manage memory allocation in a consistent way,
regardless of whether a page is used to store program code and data or a paging structure.

Dividing the virtual address by 4k and rounding down the result to the nearest integer we
obtain what is called the virtual page number (VPN). The VPN includes all the bits used to
retrieve the PFN for the translation, so an address range where the VPN does not change
translates to the same physical page. Such a range is itself 4kB aligned and 4kB in size and is
called a virtual page. All the addresses inside a virtual page are translated into the same
physical page. The virtual page is said to be mapped to the physical one.

From now on we will use the term virtual memory to refer to a range of virtual addresses and
the associated content mapped to it, including eventually, invalid addresses for which
content is undefined. We will use the term physical memory, to refer to the actual memory of
the system.

5.2.34 The Demise of the Physical Address

It's interesting to observe that the Intel documentation used to define the physical address as
the address that "appeared at the address pins" of the processor, after all the translation
work had been done. Contemporary processors incorporate the memory controller, so they
interact with memory chips using signals completely different from an address bus and there
is not a set of pins where the physical address can actually be observed as a sequence of high
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and low voltage levels. In this sense, the physical address does not exist anymore.
Nevertheless, even on contemporary systems memory is arranged in byte locations uniquely
identified by a number, i.e. an address, which the processor must use to access them, no
matter how the hardware is designed. The value found in paging structure entries is the one
used to this end and it is still called physical address.

5.2.3.5 Multiple Address Spaces

If we load the CR3 register with the physical address of a different PM L4, we establish a
completely different translation. The PML4Es will point to different PDPTs, whose entries will
point to different child structures and so on, up to the physical pages storing the memory
content. In short, what is mapped to any virtual address can be completely different from
what was visible with the earlier cr3 value.

Thus, changing this single register establishes a new address space: the memory content
changes completely, because different physical pages are mapped to the same virtual ones.
This is the mechanism used to implement a separate address space for every process.

5.2.3.6 Range Mapped by a PxE

The PML4 entry mapping an address is selected by bits 39-47, therefore each entry maps an
address range where these bits remain constant. This correspond to a range where the
rightmost 39 bits range from all zeroes to al ones, i.e. a range of 2*° bytes or 512GB.

By the same token, a PDPT entry maps a range with size 2°°, i.e. 1GB.
A PD entry maps a range with size 22, i.e. 2MB.

A PT entry maps a range of 22 bytes or 4kB.

5.2.3.7 Structure of a valid PxE

A valid PxE stores the address of a physical page, either for a child paging structure or for the
physical page mapped to the virtual one. Bit 0 of the PxE determines whether it is valid or
not: when this bit is set, the PxE is valid.
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A valid PxE has the following layout:
63  62:52 51:12 11109 8 7 6 5 4 3 2 10
XD i PFN ilililc|pP|D|A]|P [P |U|R|P
c(wi|/ |/
T DT w
Figure 5 - Valid PxE
The meaning of the PxE fields is as follows:
P: When this bit is set, the PxE is valid and contains the physical address of either the

next PS in the hierarchy or the mapped physical page. When this bit is clear, the PxE
is invalid, so the meaning of all the other bits changes as we will see insec. 5.2.3.9 on
B, 27.

R/W: When this bit is set, writes to the virtual range mapped by this entry are allowed;
when it is clear, writes cause a Page Fault exception.

For a PTE, the effect of the bit applies to the physical page mapped by the
translation.

For PxEs of higher level, the protection applies to all the range mapped by the entry,
e.g. 512GB for a PML4E, 1GB for a PDPTE, etc.

Another control bit (in register CRO) allows to configure the processor to allow writes
when CPL < 3, even if R/W is clear. Windows configures this bit so that read only
protection is enforced at CPL< 3 as well.

U/S:  When this bit is set, addresses in the range mapped by the entry can be accessed at
CPL 3. When it is clear, accesses are allowed only at CPL < 3. As for the R/W bit, this
applies to the whole range mapped by the PxE, depending on its level in the
hierarchy.
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PWT:

PCD:

PAT:

PFN:

What Makes It Page?

The primary use of this bit is to configure part of the virtual address space to be
accessible only at ring 0, to protect system code and data from application code.

Attempting to access at ring 3 a virtual range protected by this bit causes a Page Fault
exception.

Controls how memory is cached and will be discussed in Chapter 6 (p. 32)
Controls how memory is cached and will be discussed in Chapter 6 (p. 32)

Set by the processor when an instruction accesses memory and causes this entry to
be used. It provides a mechanism for code to know if the virtual range mapped by
the entry has ever been accessed. This bit is “sticky”: once set at the first access, it
remains set until code clears it by explicitly updating the PxE.

Set by the processor when an instruction writes to an address mapped by the entry.
It provides a means for code to know when a physical page has been written to, i.e.
when it is “dirty”. This bit is “sticky”: the processor sets it but does not clear it.
Software can clear it by updating the PxE, perhaps after having saved the page into
the paging file.

The processor sets this bit only for PxEs at the bottom of the PS hierarchy, like PTEs
and PDEs mapping large pages, which will be discussed in sec. 5.2.3.8 on p.25. 1tis
ignored for higher level entries.

In PTEs, controls how the memory is cached and will be discussed in Chapter 6 (p.
32). In higher level PxEs, controls the page size. In a PML4E is reserved and must be
set to O0; in a PDPTE can be set to 1, but we are not going to analyze this, since
Windows does not use this feature; in a PDE can be set to 1 and this changes how the
virtual to physical translation is done, which will be discussed in sec. 5.2.3.8 on p. 25.
The translation we have described so far takes place when this bit is set to 0 in the
PDPTE and PDE.

Controls how this entry is cached in the TLB. This will be discussed in sec. 5.2.4 on p.
31. This bit is only used for the last level of the PS hierarchy, i.e. PTEs and PDEs for
large pages. In higher level PxEs is ignored.

All the bit fields marked as i are ignored by the processor and available to software.

These bits store the PFN of the physical page pointed by the entry. For PTEs and large
page PDEs (discussed later in sec. 5.2.3.8 on p. 25) points to the physical page
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mapping the virtual one. For higher level PxEs points to the physical page storing the
child PS. Note that this field stores a PFN, i.e. a physical address shifted right by 12
positions. Since the field begins at bit 12, if we take bits 0-51 of the PxE value and
clear bits 0-11, we have the physical address of the page.

Since bits 51 is the highest possible bit of the physical address, the latter is 52 bits
long and can address up to 2 Petabytes of memory, which is the current limit of the
architecture.

For simplicity, Figure 5 shows bit 12-51 as being all used for the PFN, however the
Intel documentation specifies that a particular processor model can restrict the
physical address length to less than 52 bits. When this happens, the unused bits
becomes reserved and must be set to O.

When this bit is set, instruction fetching is not allowed in the range mapped by the
entry. Like R/W and U/S, it applies to the entire mapped range, whose size depends
on the level of the entry in the PS hierarchy. Forbidding instruction fetching means
disallowing the execution of instructions in the affected address range. Thisis a
security feature designed to block an attempt to execute code injected in memory
areas used for data, e.g. code injected on the stack through buffer overrun attacks.

If a control transfer instruction like a call or a jump loads rip with an address inside a
range protected by this bit, the processor attempts to execute whatever is found at
the address in rip and this causes a page fault exception.

5.2.3.8 Valid PDE for a Large Page
Setting bit 7 in a PDE changes the way the processor performs the translation. The PDE is

used to map the virtual page directly and the PT is removed from the translation hierarchy.
So, bits 21-47 of the virtual address select a PMLAE, a PDPTE and a PDE, and the physical
address stored in the PDE becomes the starting address of the translation. Bits 0-20 are used

as an offset from this starting address, so the range mapped by this translation has size equal
to 2°! bytes, i.e. 2MB. The physical address stored in the PDE must, by design, be aligned on a
2MB boundary, so the PDE is mapping a range which is 2MB aligned and 2MB in size, which
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we call a large page. The following figure shows the translation process for a large page:

63:48 47:39 38:30 29:21 20:0

virtual address unused PML4 index PDPT index PD index offset

CR3

PMLAE PDPTE —-\L PDE k# byte

PML4 PDPT PD physical

page
(2MB)

Figure 6 - Virtual to Physical Translation for a Large Page

Since a 2MB aligned address has bits 0-20 set to 0, these bits are used for control information
or reserved. The following figure shows the format of a large page PDE

63  62:52 51:21 20:13 121110 9 8 7 6 5 4 3 2 1 0
i XD i PFN res |PlilililGg|1|Dp|a|pP |P P
| clw|/ |/

i T DT [s [w
i

}‘ Figure 7 - Valid PDE Mapping a Large Page
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The format is very similar to the PxE in Figure 5 on p. 23, with the following differences:

bit 7:

PAT:

PFN:

This bit is set, because this is what causes the PDE to map a large page. When this bit
is clear, the PDE refers to a PT.

This bit is the same as the PAT bit for a PTE. It controls how memory is cached and
will be discussed in Chapter 6 (p. 32).

The PAT bit is relevant only for PxEs which are at the bottom of the translation, i.e.
those who refer to the physical page being mapped to the virtual one. As far as
Windows is concerned, this means either a PTE or a large page PDE.

For a PTE, the PAT bit is bit 7.

For a PDE, bit 7 is used to distinguish between a PDE for a large page and one for a
small page. The latter has bit 7 clear and does not have a PAT bit, since it is not at the
bottom of the translation hierarchy (it has a child PTE).

A large page PDE must have bit 7 set to 1, but also needs a PAT bit, which is therefore
moved to bit 12. Note that, for a small page PDE, bit 12 is not available, since it is
part of the PFN of the PT. However, in a large page PDE, bits 12-20 can be used
because the page must be 2MB aligned, so the PAT bit is moved to bit 12 (and bits
13-20 are defined as reserved, thus they must be 0).

For such a PDE the PFN only uses bits 21-51, since the page must be 2BM aligned.

5.2.3.9 Invalid PxEs

Any level in the hierarchy, not just PTEs can be set up as an invalid entry, making all the
virtual range encompassed by it invalid.

For instance, a PMLA4E can be invalid, which means it does not refer to a PDPT. When this
7 happens all the 512GB region mapped by the entry is invalid, i.e. has no translation from
virtual to physical. The same applies to PDPTEs (invalid region size is 1GB) and PDEs (invalid
region size is 2MB).
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A PxE is invalid when bit O is clear. For such a PxE the processor ignores all the remaining bits,
so its format is simply:

63:1 0

ignored 0

Figure 8 - Invalid PxE

Bits 1-63 are available to software, e.g. to store the location of the content the PxE should
point to in the paging file.

5.2.3.10 Why All These Paging Structures

We can understand by now that that address translation does three fundamental things
needed to implement virtual memory:

e Itallows to map a virtual address to a completely different physical one, allowing the
use of address ranges that don't exist in actual system memory (e.g.
OxFFFF8000° 00000000 - OXFFFFFFFF FFFFFFFF).

e Itallows to map the same virtual address to different physical pages by changing
CR3, thus providing a simple way to switch from an address space to another.

e Itallows to set an address as invalid, thereby allowing the page fault handler to take
control and decide whether to map the address (set up a valid translation) or
complain in a suitable way.

We could observe that none of these functionalities requires the multilevel scheme we saw.
If all we need is a data structure associating (that is, mapping) a virtual address with a
physical one, we could use a simple array indexed by virtual address, where each entry stores
the address of a physical page. Going even further, we can ask ourselves why have memory
pages at all, i.e. why not have an entry of our hypothetical array just store a physical address
anywhere in memory.
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If we were to do such a one-to-one mapping, we would need an array entry for each mapped
virtual address, which would mean we would occupy 8 bytes, the size of an entry, to map a
single virtual byte, an obviously excessive overhead. Instead, by using pages, an 8 byte entry
maps 4kB of virtual memory, which is much better. Also, this opens up the possibility of using
the lower 12 bits of the entry for some useful control information simply by requiring that
the page starting address must be aligned on a multiple of the page size.

We could still think of using a single array of 8-bytes entries mapping virtual addresses to
pages and index into it with bits 12-63 of the virtual address.

With this approach, to map the lower valid region of canonical addresses we would need an
array with size equal to: the size of the range divided by the size of a page and multiplied by
the size of an array entry:

0x8000°00000000 / 0x1000 * 8 = 0x40°00000000 = 256GB

We would also need another array of the same size for the upper valid range and we would
need this pair of arrays for every existing address space, all of them stored in physical
memory. Most of this memory would be wasted, because the majority of entries would map
virtual ranges that have never been allocated in the address space, so they would simply
represent somehow that the translation is invalid (e.g. P bit clear). They would not store
useful information as is the case when the translation has been valid sometime in the past
and the mapped content has been moved to the paging file. In short, the biggest shortcoming
of this approach is that we have to set up an entry for every possible virtual page, including
those the process will never use.

On the other hand, with the translation scheme we saw, a small 4kB paging structure maps
all the 256TB of virtual address space of the two canonical ranges. This makes it necessary to
have other intermediate level paging structures, since there are only 512 entries in the PMLA4,
thus a single one maps

256TB /512 = 512GB

By adding other level of tables, the range mapped by a single entry is divided by 512 - the
number of entries in a child table - at each level, until we arrive at the PT entries, which map
4kB pages.
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This allows to map an address space with "holes" of invalid regions without wasting too many
unused entries, as in the following figure:

PT page
PD

PML4 PDPT

valid entry

invalid \\
]

invalid

valid entry

invalid entry

valid entry

Figure 9 - Sparse Virtual Address Space

The invalid entries don't point to physical memory, so only the paging structures needed to
map valid ones are allocated.

Finally, this scheme allows to share paging structures among different address spaces.
Suppose a second address space sets its highest valid PML4 entry to point to the same PDPT
of Figure 9. This fact alone materializes the same content in the corresponding 512GB region
of the two address spaces, sharing all the levels of the paging structures hierarchy. We will
see that this is the way Windows shares the system address range among all processes.
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5.2.4 Overview of TLB and Paging Structures Caches

To translate a virtual address into a physical one, the processor has to perform 4 memory
accesses, one for each PS in the hierarchy. Since memory latency is much longer than
instruction execution time, this slows down the processor considerably. To avoid this,
translations are cached in two types of caches: the translation lookaside buffer (TLB) and the
paging structures caches.

The TLB caches complete translations from a virtual address to a physical one, together with
all the control information, i.e. whether the page is read/write or read-only, whether it is
accessible at ring 3, etc. If the translation for a virtual address is found in the TLB, no access
to the paging structures in memory is required.

The paging structures caches store partial translations. The PMLAE cache stores the content
of PML4Es, allowing to retrieve the PFNs of PDPTs without accessing the PML4 in memory.
An entry in this cache is selected by bits 39-47 of the virtual address, like a PML4E in memory.

The PDPTE cache stores a translation up to the PDPTE content, i.e. up to the PFN of the PD.
This means that an entry in this cache is selected by bits 30-47 of the VA, i.e. the bits
selecting the PML4E and the PDPTE. The entry also stores the control information coming
from the PDPTE and the PMLA4E. Such an entry can be used to perform the remaining part of
the translation by accessing only the PD and the PT.

The PDE cache is similar to the PDPTE cache and stores partial translations up to the PT
address.

All these caches come with a significant price: they must be explicitly invalidated by software.
If code modifies a PxE in memory, the processor does not detect the update and does not
flush cached translations. The code must explicitly invalidate the TLB and paging structures
caches when it modifies PxEs. This is a complex task, because, on a multiprocessor system, all
the processors must have their caches invalidated, which requires an inter-processor
interrupt and synchronization logic among all the processors. Such an operation cannot be
performed too often, otherwise performances would suffer too much, so even more complex
logic must be implemented, to perform invalidation in batches of translations.

The processor automatically invalidates the caches when a value is loaded into CR3, since this
operation changes the PML4 address, thus switching to a different address space. It would
not make sense to retain cached translations referring to a different set of paging structures.

However, a system may have a range of memory shared by all the address spaces (Windows
does), so it would be a waste to invalidate its cached translations on every context switch.
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This is what the G bit of PTEs and large pages PDEs is for: when this bit is set, the TLB entry
for the translation (if it exists) is not invalidated when CR3 is loaded. Thus, shared addresses
are retained in the TLB. Note that the paging structures caches are always invalidated,
because the G bit is ignored in intermediate level PxEs.

6 Cache Control

6.1 How Memory Caching Is Controlled

The Intel architecture defines caching in terms of memory types and cache control registers
and bits.

A memory type specifies if memory is cached at all, i.e. if a copy of it is brought into the
processor cache hierarchy, and how updates are written to main memory when an
instruction writes to an address.

Control registers and bits specify the memory type for a given physical or virtual address
range.

6.2 Memory Types

The following memory types are relevant for the rest of this book.

6.2.1 Writeback Memory (WB)

This is the "most cached" type, which keeps traffic on the memory interface at a minimum.
Memory content is copied into the processor cache on read, if it is not already present.
Subsequent reads will not access main memory and will retrieve the value from the cache
instead. Writes will update the cached copy of the value, without being propagated to main
memory.

A system has more than one processor (typically) and can also have other devices which read
from and write to system memory, like a DMA controller. Collectively, all the components
which access main memory are called bus agents.

With multiple bus agents, care must be taken to ensure that each of them has a consistent
view of the memory content. For instance, if a processor updates the copy of a memory
location in its cache without updating main memory (as it is normal with WB memory), other
agents could see a stale copy of the location.
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This is avoided through snooping: bus agents exchange signals which allow each of them to
snoop updates made by other agents to their cached data. If an agent updates a value in its
cache and another agent has a copy of the same value, the second agent throws away its
copy. The next time the second agent will need that particular piece of data, will load it from
memory.

This is not enough however, since the main memory copy is also stale, as long as the updated
value is kept in the cache of the agent which modified it. To solve this problem, each agent
snoops accesses to main memory made by the others. When it detects that another agent
wants a piece of data which has been modified in the cache, the two agents cooperate so
that the one needing the data gets the up-to-date copy from the one that was caching it.

With this type of memory, when a processor writes to an address which is not in the cache,
the memory content is first copied into the cache, then updated there. In other words, both
reads and writes fill the cache.

Cached memory is read and written in entire cache lines (typically 64 bytes blocks aligned on
64 bytes boundaries), which are handled most efficiently by the memory interface. This
means that reading or writing a single byte not found in the cache causes an entire cache line
to be copied to it.

6.2.2 Write Combining Memory (WC)

This memory type is suitable for video buffers, which have a few peculiarities.

Writes to a video buffer must be propagated outside the processor in a timely fashion, to
update the video content, so writeback memory cannot be used. However, writes need not
occur in program order, so the processor is allowed to combine them in an intermediate
internal buffer, to use the most efficient transfer cycle to send the data out.

Memory writes don’t cause the cache line containing the data to be loaded into the cache. If
this were to happen, the cache would be filled with video buffer data, mostly useless.
Memory reads are not cached either.

The processor does not guarantee memory coherency for WC memory, because accesses to
it are not snooped, so there is a window of time in which other agents see stale content.
Again, this makes sense for a video buffer, which is seldom read and not used to store shared
data structures. If code needs to be sure that WC memory is up to date, there are
instructions to explicitly flush the intermediate buffers.
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6.2.3 Uncached Memory (UC)

This memory type is not cached, so reads and writes are always propagated to the interface
bus. It is mostly indicated for memory mapped devices were reading or writing an address
causes an interaction with the device. Usually, devices are sensitive to the order in which
their memory mapped registers are read and written, i.e. changing the order of read and
writes can produce different effects on the device. In WB memory, the processor does not
execute read an writes exactly in program order:

® Aread can be executed ahead of a write which comes before it in program order, if
they cover different memory locations.

e The processor can perform reads written, in code, after a conditional jump. It
attempts to predict the outcome of the condition, i.e. whether the jump will be taken
or not and can execute reads which are part of the block of code that would be
executed if the prediction was correct. The data read is stored in intermediate
buffers and is later used for actual code execution if the prediction turns out to be
correct, or discarded. If the processor predicts the wrong path, it ends up reading
addresses that should not have been read according to the program logic and state.
This is harmless for memory, but can cause undesired effects with devices.

In UC memory, only reads and writes resulting from actual code execution are performed and
exactly in program order.

Access to UC memory downgrades overall system performance because:

e Each processor have to wait for reads and writes to be completely carried out before
executing other memory accesses.

e Traffic on the memory interface shared by all bus agents is increased, since every
access is propagated to memory. This increments the probability of bus contention,
which further delays memory accesses.

6.3 Memory Type Range Registers (MTRR)

MTRRs are registers that specify one of the possible memory types for a given range of
physical addresses. Generally, Windows programs the MTRRs so that all actual memory (as
opposed to mapped devices) has type WB.
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6.4 Page Attribute Table (PAT)

While the MTRRs specify memory types for physical address ranges, the PAT allows to specify
the same information in terms of virtual addresses. Thus, a given VA will have a type
specified by the PAT and will be translated to a physical address with a, potentially different,
type specified by an MTRR. The final type results from the combination of the two, as we will

see.

The PAT is a 64 bit special register (what the Intel documentation calls a Model-Specific
Register) divided in 8 entries of 8 bits each. Each entry can be set to a value corresponding to
a memory type, according to the following table:

PAT Field Value Memory Type
0x00 ucC
0x01 wWC
0x06 WB
0x07 uUC-

Table 1 - Memory Types Encoding in the PAT

The Intel architecture defines more memory types than the ones shown in Table 1, but
Windows programs the PAT using only these. The UC- type will be defined shortly.

Entry O of the pat corresponds to bits 0-7, entry 1 to bits 8-15, etc.

The bottom level of the virtual-to-physical translation (either the PTE or a PDE for a large
page) selects a PAT entry and thus a memory type for the page through its PWT, PCD and PAT
bits, which are shown in Figure 5 (p. 23) and Figure 7 (p. 26). The three bits select a PAT entry
according to the following table:

PAT | PCD | PWT | PAT Entry

0 0 0 0
0 0 1 1
0 1 0 2
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PAT | PCD | PWT | PAT Entry
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Table 2 - PAT Entry Selected by PxE Control Bits

A given virtual page has a memory type specified by the selected PAT entry and is mapped to
a physical address, which has a memory type specified by an MTRR. The intel documentation
defines the resulting memory type for the possible combinations (see [11], Vol. 3A, p. 11-22,
Table 11-7). For our purpose, it is enough to say that when the MTRR specifies WB, the
resulting type is the one selected by the PAT.

The UC- type in Table 1 on p. 35 is equivalent to UC, when the MTRR specify WB and they
both result in UC memory.

UC- differs from UC when the MTRR specifies a memory type other than WB. For instance,
when the MTRR specifies WC type (usually for a video buffer), selecting UC- in the PAT results
in the final type being WC, while selecting UC gives UC memory. UC- specifies uncached
memory but can be overridden by WC in the MTRR. UC in the PAT overrides WC in the MTRR.

What we have seen so far concerns the caching of a physical page mapping a virtual one.
Physical pages storing paging structures have a memory type as well, which is determined in
the same way. The only difference is that, as we saw in sec. 5.2.3.8 on p. 25, PxEs pointing to
child paging structures don't have a PAT bit, so the processor behaves as if PAT is 0, and
selects a PAT entry based on PCD and PWT.

It is worth noting a difference between the cache control bits of a PxE and other control bits
like R/W, U/S and XD. The cache control bits control the memory type of the page pointed by
the entry. If the entry is not the bottom level one, e.g. is a PDPTE, these bits specify the
memory type of the next level paging structure, the PD in our example. Only the cache
control bit of the last level entry have effect on the caching policy of the physical page
resulting from the translation. Conversely, the other control bits always act on the result of
the translation. For example, a PDE with R/W clear protects as read only the entire range
mapped by the PD, but does not specify that the PT it points to is read-only.
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7 Model-Specific Registers (MSR)

The architecture defines several registers which configure how the processor works. These
registers are identified by a number called the register address and there are specific
instructions for reading and writing to them.

It's possible to examine the content of an MSR with WinDbg by issuing the rdmsr command
followed by the register address. For instance, the PAT has address 0x277 and can be
dumped as follows:

1kd> rdmsr 277
msr([277] = 00070106°00070106

Appendix B of [11], Vol. 3B lists the MSRs addresses.
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8 Introduction

Part Il explains a few concepts concerning the Windows kernel which can be of help in
understanding the rest of this book.

We will describe the concepts of IRQL, interrupt processing and synchronization.

9 User Mode and Kernel Mode

The terms user mode and kernel mode are equivalent to CPL 3 and CPL O, respectively. User
mode code includes executables and DLLs, including ones that are part of Windows itself.
Kernel mode code includes the kernel, the hal and kernel mode drivers, either part of the OS
or installed by third party software.

Application code is executed in user mode and the processor switches to kernel mode when:
e An hardware interrupt is requested.
e The processor generates an exception.

e A mode-switching instruction (usually syscall) is executed as part of the
implementation of a system API. Some APIs are implemented entirely in user mode,
while others need to call the kernel or the executive, so they switch to kernel mode.
As an example, a call to a waiting function like WaitForSingleObject must suspend the
executing thread until the wait is satisfied. To accomplish this, it must call the thread
dispatcher, which saves the thread status on the stack and resumes some other
thread. The thread dispatcher, in turn, is made of kernel mode code.

The processor switches from kernel to user mode when:
e An iret instruction is executed to return from an interrupt or exception handler.

e A mode-switching instruction (usually sysret) is executed, to return from the kernel
mode part of an APl implementation.

10 IRQL

10.1 Definition of IRQL

Windows defines the concept of IRQL (Interrupt Request Level) to specify the rules governing
how a block of code can be interrupted and a thread preempted by a context switch.
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The IRQL is a numerical value which determines which interrupts are enabled on a processor.
At any given time, each processor in the system has its own current IRQL value and different
processors can be at different IRQLs.

Each hardware interrupt is assigned an IRQL value. The IRQL range is 0-15, so the same value
can be assigned to different devices.

When the processor is not responding to an interrupt, its current IRQL is usually set to
PASSIVE, i.e. 0. When an hardware interrupt is serviced by a processor, the handler raises the
IRQL of the executing processor to the value assigned to the interrupt. Before executing the
iret which will resume the interrupted code, the handler restores the IRQL to the value it
had when the interrupt occurred.

When the current IRQL of a particular processor has been raised to i, all the interrupts with
IRQL <= i are masked on that processor, i.e. they cannot interrupt the executing code. If such
an interrupt is requested, it is noted as pending and will be serviced when the current IRQL
value will drop below the one of the interrupt. However, interrupts with IRQL <= i can still
interrupt code executing on other processors, when the IRQL of these processors is < i.

If a pending interrupt becomes visible when the IRQL is lowered, its handler is called and the
process is repeated, setting the IRQL to the value for the new interrupt.

The current IRQL is stored in register CR8 and causes the processor to ignore hardware
interrupts with a priority equal or below its value. Interrupt priorities are established by
programming the interrupt controller, something that Windows does during its initialization.
Thus, the masking of hardware interrupts with IRQL equal or less the current one is
performed in hardware, by the processor itself.

At the hardware level, this scheme is designed to guarantee that less important interrupts

cannot delay the execution of handlers of more important ones. However, this scheme has
also logical implications on how the code of interrupt handlers is executed, and this will be
the subject of the next section.

10.2 IRQL Implications on Code Execution

10.2.1 Introduction

In the next sections, we are going to analyze how masking interrupts by means of the IRQL
has implications on the way interrupt handlers code is executed. While doing this, we will
consider IRQL values in general, with no distinctions among them.
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We will see later, though, that IRQLs 1 and 2 have a special meaning and are used in a special
way. However, before going into these details, it is useful to examine the effects of interrupt
masking on code execution in general.

It is also useful to keep in mind that an interrupt handler is composed of different parts: the
first level code pointed by the IDT usually calls into other parts of the kernel, which, in turn,
may call code which is part of drivers installed in the system. Drivers must be allowed to
install their own interrupt service routines, which must be called when an interrupt occurs.
This allows a driver, to interact with its device.

10.2.2 Code vs. Processor Implications

The interrupt masking outlined in the previous section imposes some constraints on when a
particular processor can execute certain parts of code.

Consider the code of an interrupt handler, which is being executed by processor p at IRQL J,
i.e. after the IRQL has been raised and before it is restored to its previous value.

This code can be written assuming that the same interrupt is masked on processor p, so p
cannot be interrupted in the middle of the code and reenter it. It may be interrupted by
other interrupts and execute other handlers, but it will never reenter the same handler, until
the IRQL is restored.

This code can, eventually, keep state information in per-processor data structures, like the
Processor Control Region (_ KPCR) and the Processor Control Block ( KPRCB) and assume
that access to them is serialized. Only when the handler returns and the IRQL is lowered, the
handler code can be executed again by processor p. Even if the same code is concurrently
executed by other processors, it will access different instances of the state variables, if the
data structures are per-processor ones.

There is an exception to this rule, which will be examined in sec. 10.2.4 on p. 45.

Note that code of third party drivers does not usually access the _KPCRor the KPRCB, which
are not even documented. However, in this analysis, we are considering how kernel mode
code works in general, regardless of where it came from. It's possible that internal kernel
functions take advantage of this implication. Also, driver code can, conceivably, call the
documented DDI KeGetCurrentProcessorNumber, which does what its name says, and store
per-processor information, e.g. in an array indexed by processor number.
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10.2.3 Code vs. Thread Implications

10.2.3.1 Interrupts with IRQL 2 or Above

The IRQL also has implications on the relationship between code and the thread executing it.

We can begin our analysis by observing that an interrupt always occurs in the context of a
thread. The processor receiving the interrupt is executing thread t and it is diverted to
execute the handler code while t is the current thread. Thus, when the handler raises the
IRQL, it does so in the context of t.

We will see in greater detail later that, when the IRQL of a processor is greater or equal than
2, that processor is prevented from executing the thread scheduler code which performs
context switches, i.e. which suspends the current thread and resumes another one. For now,
we will just say that this is how the scheduler is implemented. The thread scheduler is also
called the thread dispatcher, so these two terms are equivalent.

It follows that, when an interrupt at IRQL 2 or above occurs while t is the current thread
running on processor p, this processor will continue to run thread t at least until the IRQL is
lowered below 2.

This implies that the handler code can be written under the assumption that it will not be
reentered in the context of t. The same handler can only be executed concurrently by other
processors, which, in turn, can only execute other threads, since t is stuck with p, because of
the IRQL.

This opens the door to assumptions on where the handler code can store state information.
If the code stores values in per-thread data structures, access to these variables will be
implicitly serialized. The same code, when executed in a different thread context, will access
different instances of these variables.

10.2.3.2  Interrupts with IRQL 1

Now, suppose that thread t running on p is interrupted by an interrupt at IRQL=1. A
processor running at this IRQL can execute the thread scheduler and resume a different
thread, so the thread can be preempted while in the middle of the handler. However, the
IRQL is saved and restored together with the rest of the thread context, so, when t will
eventually be resumed by a processor (either p or another one), the current IRQL will be set
to 1, before resuming execution of the handler code. From this follows that execution of the
handler in the context of t cannot be interrupted by the same interrupt either. While it's true
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that t can be moved across processors by thread scheduling, it brings along its own IRQL, so
the interrupt masking remains in effect.

Thus, access to per-thread variables is serialized for interrupts at IRQL 1 as well.

10.2.4 Code vs. Processor - Reprise for IRQL 1

We saw in the previous section that a processor may switch thread context while the IRQL is
1 and that, when a different thread is resumed, the IRQL is restored to the value it had when
that thread was preempted. This implies that the following can happen:

e Processor p, executing thread t services an IRQL 1 interrupt, transferring control to
the handler. The handler sets the current IRQL to 1.

e While the handler execution is in progress, a thread switch occurs and thread t is
preempted.

e Thread s is resumed by processor p and, since s was running at PASSIVE when it was
preempted, the IRQL is set to PASSIVE.

e The same IRQL 1 interrupt (we will see there is actually only one such interrupt) is
serviced again by processor p. This interrupt is not masked, because now the IRQL is
PASSIVE.

e The handler of the IRQL 1 interrupt is reentered, with p being the executing
processor.

In this scenario, if the interrupt handler had state saved in per-processor variables, these
variables would have been partially updated by the first call to the handler, which has been
frozen midway by the thread switch. The second call to the handler would then update the
same variables, because the executing processor is the same, corrupting the execution of the
first call, which will eventually go on, when thread t will be resumed.

Thus, for IRQL 1 only, access to per-processor variable is not serialized and the handlers of
interrupts at this IRQL (again, there is actually just one such handler, as we will see) must be
written accounting for this.

This concerns only the IRQL 1 interrupt, because, as we said, when a processor is at IRQL 2 or
above, it does not switch thread context.

In the scenario above, however, it is still true that an interrupt at IRQL 1 cannot interrupt
thread t in the middle of an IRQL 1 handler. When t is executing the handler, no matter on
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which processor, the processor IRQL is set to 1 and interrupts at this IRQL are masked. Thus,
the logic of an IRQL 1 handler can safely store state information in per-thread variables and
assume that they will be accessed serially.

10.2.5 User Mode Code

User mode code is always executed at IRQL = PASSIVE and there are no APIs available to
change the current IRQL. Since PASSIVE is the lowest IRQL, user mode code can always be
interrupted and thread context switches are always possible. Normally, user mode code is
not disturbed by interrupts, because no part of it is called by interrupt handlers, so the code
can’t be re-entered in the context of the same thread because of an interrupt. Thus, as we

will see shortly, user mode code only needs to synchronize execution among different
threads.

10.2.6 The Golden Rule for Code Called by Interrupt
Handlers

In the previous sections, we saw the assumptions that can be made when writing handlers
code, thanks to the combined effects of masking interrupts and disabling thread switching at
IRQLs greater than or equal to 2. The price to be paid for this is an important rule, that all
interrupt handlers code must follow.

An handler code must never lower the IRQL, except in its very final stage, when it's about to
return from the interrupt. When this happens, the handler must restore the IRQL that was in
effect before its interrupt occurred. In particular, it must not set the IRQL to a value lower
than the pre-interrupt one.

Consider for instance a block of code which is part of an handler of an interrupt with IRQL= 5
interrupting another handler for an interrupt with IRQL = 4. Suppose that the code at IRQL 5
changes the IRQL to 3, violating the rule we just stated. A new pending interrupt at IRQL 4
can be serviced before resuming the originally interrupted code, that was itself running at
IRQL 4. The latter has been de facto interrupted by code at the same IRQL, which should
never happen. Suppose now that the new IRQL 4 interrupt is from the same source which
caused the original IRQL 4 one. The same handler will be reentered while the previous call to
it has not completed yet, because it was interrupted by the IRQL 5 interrupt. This can
completely disrupt the result of the handler execution.

’

Every piece of handler code can be written under the assumption that the conditions
detailed insections 10.2.2 to 10.2.4 (pp. 43 - 46) apply, but this is true only if it cannot be
interrupted, on the same processor, by code with IRQL less or equal than its own. This, in
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turn, can be guaranteed only if the IRQL is lowered only when the handler is about to return
and is restored to its previous value (in our example, 4).

It is true that decreasing the IRQL by a single unit could be seen as a particular case: this
would at most cause the handler which lowered the IRQL to be reentered. If all of the
handler code could be written accounting for this, no problem should occur. However, code
executed by an interrupt handler is not a monolithic and immutable block. It is composed by
a first layer which is part of the kernel and calls code which is part of other components,
often including third party drivers. It is therefore a practical impossibility to be sure that all
the code making up the handler can survive reentrancy caused by lowering the IRQL, thus
this operation is forbidden altogether.

The problem would be even worse if, in the previous example, the handler at IRQL 5 were to
set the IRQL to O or 1. Doing this would enable thread switching, so the poor handler running
at IRQL 4 could even be preempted by a thread switch and have to wait until the thread is
resumed, before being allowed to go on. The code for that handler has not been written
accounting for this possibility, because, at IRQL 4, thread switching is disabled.

10.2.7 I Raised It Myself, Can I Lower It Now?

A block of code can explicitly raise the IRQL above the current level, to disable higher IRQL
interrupts. This can be done both in handlers and in code which is not part of any handler.
We will see later, in Chapter 14 (p. 52) how this is used to synchronize execution. When this
is done, the IRQL can, of course, be later lowered to its previous level. So it would not be
correct to say that an handler can never lower the IRQL. Rather, it cannot set it to a value
lower than the one assigned to its interrupt, except when returning.

11 Software Interrupts

11.1 Basic Concept

Windows defines its own concept of software interrupt, which must not be confused with
software interrupts as defined by the Intel architecture (these were described in section 4.4
on p. 15). These are entirely different concepts even though they share the same name.

Windows software interrupts are implemented in kernel code. A per-processor variable can
be set to request such an interrupt. Kernel code checks this variable at various stages during
its operation and, if the flag for an interrupt is set, it calls the associated handler.
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Currently, only two software interrupts are defined: APC and DPC. They have an associated
IRQL level: 1 for the APC interrupt and 2 (called DPC/dispatch) for the DPC one. When the
code that checks for software interrupts founds that one is pending, it calls the handler only
if the current IRQL is less than the interrupt IRQL, mimicking what the processor does for
hardware interrupts.

All hardware interrupts have IRQL greater than DPC/dispatch, so software interrupts are
always masked inside an hardware interrupt handler (but they are masked only on the
processor executing the handler; other processors may be at any IRQL).

One of the stages when the kernel checks for software interrupts is when it is restoring the
IRQL before exiting an handler. For instance, the following sequence of events may take
place:

e Code executing at PASSIVE is interrupted by an hardware interrupt.

* The handler code requests a software DPC interrupt. The current IRQL is greater than
DPC/dispatch, because it has been raised at the beginning of the handler logic, so the
DPC interrupt is kept pending.

e The handler code returns, restoring the IRQL to PASSIVE.

* The code lowering the IRQL checks for pending software interrupts and finds the DPC
one. Since the IRQL is being set to PASSIVE, the interrupt can be serviced. The IRQL is
set to DPC/dispatch and the handler for the DPC interrupt is called.

e When the handler returns, the IRQL is again restored to PASSIVE. This time no further
interrupts are pending and the interrupted code is resumed.

We can see that software interrupts can indeed be seen as asynchronous events by the
interrupted code running at PASSIVE, even though they actually "piggyback" on hardware
interrupts.

11.2 The APC Interrupt

The APC (Asynchronous Procedure Call) interrupt is used to request execution of a routine,
usually called a callback routine. When the interrupt is serviced, the routine is called and,
when the callback returns, the interrupt handler returns to the interrupted code. It is actually
a peculiar kind of interrupt, because it is used to cause the callback to be executed in the
context of a particular thread, specified when requesting the interrupt. Normally, interrupts
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break into the currently executing thread, whichever it may be, so this one is handled in a
peculiar way by the kernel. More details on APCs can be found in [22].

As we saw in sec. 10.2.4 on p. 45, the handler of the APC interrupt must account for the fact
that it can be reentered on the same processor in the context of another thread. This is due

to thread dispatching being enabled at this IRQL and applies to any callback invoked through
this interrupt.

The first layer of the APC handler is part of the kernel and, presumably, accounts for the
peculiarities of this interrupt. This code even does the unthinkable: it lowers the IRQL to
PASSIVE, in the middle of its logic, because there are three kinds of APC callbacks and one of
them must be executed at PASSIVE IRQL. This breaks the rule we saw in sec. 10.2.6 on p. 46,
but it can be done for the following reasons:

e The handler code is written accounting for the possibility of being reentered, even by
the same thread.

e There are no IRQL levels between APC and PASSIVE: APC is 1 and PASSIVE is 0. No
handlers of other interrupts can have been interrupted by the APC one and be in
progress, when the IRQL is lowered.

In short, the APC handler only causes troubles to itself by doing this, and it knows how to
clean its own mess.

APCs are used internally by the kernel and are not available to driver developers, because the
functions implementing them are undocumented.

11.3 The DPC Interrupt

The DPC (Deferred Procedure Call) interrupt is also used to request asynchronous execution
of a callback, but is different from an APC interrupt because:

e Itisa "real" interrupt, which is executed in an arbitrary thread context as soon as the
IRQL allows it to be serviced.

e It has a higher IRQL, so it is handled ahead of an APC interrupt.

There are DDIs to request a DPC interrupt specifying the callback routine to be called.
Normally, kernel mode drivers use DPCs to keep the amount of processing done in their ISRs
at a minimum. An ISR is called by the interrupt handler and is executed at the IRQL assigned
to the hardware interrupt. As such, it blocks other interrupts with lower IRQL (and all
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software interrupts). Given this, the ISR should return as soon as possible, deferring time
consuming work to be performed at a lower IRQL. This is usually done by requesting a DPC
for a driver-defined callback which will complete the interrupt handling. The ISR can thus
perform the minimum amount of work needed, request the DPC interrupt and return.

The Windows component responsible for scheduling threads, called the thread dispatcher, is
itself executed by means of a DPC interrupt. This interrupt is requested by various kernel
functions. For instance, the handler for the clock interrupt checks to see whether the
currently executing thread has run for its allotted time (called its quantum) and, if so,
requests a DPC interrupt for the dispatcher. When the IRQL is about to drop below DPC (i.e.
when the clock and other pending hardware interrupts have all been serviced), the DPC
interrupt is serviced and the dispatcher is called, preempting the current thread and
resuming another one.

We are now ready to understand why setting the IRQL at 2, i.e. DPC/dispatch or above,
inhibits thread context switches on a processor: the thread dispatcher is not invoked by that
processor, because DPC interrupts are masked.

12 Restrictions for Code Executed at DPC/dispatch
or Above

Both kernel mode and user mode code can voluntarily call the thread dispatcher to be
suspended until a certain logical condition is met. This is usually implemented by means of a
data structure provided by an API or DDI on which the code can wait. For instance, two
threads can synchronize among themselves by using an event object: thread t waits for the
event to be "signaled" and thread s "signals" the event when the logical condition t is waiting
for is true. What thread t does is called entering a wait state. As an example, application code
can call WaitOnSingleObject to accomplish this. When this happens, the thread is suspended
and another thread is resumed.

Code executing at DPC/dispatch or above cannot enter a wait state.

Doing this would mean that the processor should suspend the current thread and resume
another one. This, in turn, implies that the IRQL of the processor should be lowered below
DPC/dispatch.

Suppose, for the sake of argument, that a thread could actually suspend itself while at
DPC/dispatch or above. Other threads may have blocked themselves or have been
preempted at a lower IRQL, e.g. PASSIVE or APC. When the dispatcher picks one such thread
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to run, it must restore the IRQL it was running at, thus bringing it down from the current
level.

Also, if the executing thread blocks, the processor which is executing it should resume the
normal thread scheduling process, switching among threads. This can occur only if the DPC
interrupt invoking the dispatcher can be serviced on the processor, something possible only
when the IRQL is less than DPC/dispatch.

So, code executed in this IRQL range could block only if the IRQL could be set to a lower
value, but this cannot happen inside the code of an handler, as we saw in sec. 10.2.6 on p.
46, which, in the end, means this kind of code can't block.

Consider, for instance, a DPC callback routine, executing at DPC/dispatch. This code is called
by the DPC interrupt handler, which is written under the assumption that interrupts at
DPC/dispatch or below cannot be serviced on the same processor while it is running. A DPC
callback lowering the IRQL would cause unexpected reentrancy of the handler on the same
processor, disrupting its work.

The same consideration applies to code executed at higher IRQL, in the context of an
hardware interrupt handler: lowering the IRQL below DPC/dispatch would cause all sorts of
lower IRQL interrupts to be serviced, reentering other handlers that may have been
interrupted in the middle of something. Furthermore, it makes little sense to enter a wait
state inside an hardware interrupt handler, which should quickly interact with its device and
return.

So, in general, code executed at DPC/dispatch or above cannot wait on synchronization
objects like events, mutexes, etc. We will see shortly how synchronization is implemented in
this code.

An implication of this constraint is that code running at DPC/dispatch or above cannot cause
a page fault. To resolve such a fault, an I/O operationon a file may be required. This would
cause the thread to enter a wait state, because, after the 1/0 has been issued to the storage
device, the thread must wait for an interrupt signaling that data is available. Since waiting is
not acceptable, neither are 1/0 operations. Therefore, one of the first things the page fault
handler does is checking the current IRQL. If it is DPC/dispatch or higher, the handler crashes
the system.

Crashing the whole system may seem extreme, however a page fault occurring at IRQL >=
DPC/dispatch can only be caused by kernel mode code (because user mode means PASSIVE).
As such, it is a serious error and it is better to bring everything to an halt.
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13 Historical Note: IRQL and Software Interrupts in
the VAX/VMS

Itis a known fact that the Windows architecture has its roots in the Digital VAX/VMS system.
In the world of computer urban legends, someone went so far to notice that the acronym
WNT can be obtained by substituting each letter in VMS with the next alphabet letter.

It is interesting to note that the concept of IRQL and software interrupts is also present in
VAX/VMS and even implemented in hardware. The PSL CPU register records the processor
status and includes a field called IPL (interrupt priority level), which is equivalent to the IRQL
and masks all interrupts with priority less than or equal to its value.

Software interrupts are requested by writing to a processor register and, when the IPL is
lowered, the processor checks if any software interrupt is pending that can be serviced, i.e.
with priority greater than the new IPL value. This is exactly the same logic implemented by
Windows, but supported by the CPU itself.

Another interesting point is that the x64 architecture has taken a step toward the venerable
VAX/VMS one, with the introduction of register CR8 (available only in 64 bit code) where the
IRQL is stored. CR8 acts like the VAX PSL, masking interrupts. Before x64, e.g. in 32 bit
Windows, the IRQL was implemented in software. Windows kept the current IRQL in a per-
processor variable and programmed the interrupt controller to mask interrupts when the
IRQL changed, mimicking what the VAX/VMS CPU did. This, by the way, is the reason why x64
Windows has 16 IRQL levels while the x86 version has 32: CR8 only allows 16 priority values.
In 32 bit windows, the IRQL is implemented in software and not constrained by the
processor.

14 Synchronization

14.1 The Problem

It is often needed to write a block of logic that reads and updates a set of variables as a
whole. Consider for instance code managing a linked list. To add a node at the head of the
list, the variable pointing to the first node must be read and copied into the next field of the
new node, then the list head pointer must be updated with the address of the new node.

Such a block of logic is written under the assumption that the list head pointer is not changed
by other events during its execution. However, in a multithreaded operating system, two

threads could be executing this block of code simultaneously and corrupt the list.
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To solve this problem, the system must provide code with a mechanism to ensure that only
one thread at a time can execute such a block of code, i.e. to synchronize its execution.

Also, the thread executing such a block of code can be diverted by an interrupt while it is in
the middle of the read/update sequence. If the code executed by the interrupt handler
updates the same variables, we have the same problem, even though we are still in the same
thread. Again, the system must provide some mechanism to deal with the problem.

Access to device registers is a similar problem: normally, a device expects its registers to be
accessed according to a set of rules concerning the order of accesses and the data written to
the registers themselves. If a block of code performing these accesses is preempted by
another thread or suspended by an interrupt and the new thread or interrupt handler begins
a new access to the same device, the latter is subjected to inconsistent actions on its
registers.

We can therefore say that, in general, there is a resource, like the variables and registers of
our examples, that must be protected by serializing access to it.

In Windows, we can identify three different scenarios for these problems, depending on the
IRQL:

e The resource is accessed only in code paths which are not part of handlers of any
interrupts, either hardware or software. As such, these code paths are executed at
PASSIVE IRQL. Note that there is a kind of APC callback which is executed at PASSIVE,
so this IRQL level does not mean, by itself, that the code is not part of any handler.
Thus, we explicitly define this scenario as one where the code paths are not part of
any handler and this, in turn, implies they are executed at PASSIVE. We will call this
scenario passive synchronization.

e The resource is accessed both in code paths which are not part of any handler and in
code paths invoked by the APC interrupt handler, executed either at PASSIVE or APC.
We will call this scenario APC synchronization.

e The resource is accessed in at least one code path which is part of the handler for an
interrupt with IRQL >= DPC. This code path could be a DPC callback called by the DPC
interrupt handler or an interrupt service routine for a device. In this scenario, the
resource may also be accessed by code not part of an handler, executed at PASSIVE,
and by code called by the APC handler, executed either at PASSIVE or APC. We will
call this scenario high IRQL synchronization.
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We will now analyze how synchronization is achieved in these three scenarios, with one
restriction: we will only consider resources accessed either by kernel mode code or by user
mode code, but not by a mix of the two. Such a mix, if at all possible, is of little practical
interest for the following reasons:

e Device registers are usually protected from access by user mode code.

e All the data structures that kernel mode code allocates for its own logic are in
memory ranges inaccessible to user mode code (protected by the U/S bit of the
PxEs).

e Kernel mode code could, conceivably, access a data structure in user mode memory,
but it would need to be sure that the particular address space of the process which
allocated the data structure is the one currently mapped.

Under this limitation, the only scenario which applies to user mode is passive
synchronization, since the other two imply that at least one code path must be executed in
kernel mode, to be part of an handler. There is a kind of APC called user mode APC, which
executes a user mode callback, but it does not interrupt user mode code asynchronously. The
callback is executed when the code calls certain APIs of its own accord, so we are not going
to analyze this case.

14.2 Passive Synchronization

This scenario applies to user mode, but kernel mode code can perform passive
synchronization too if the shared resource is never accessed inside an handler. Under this
assumption, we know by design that we don't have to worry about interrupts, but only about
concurrent threads trying to access the same resource.

Since the IRQL is PASSIVE, the thread can enter a wait state, so the resource is protected by
using Windows APIs or DDIs which serialize execution by suspending threads. For instance, in
user mode code, we can create a mutex, which is an object managed by Windows that can be
in one of two states: owned by a thread or free. The WaitForSingleObject API can be used to
ask ownership of the mutex. If the mutex is free when the call occurs, it becomes owned by
the thread and execution is allowed to go on. If the mutex is owned by another thread, the
one attempting to acquire it is suspended. From the code perspective, the thread is
suspended inside the call to WaitForSingleObject. When the thread currently owning the
mutex releases it, Windows notices that another thread is waiting for it and gives ownership
of the mutex to the waiting thread, which is inserted in the list of threads ready to run. The
code logic can be written on the assumption that, when the call to WaitForSingleObject
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returns, the thread owns the mutex and any other thread attempting to acquire it will be
blocked. To serialize access to the resource it is thus enough that all the code paths that
access it perform a call to WaitForSingleObject for the same mutex before doing so, and
release the mutex only after their access to the resource is complete.

The Windows API offers various other synchronization objects with different behaviors but,
all, ultimately, result in suspending one or more threads until a certain condition is satisfied.

There are similar synchronization objects and DDIs for kernel mode code.

14.3 APC Synchronization

We will consider this scenario mostly for the sake of completeness. It may also be the case
that no resource in the kernel is actually accessed this way, but since the APC interrupt exists,
we will examine how execution could be synchronized, if this scenario were to take place.

This kind of synchronization can still serialize execution of concurrent thread by means of
objects like mutexes. Even the code invoked by the APC interrupt handler can block itself in a
waiting state, because the IRQL is less than DISPATCH. In other words, we can, as in the
previous scenario, be sure that only one thread is accessing the resource. However, the
following could happen:

e The thread acquires the mutex protecting the resource on the code path which is not
triggered by the APC interrupt and begins accessing the resource.

e The APC interrupt occurs, diverting the thread to another code path which attempts
to access the same resource.

e The code on this path attempts acquisition of the mutex and succeeds, because such
an object can be acquired multiple times by the same thread.

e Execution passes the mutex acquisition and accesses the resource, corrupting its
state.

We can see how the mutex, by itself does not protect the resource. A couple of additional
considerations are in order.

First, acquisition of a mutex disables delivery of certain APCs, which cannot interrupt the first
code path in the example above. However, other APCs (called special kernel mode APCs) are
still delivered.
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Second, the possibility, for a mutex, to be acquired multiple times by the same thread is a
necessity, otherwise a thread attempting to acquire the same mutex twice would block
forever, waiting for itself to release it.

| So, how can synchronization be achieved in this scenario? The code not part of the APC path
can disable APCs completely by raising the IRQL to APC, or by calling a DDI called
KeEnterGuardedRegion and acquire the mutex afterward. When both steps have been
performed, only the code that follows can touch the resource and cannot be executed
concurrently by multiple threads.

| The code on the APC path does not have to worry about the no-handler code. It must only

| protect itself from concurrent execution by multiple threads and can do so by acquiring the

| mutex before accessing the resource. It's worth repeating that the code on the APC path can
; block, because its IRQL is less than DPC/dispatch, otherwise it could not.

14.4 High IRQL Synchronization

In this scenario, one or more code paths touching the resource are part of handlers and
executed at IRQL >= DISPATCH. In order not to be too restrictive, we can consider multiple
| handlers executed at different IRQLs, including APC callbacks, all accessing the resource,
together with code paths non part of an handler.

Itis not possible to serialize execution of the handlers at DPC/dispatch IRQL or above by
suspending competing threads, because the IRQL does not allow to call wait functions, as
explained in Chapter 12 on p. 50.

Furthermore, all the code paths must account for the possibility of being interrupted by code
accessing the resource. This can happen to the non-handler code, but also to an handler,
which can be frozen by an interrupt at a higher IRQL. In other words, we have to solve two
problems:

\ e Find a way to ensure only a single thread at a time can enter any of the code paths.
e Find a way for this thread to "synchronize with itself", with respect to interrupts.

The first step to solve these problems is to have all the code paths that access the resource
raise the IRQL. Consider for instance a resource accessed by non-handler code and by a DPC
callback. The highest possible IRQL at which the resource is accessed is DPC/dispatch. The
code executing at PASSIVE, raises the IRQL to DPC/dispatch before accessing the resource.

‘N '
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If the resource is also accessed by an interrupt handler executed at IRQL 4, both the non-
handler path and the DPC callback raise the IRQL to 4 before accessing it. In short, all code
paths touch the resource at the highest possible IRQL value.

Let's focus first on what this means for interrupts, in the example above. The non-handler
code raises the IRQL to 4, so it cannot be interrupted neither by a DPC, nor by the hardware
interrupt. As long as the IRQL remains 4, only this code path will access the resource (we will
consider other threads later).

The DPC code raises the IRQL too, so it cannot be interrupted by the hardware interrupt. The
non-handler code is, by definition, not executed as part of an interrupt, so the DPC code will
be the only one accessing the resource (again, let’s forget other threads, for now) as long as
the IRQL is 4.

Finally, the code of the handler for the hardware interrupt cannot be interrupted by a DPC
which has a lower IRQL, so, when it runs, with the IRQL already set to 4 at the beginning of
the interrupt handling, it is the only possible code path accessing the resource.

If, for the sake of completeness, we imagine the resource is also accessed by code invoked by
the APC interrupt handler, the same reasoning applies: raising the IRQL to 4 on the other
code paths inhibits the APC interrupt as well and the APC-invoked code can protect itself by
raising the IRQL, like everybody else is doing.

Now let's turn our attention toward other threads. Suppose a processor is executing one of
the three code paths of our example. After the IRQL has been raised to 4, thread switching is
inhibited on that processor, because it requires a DPC interrupt. This is always true in the
High IRQL Synchronization scenario, because the resource access occurs at least at
DPC/dispatch IRQL. If there was only one processor in the system, we would not have to
worry about other threads, simply thanks to having raised the IRQL. Actually, in older
releases of Windows where there was a build of the kernel specialized for single processor
systems, this was how this kind of synchronization worked in that build.

With more than one processor, now the norm, raising the IRQL is not enough. Other
processors execute threads which may enter any of the three code paths of our example. It is
therefore still necessary to place on each code path some logic that ensures that only one
thread at a time can enter the block of code accessing the resource. However, since at least
two code paths are executed at IRQL >= DPC/dispatch, they cannot enter a wait state.

The only solution left is to have the code test if another thread is executing the protected
block and, if so, spin in a loop until the other thread has completed its job. To accomplish
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this, the kernel uses a data structure called a spinlock, which is similar to a mutex in the sense
that is has two states: free and acquired. To acquire a spinlock, code uses a processor
instruction capable of testing its state and changing it in the same uninterruptible access.
This ensures that only one processor at a time can find the spinlock free and acquire it.

Afterwards, all the code blocks attempting to acquire the spinlock cause the executing
processor to spin in a loop until it becomes free again.

In our example, all the code paths acquire the same spinlock after having raised the IRQL and
release it when access to the protected resource is concluded and before lowering the IRQL.
This ensures that only one processor at a time can execute the code accessing the protected
resource and solves the remaining part of the synchronization problem.

Every code path accessing the protected resource must perform two operations: raising the
IRQL and acquiring the spinlock, so it is natural to wonder in what order they should be
performed.

The correct sequence is to raise the IRQL first and acquire the spinlock later. This is required
because a spinlock cannot be acquired multiple times by the same processor. In other words,
after a processor has successfully acquired the spinlock, it cannot execute code that attempts
to acquire the same spinlock again. This code would see the spinlock as acquired and spin in
an infinite loop. There is no information associated with the spinlock status which records the
fact that it is being requested by the same processor which acquired it previously. The
spinlock is simply acquired, so the code spins. In this regard, spinlocks are different from
mutexes.

Now, suppose the PASSIVE code path of our example performs the wrong sequence: acquire
the spinlock first, raise the IRQL later. After having acquired the spinlock, the processor can
service the interrupt at IRQL 4 which enters the handler code path. This, in turn, will try to
acquire the same spinlock, causing an infinite loop.

Instead, raising the IRQL first, ensures that, when the spinlock acquisition is attempted, the
related interrupt is already masked. After acquiring the spinlock, the executing processor can
go on undisturbed until the point where it releases it, without being waylaid by an interrupt.

The correct order of operations is so important that kernel DDIs for spinlocks raise and
restore the IRQL internally, as part of their operation, to ensure that everything occurs in the
correct sequence. For instance, KeAcquireSpinlock, which is used when the highest IRQL of

the various code paths is DPC/dispatch, raises the IRQL internally, then acquires the spinlock.
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With this overall logic, all the code paths which acquire a given spinlock do so at the same
IRQL level (4, in our example). Thus, a spinlock is always associated with an IRQL value, the
level at which it is acquired.

When code which acquires a spinlock, like KeAcquireSpinlock, finds it already acquired, spins
in a loop, thereby stalling a processor. It is thus important that spinlocks are held for the
shortest possible time (the Windows WDK recommends a maximum of 25 microseconds). It
would therefore be a disaster if a thread switch could occur after having acquired a spinlock,
suspending the thread before it reaches the point where the spinlock is released. This cannot
happen, however, because the spinlock is always acquired after raising the IRQL to
DPC/dispatch or above.




Part III - Memory Management Fundamentals
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15 Virtual Address Space Fundamentals

15.1 Basic Regions

The virtual address space can be divided into these four fundamentals region:

e The user mode range, from 0 to Ox7FF FFFFFFFF, which is 8 TB in size and is the
address range for the user mode part of the process, i.e. executables, DLLs and their
working memory, like the stack and the heap.

e Anunused address range from 0x800'00000000 to 0x00007 FFF FFFFFFFF. Since
Windows limits the user mode address range to 8 TB, this range is not used.

e Aninvalid address range, due to the processor requirement that addresses be in
canonical form, from 0x00008000 00000000 to OxFFFF7FFF FFFFFFFF. The addresses
in this range break the canonical address rule: bits 47-63 must be either all 0 or all 1.

e The range from OxFFFF8000 00000000 to OxFFFFFFFF FFFFFFFF which is the allowed
range for canonical addresses with bit 47 set to 1. Windows uses regions inside this
range for the kernel code and data structures, which will be analyzed in more detail
later. For now, we will refer generically to these regions as system ones.

Each process has a private copy of the user mode range, which means virtual addresses (VAs)
in these range are mapped to different physical pages. Given the necessary privileges and
access rights, there are APIs to access the user range of a process from another one, however
the basic VMM behavior is to create each process with its own private user range.

The system regions are, for the most part, shared among all processes, i.e. the VAs inside
them map to the same physical pages. There are exceptions to this rule and we will examine
them in more detail later.

15.2 Paging Structures Region

Given what the VMM must accomplish, it must be able to modify the processor paging
structures. This, however, brings us to an interesting problem: processor instructions can
only use virtual addresses, i.e. there is no way to update the content of a memory location by
directly specifying its physical address. So, the only way to access the PML4, PDPT, etc is to
map them to virtual addresses as well, which, at first sight, seems to lead us back to where
we started.
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15.2.1 The PML4 Auto-entry

The solution to this problem, which is simpler than it seems and is quite interesting, is to use
a single PML4 entry in a very special way: the entry at index Oxled stores the PFN of the
PML4 itself. We will call this entry the PML4 auto-entry and we are now going to see that it
has some intriguing implications.

Let’s start by recalling that a PML4 entry maps 512GB of VA space, so there will be such a
range reserved for this special purpose (but with 256TB of VA space we can afford to be
generous). To determine the address range corresponding to this PML4 entry, we must
remember that the PML4 index is stored into bits 39-47 of the VA; when this index is set to
Oxled, the corresponding virtual address range is as follows:

Oxled =111101101b

bit # © 4 4 4 4 3
3 8 7 4 0 9
1...1 ’1111 0110 1xxx x. X
1 E D

Figure 10 - VA with PML4 Index = Ox1ed

Figure 10 shows a VA with bits 39-47 set to Ox1ed. Since bit 47 = 1, bits 48-63 must be 1 as
well. Bits 0 — 38 can range from 0...0 to 1...1. The resulting VA range is:

bit # 6 4 4 4 4 3 3
3 8 7 4 09 6
1...1 1111 0110 1xxxX X...X
L \ |1 I || I | 1 l |
FEEFF E 6 8=F

Figure 11 - Paging Structures VA Range
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The hex digit comprising bits 36-39 range from 8 to Oxf, as its rightmost “x” bits range from

000 to 111. Thus, the resulting address range is:
OxFFFFF680°00000000 — OXFFFFF6FF FFFFFFFF

Let’s focus now on what happens when the processor translates a VA inside this range: it
uses index Ox1ed to select the PML4 entry and uses the entry PFN to locate the PDPT. But,
wait! The PFN of this entry points to the PML4 itself, so this table is used as PDPT as well. This
means that:

e The PDPT index from the VA (bits 30-38) selects an entry from the PML4, which is
acting as PDPT; this entry points to a PDPT, because it is actually a PML4 entry. Note
the “shift” in the index usage: the PDPT index is applied to the PMLA4.

e The PD index (bits 21-29) selects an entry from the table retrieved in the step above,
i.e from the PDPT. Again we have a shift in the index usage: the PD index is applied to
the PDPT, so it selects a PD.

e The PTindex is applied to the table from the previous step, i.e. the PD and selects a
PT. This becomes the physical page to which the VA maps, because it is the one
selected by the PT index field of the VA. In other words, what we “see” at this VA is
the content of a page table.

For instance, at address OxFFFFF680°00000000 we see the first byte of a PTE for some virtual
address. PTEs are 8 bytes in size, so the next PTE will be at OxFFFFF680° 00000008 and so on.

15.2.2 Relationship Between a VA and the Address of Its
PTE

While it is nice to know that the PTE for a given VA is somewhere inside a 512GB region, it
would be better to narrow its actual location down a little. It turns out there’s a very simple
relationship between a VA and the address of its PTE. Below we see a VA broken down into
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its components:

<4— 9bits —p4— 9bits —Pp4— 9bits —p€¢— 9bits —p€— 12 bits —>

unused 16 bits PML4 index PDPT index PD index
either all 0 or
all1

PT index

offset

indexes into PML4  indexes into PDPT  indexes into PD

Figure 12 - Virtual Address Components

Let’s see what happens when we do the following:
e Shift the VA 9 bits to the right
e Set the leftmost 16 bits (48-63) to 1

® Replace the PML4 index with the auto-entry index

e Setbits0-2to0

indexes into PT

offset in page




Chapter 15 - Virtual Address Space Fundamentals 67

We end up with the following:

PML4 index PDPT index PD index PT index offset field
field field field field

<4— 9bits —Pp4¢— 9bits —Pp€¢— 9bits —Pp€¢— 9bits —P€¢— 12bits —P

unused 16 bits auto-entry PML4 index PDPT index PD index PT index|0|0{0
(setto 1) index
indexes into PML4  indexes into PML4 indexes into PDPT  indexes into PD offset in page
and selects the
PML4 itself

Figure 13 - PTE VA

As we saw before, the auto-entry index “shifts” the meaning of the remaining indexes: the
PDPT index is applied to the PML4 and so on. But here we have also shifted to the right the

VA content by 9 bits, i.e. by one “index slot”, so the field for the PDPT index is now set to the
original PML4 index and so on.

This way, 'ghe original PML4 index is still indexing into the PML4 (from the PDPT index field of
the new value) and selecting the PDPT for the original VA; the PDPT index is still indexing into
the PDPT and selecting the PD for the original VA and so on, until the PT which maps the
original VA is mapped as the physical page. In other words, given a VA, this transformation
gives us another VA, at which we “see” the PT used to map the VA we began with.

Finally, the offset in page is PT index followed by three bits set to 0, which gives

(PTindex) x 8

and since PTEs are 8 bytes in size, this is the offset, inside the PT, of the PTE for the original
VA.

The end result is that the VA resulting from the steps above is the VA of the PTE.
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Also, we had to set bits 0-2 to 0 because, after the shift, the offset field which is 12 bits wide
contains the PT index in bits 3-11 and bits 0-2 retain what is left of the original offset field, i.e.
its three leftmost bits, which are meaningless: they just give a random offset from the PTE
starting address. We also had to set bits 48-63 to 1 because, when we set bits 39-47 to the
auto-entry index, bit 47 is set to 1.

Now suppose to update the PTE address we just computed as follows:
e Shift it left by 9 positions
e Set bits 48-63 according to the value of bit 47 after the shift

This is what we get:

PML4 index PDPT index PD index PT index offset field
field field field field

<4— 9bits —Pp<4— 9bits —P€— 9bits —P€¢— 9bits —Pp€¢— 12bits —p

eitherall 0 or PML4 index PDPT index PD index PT index 0...0
all1

indexes into PML4  indexes into PDPT  indexes into PD indexes into PT  offset in page

Figure 14 - VA from PTE VA

We have the original VA, with the offset component set to zero. In other words, given a PTE
address, this operation obtains the address of the first byte of the virtual page mapped by
the PTE.
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15.2.3 Virtual Addresses for PDEs, PDPTEs, PML4Es

Being able to access PTEs is nice, but what about the other kind of tables (PML4, PDPT, etc.)?
Windows must have a way to access their content as well. It turns out that the PML4 auto-
entry solves this problem as well.

Consider a VA like the following one:

PML4 index PDPT index PD index PT index offset field
field field field field

<4— 9bits —p<€— 9bits —Pp€¢— 9bits —p€¢— 9bits —p€— 12 bits —>

unused 16 bits auto-entry auto-entry PD index PT index offset

(setto 1) index index
indexes into PML4 indexes into indexes into indexes into PDPT,  offset in PD,
and selects the PML4, selects PML4, selects selects PD selects a PDE
PML4 itself PML4 itself PDPT

Figure 15 - PDE Virtual Address

This time we have set both the PML4 index and the PDPT index to the auto-entry index, so
that the PD index selects a PDPT and the PT index selects a PD. An address of this kind maps a
page directory into the virtual address space and we “see” PDEs at the addresses inside this
virtual page.

We can compute the starting and ending address of the PDE range as follows:
starting address:

bits 63-48 = 1

bits 39-47 = 1ed (i.e. auto-entry index)

bits 30-38 = 1ed

bits 0-29=0

—
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ending address: same as above, but with bits 0-29 = 1.

The results are:
PDE range starting address = OxFFFFF6FB*40000000
PDE range ending address = OxFFFFF6FB' 80000000

Note here and in the following, we will use the term ending address for the first byte after
the range, e.g OxFFFFF6FB 80000000 instead of OxFFFFF6FB 7FFFFFFF.

This range is inside the PTE range computed previously, so now we see that it splits the actual
PTE range into two regions, with a range in between were PDEs rather than PTEs are
mapped.

The same logic we used for PTE addresses shows the relationship between a VA and its PDE
address: the latter is obtained from the former by shifting it right by 18 positions (i.e. 2
“index slots”) and replacing the indexes for PML4 and PDPT with the auto-entry index (and by
making it canonical).

By reversing the process (left-shift eighteen times and set address in canonical form), we get
back the starting address of the region mapped by the PDE. Of course this region is not a
single page anymore: it's encompassed by a single PDE, which maps 512 PTEs, therefore it
covers 512 pages i.e. 2MB.

Similar results apply for PDPTEs: their addresses have the three leftmost indexes set to the
auto-entry index. This results in the following range:

PDPTE range starting address = OxFFFFF6FB*7DA00000
PDPTE range ending address = OxFFFFF6FB'7DC00000

To get the PDPTE address for a VA, we have to shift it right 9 x 3 = 27 times and set the auto-
index in the PML4, PDPT and PD slot.

Finally, an address with all four indexes set to the auto-index maps the PML4 itself in the
following 4 kB range.

PMLAE range starting address = OxFFFFF6FB'7DBEDOOO
PMLAE range ending address = OxFFFFF6FB'7DBEEOOO

The auto-entry has index Ox1ed, i.e. offset Ox1ed x 8 = 0xf68 into this page, so it’s VA is:
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OXFFFFF6FB 7DBEDF68

The following figure depicts the various paging structures regions:

FFFFF700°00000000

FFFFF6FB 80000000

FFFFF6FB 7DC0O0000

FFFFF6FB 7DBEEOOO

FFFFF6FB"7DBEDOOO
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FFFFF680°00000000

PTE high

PDE high

PDPTE high

PMLAE

PDPTE low

:I ak8

PDE low

2MB

PTE low

1GB

Figure 16 - Paging Structures Region
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WinDbg comes with the handy !pte extension which computes the VAs of the paging
structure entries mapping a virtual address, so we don't have to do it by hand: just enter !pte

followed by the virtual address.

15.2.4 Paging Structures Region Protection

The paging structures region must, of course, be accessible from kernel mode code only (i.e.
code executed at CPL = 0). How this is accomplished is somewhat interesting. Let's start with

the output of ! pte for a valid user mode address:

0: kd> !pte 1c0000
VA 00000000001c0000

PDE at FFFFF6FB40000000 PTE at FFFFF68000000E00

PXE at FFFFF6FB7DBEDO00O PPE at FFFFF6FB7DA00000
contains 00C0000031C17867 contains 0100000036F1A867 contains 011000002A19B867 contains 9F40000034CAB867
pfn 31cl7 ---DA--BWEV pfn 36fla ---DA--§WEV pfn 2al9% ---DA--WEV pfn 34cab ~—-DA--fw-v

The shaded "U"s represent the fact that each PxE sets the protection of the virtual range it
maps to user mode. In other words, the PMLA4E, PDPTE, PDE, PTE all have the U/S bit set. U/S
is bit 2 of a PxE and the output above shows that the rightmost byte of each PxE is 7, so bit 2

is set.
We can compare this with the output for the first page of the kernel:

0: kd> !pte £f£f£f£f800°02857000
VA £££££80002857000

PXE at FFFFF6FB7DBEDF80 PPE at FFFFF6FB7DBF0000 PDE at FFFFF6FB7E0000AQ PTE at FFFFF6FC000142B8
contains 0000000000199063 contains 0000000000198063 contains 00000000001DA063 contains 8000000002857963
pfn 199 ---DA--§WEV pfn 198 ---DA--$WEV pfn lda ---DA--fWEV pfn 2857 -G-DA--§W-v

The shaded "K"s and the values ending with 3, tell us that the VA protection is kernel mode,

as it should be.

Now, let's see the protection of a VA at which a PTE is visible. We are going to look at the
address of the PTE mapping the user mode address 0x1c0000 above. We see from the
previous ! pte output, that the PTE address is OxFFFFF680°00000EQO, so let's see how the

page enclosing it is mapped:

VA f££££68000000000
PXE at FFFFF6FB7DBEDF68 PPE at FFFFF6FB7DBED000 PDE at FFFFF6FB7DA00000 PTE at FFFFF6FB40000000

contains 000000001AB3D863 contains 00C0000031C17867 contains 0100000036F1A867 contains 011000002A19B867
pfn lab3d ---DA--@WEV pfn 31cl7 ---DA--§MEV pfn 36fla ---DA--fWEV pfn 2al% ---DA--§WEV
The output above shows that the PTE for the address is at OxFFFFF6FB'40000000 and is set to
0x011000002A19B867. If we look at the output for the first ! pte command, we see that the
same address and value were reported for the PDE. This comes from the way the PTE address

is computed: we must shift the VA right by 9 bits and replace the PML4 index with the auto
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entry index, so all the original indexes are shifted into the next hierarchy level, i.e. the PML4
index becomes the PDPT index, etc.

So, the PTE for the page at OxFFFFF680°00000000, is the PDE of our original address. Now,
since the original address was a user mode one, its PDE has the U bit set, so we see from the

output above that the PTE for this system page ends with 7 and "U" is reported by the
debugger.

The same applies to the PDE and the PDPTE: they are the same used to map the original user
mode address, so they all have the U/S bit set. This can be seen in the output of the last 'pte
command above and is quite different from the result for address OxFFFFF800°02857000.

Does this mean that the PTE is accessible from user mode? Can user mode code corrupt PTEs
simply by using a stray pointer? No, because, for a virtual address to be accessible in user
mode, all the PxEs of the hierarchy must have U/S set, and the ! pte output above shows
that this bit is clear in the PMLAE. This is what actually protects the PTE address and ensures
that all the paging structures region is protected.

Having the PxEs for a VA with different protection is not usual: normally, the U/S bits are
either all set or all clear, depending on the address range, but this can't be avoided in the
paging structures region, due to the "overloaded" used of PxEs, e.g. the fact that a PDE for a
user range address, becomes the PTE for a system range one.

15.2.5 A Note on !pte Usage
Let's take another look at the ! pte output for our original address:

0: kd> !pte 1c0000

VA 00000000001c0000
PXE at FFFFF6FB7DBED0O0O PPE at FFFFF6FB7DA00000 PDE at FFFFF6FB40000000 PTE at FFFFF68000000EOQ0
contains 00C0000031C17867 contains 0100000036F1A867 contains 011000002A19B867 contains 9F40000034CAB867
pfn 31cl7 -—-DA--UWEV pfn 36fla --—-DA--UWEV pfn 2al9%b ~-~DA--UWEV pfn 34cab —-~-DA--UW-V

It's PTE is at OxFFFFF680°00000EQO, so, to see its mapping we feed this address to ! pte. Here
is what we get:

0: kd> !pte FFFFF68000000E00

VA §
PXE at FFFFF6FB7DBED000 PPE at FFFFF6FB7DA00000 PDE at GHEREEIEEHEEE PTE at FFFFF68000000EQ0
contains 00C0000031C17867 contains 0100000036F1A867 contains 011000002A19B867 contains 9F40000034CAB867
pfn 31cl7 ---DA~--UWEV pfn 36fla ---DA~--UWEV pfn 2al% ---DA--UWEV pfn 34cab -—-DA--UW-V

Not quite what we were expecting: we are still seeing the mapping for 0x1c0000. As it turns
out, when !pte is given an address in the paging structures region, it assumes what we really
want to see is the address mapped by it and this is what we get.



74 What Makes It Page?

We can work around this behavior by moving up one level in the paging structures hierarchy:
use !pte with the PDE address. This will show us the PxEs for the address mapped by the
PDE, which happens to be the page table:

0: ka> !pte EEEEECHEIO0N0E00

VA £££££68000000000
PXE at FFFFF6FB7DBEDF68 PPE at FFFFF6FB7DBED000 PDE at FFFFF6FB7DA00000 PTE at FFFFF6FB40000000
contains 000000001AB3D863 contains 00C0000031C17867 contains 0100000036F1A867 contains 011000002A19B867
pfn lab3d —---DA--KWEV pfn 31cl7 ---DA--UWEV pfn 36fla ---DA--UWEV pfn 2al% —-——-DA--UWEV
We are finally seeing the mapping of the page table address. This can be confusing at times,
but is enough to remember that, in the paging structures region, we must use !pte with the

address of the next upper hierarchy level.

15.3 System Address Range

This section is an introduction to the virtual range reserved for the kernel. We will only define
some fundamental concepts here, saving all the details for part V of this book.

153.1 Where Does the System Address Range Begins?

The starting address of the system address range was an easy concept with 32 bits Windows:
it was simply 0x8000000, or 0xC0000000 when using the /3GB boot option. In other words,
the system address range was simply the upper half of the 4GB virtual range or the upper
1GB, if /3GB was used to leave more breathing room for user mode code.

With x64 things have become more complex.

First of all, canonical addressing with 48 bits means the higher region of the virtual address
space lays between OxFFFF8000 00000000 and OxFFFFFFFF FFFFFFFF, which corresponds to
the upper 128TB of the virtual range, with the top of the range at 16 Exabytes — 1 (we will
refer to this region as the high range in the following).

This does not mean, however, that Windows places the beginning of the system address
region at the high range start. The lowest used region in the high range is the paging
structures one, starting at OxFFFFF680°00000000. This means that a huge portion of the high
region (OxFFFF8000'00000000 — OXFFFFF67F FFFFFFFF or 118.5TB) is not used.

In the remainder of this book we will use the term system range to refer to the used portion
of the high range.

Certain data structures cannot be stored at addresses below 8TB from the top of the system
range. This will be explained in detail in sec. 44.1 on p. 414. For now, we are just going to
point out that the part of the system range below the 8TB limit is not available for all

“ .
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purposes and, for this reason, there are various sources stating that the system range is 8TB
in size. This is not correct, however: 8TB from the top of the range gives address
OxFFFFF800°00000000, but Windows uses an extra 1.5TB in the range OxFFFFF680°00000000
— OXFFFFF7FF FFFFFFFF, so the total system range is 9.5TB in size.

15.3.2 Main System Regions

With this in mind, we can further break down the system address range by looking with
WinDbg at the PML4 content for the high range, whose PMLA4Es start at
OxFFFFF6FB'7DBEDS800 and end at OxFFFFF6FB'7DBEDFF8. We can see that:

e PMLAEs for VAs from OxFFFF8000 00000000 to OxFFFFF680°00000000 (excluded) are
unused (set to 0).

As we anticipated, this address range is unused by Windows, a fact which is also
stated in [2].

e The PMLAE for the range OxFFFFF680° 00000000 — OxFFFFF700°00000000 is the auto-
entry.

e Other PMLAEs above the auto-entry are used and thus map various 512GB regions.
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The figure below depicts the high range mapped by a typical PML4. We will examine in more
detail the various regions introduced here in part V of this book.

0x1°00000000 00000000
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Figure 17 - High Range Regions
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For now, we are not going to worry about the exact meaning of these regions. However,
simply by looking at PML4s of different processes, we observe two very significant facts.

First of all, the shaded regions, which correspond to 1 PML4E each, store different values for
different processes. This means each process has its own private copy of these regions, even
though they are in the system address range. The first region is hardly a surprise: it’s the

paging structures region. Obviously, each process maps its own paging structures or, in other

words the PMLAE stores the PFN of the PML4 for that particular process.

The second region is more mysterious and we will return to it, to see how Windows uses it.

For now, let’s just note that this too is process-private.
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The second interesting fact is that the content of the PMLA4E for the dotted region is the same
for all the processes belonging to the same session, but it’s different among sessions. This
region of memory is therefore shared among the processes of a session, but each session has
its own private copy of it.

Let’s concentrate now on the other PMLA4Es: their content is the same for every process, so
each address space maps the same physical pages in the corresponding regions. It is not
strictly necessary to have identical PML4Es to achieve this: each process could have different
PMLAEs pointing to different PDPTs, PDs and PTs. The only requirement is that the PT entries
must ultimately point to the same physical pages. By setting the PMLA4Es to the same values
in each address space, Windows reuses the PDPTs and, thus, the whole hierarchy of paging
structures for each address space, instead of duplicating it. This gives us two benefits. The
more obvious one is that we save physical memory; the more subtle, but perhaps more
important, is that when we map or unmap a physical page in these ranges, we only have to
update one PT entry. If we were to have multiple page tables pointing to the same physical
page, we would have to update them all, to make a shared system page present or not
present. To do this, we would have to walk the paging structures for all the running
processes, which would be a huge waste of time. Add to this that the same applies to PTs,
PDs and PDPTs, which can be added to and removed from the whole hierarchy as well, and
we see how important it is to share the latter among all address spaces.

We can also guess that the PML4s structure does not change during a Windows session:
entries set to 0 are never used and entries for shared regions always point to the same PDPT;
otherwise we would be back at having to update all PML4s for all the address spaces, which
is unlikely.

There are a couple more interesting things worth mentioning.

The high range is 128TB wide and is mapped by the upper half of the PML4, consisting of 256
PMLA4Es. Only a handful of these entries, 19, are used by Windows, corresponding to the
upper 9.5TB of the address space, so there is a lot of unused virtual address space.

Finally, inside the kernel, is a static variable named MmSystemAddressStart whose name
appears to be self-explaining. However, this variable stores the following value:

OxFFFFO800°00000000

which is not even a canonical address: bits 48-63 are set to 1 and bit 47 is set to 0. As of 32
bit Windows 2000, this variable used to store the actual system range start (0x80000000 or
0xC0000000, [3], p. 427), but now it appears to be useless.
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16 Introduction to NUMA Systems

16.1 What NUMA Systems Are

The acronym NUMA stands for Non Uniform Memory Access and indicates a system were a
processor accesses different ranges of memory in different ways.

Consider for instance a system with two processors, PO and P1, each including an on-chip
memory controller. Each processor will be tightly connected to a number of RAM chips
through its controller. If PO wants to access memory connected to P1, it must use the
interprocessor bus while, for memory connected to its own controller, the access path is
much shorter. The memory latency changes depending on where the memory is, with respect
to the processor.

On contemporary processors, it is common to have multiple cores on a single chip which
includes the memory controller. These cores are actually independent processors and they all
have the same access path to memory, with faster access to RAM connected to the on-chip
controller and slower access to other memory. Such a set of processors and the memory
closest to them is called a node.

System memory is still organized as a single address space accessible to all processors so,
functionally, a NUMA system works like a Simmetric Multiprocessing (SMP) one. This means
that a certain physical address will give access to a byte belonging to node 0, while another
address will reference memory on node 1. Normally, a physical page belong entirely to a
single node.

A system with more than two nodes can have different access latencies across different
nodes. For example, node 0 can access memory belonging to node 1 faster than memory
belonging to node 2, etc., depending on how the interprocessor bus works.

NUMA must be kept in mind to improve system performances. For example, it is better to
schedule a process preferably on processors belonging on a single node and to map its virtual
addresses with pages of the same node. If there are no available pages on the preferred node
and access time changes across nodes, it is better to attempt to allocate memory from the
node with shorter access time, also called the nearest node.
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16.2 Numa Support in Windows

We will see, while analyzing some details of memory management, how NUMA is supported
throughout the VMM. It is therefore useful to introduce now a few basic concepts about
NUMA support in Windows.

When the VMM initializes, it executes a function named MiComputeNumaCosts ([1], p. 791)
which determines the distribution of physical pages among nodes in the system, so that the
VMM “knows” which pages belong to which nodes. It also determines the distance between
nodes, building a logical representation of the system. This way, when the VMM needs to
allocate a page from a particular node, it knows which pages belong to it and whether some
of them are available. If there are no available pages on that node, it tries the nearest one,
and so on until it finds an available page. In short, the VMM attempts to allocate the nearest
available page.

The Windows scheduler assigns each thread an ideal processor and tries to run each thread
on this processor for most of the time; when the VMM allocates a physical page on behalf of
a thread, it extracts from the KTHREAD of the thread the ideal processor index, which it uses
to access the processor KPRCB structure; from there, it can find the list of physical pages for
the node the processor belongs to and perform the allocation sequence outlined above.

Thus, the VMM and the thread dispatcher cooperate in trying to keep a thread running on a
given node and allocating physical pages belonging to the same node.

A thread can run on a processor other than its ideal one if the latter is busy and there are
other idle processors ([1], p.443). This makes sense because it means Windows prefers to
make use of an idle processor rather than keep the thread waiting. When this happens, and
the VMM must provide a physical page to the thread, it still looks for available pages in the
order described earlier, starting with the node for the ideal processor. The fact that a thread
is temporarily running on some non-ideal processor does not mean its physical pages are
allocated from the node of this particular processor. The thread dispatcher will return the
thread to its ideal processor as soon as it can, so it is better to always take memory pages
from the ideal node (the node of the ideal processor).

17 Cache and Page Color

Before going on examining the VMM internals, we need to define the concept of page color.
To explain it, we need to understand how the processor cache works.
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17.1 Cache Fundamentals

To make a practical example, we will consider the L2 cache found on the Intel Core2 Duo
Mobile processor, which has the following characteristics (which will be explained shortly):

size: 4MB
ways: 16
cache line: 64 bytes

Now suppose the processor wants to access the following physical address:

bit # 3333 3322 2222 2222 1111 1111 11
5432 1098 7654 3210 9876 5432 1098 7654 3210
0x781£423 = 0000 0000 0111 1000 0001 1111 0100 0010 0011

We represent the address as a 36 bits binary number, because this particular processor limits
the address size to 36 bits. We are now going to see how the processor looks for this address
into the cache.

First of all, data is loaded from memory into the cache in fixed-size blocks of contiguous bytes
called cache lines. The first byte of a cache line must have an address which is a multiple of
the cache line size. When the processor needs to load into the cache one or more bytes at an
arbitrary address, it loads the entire cache line (or lines) which include the desired bytes.
More than one line can be loaded if the byte block being accessed straddles a cache line
boundary.

Obviously, the cache must be organized in a way that allows to know the address from which
a cached byte has been loaded. However, since bytes in a line are contiguous, the cache
organization only keeps track of the address of the first byte in the line, which we will call the
line address. Addresses of other bytes are simply computed from the line address and the
byte offset into the line.

In the following, we will also use the term memory line to indicate a line-size-long block of
bytes in memory beginning at a multiple of the line size, i.e. a memory block which can be
loaded into a single cache line and completely fill it.

For the processor we are considering (and for almost all x64 processors today) the cache line
size is 64 bytes. Since a line address is a multiple of 64, bits 0-5 which range from O to 63 are
always 0 for such an address. For a generic address, they give the offset into the line, if the
latter is found in the cache; they are not used to locate the line containing the desired data
into the cache.
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Given this, the processors uses the next 12 bits, i.e. bits 6-17, to look for the desired line into
a group of arrays of cache memory blocks. Each array is called a way and in our example we
have 16 of them. The processor uses bits 6-17 as an index into the ways and locates 16 data
blocks, one for each way. Collectively, these 16 data blocks are called the set for the
particular index value extracted from bits 6-17.

Each data block in the set holds the content of a cache line which might be the one the
processor is looking for, because it is a line with address bits 6-17 equal to 01 1111 0100 00;
it could therefore refer to the desired line or to another one with the same values for these
bits. This means we need some more data to know if our address is cached and into which of
the data blocks. To solve this problem, the processor stores bits 18-35 of the line address in
the data block, together which the cache line content (remember, on this particular
processor the physical address is limited to 36 bits, so we are not interested in bits higher
than bit 35). This group of bits is called the tag. Suppose the content of our address is indeed
cached into one of the cache ways. We can represent the way content as in the following
figure:

bit # 3333..3322.2222 2222 1111 1111 11
5432 1098 7654 3210 9876 5432 1098 7654 3210
0x781f423 = 0000 0000 0111 1000 0001 1111 0100 0010 0011

I | Y |
I I I

tag index offset in line

Tag cached content

011111 0100 00 ————| 0000 0000 0111 1000 00 | 64 bytes of data

index

way containing cached content of
0x781f423

Figure 18 - Logical Scheme of a Cache Way
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The other data blocks in the set will store content from different addresses and will have
different tags. It is also interesting to note that the processor can simultaneously compare all
the tags stored in the 16 data blocks with the tag from our address, without iterating over
the blocks, thus the cache can be very fast.

But why having more than one way, i.e. why having sets of data blocks? Because, with a
single way, two memory lines having the same index, i.e. the same value for bits 6-17 of the
line address, could never fit in the cache at the same time: there would be only one "slot" for
this particular index and a new line pointing to this slot would evict the previous one from
the cache. With 16 ways the processor can store up to 16 lines with the same index and,
eventually, evict the least recently used (LRU), when all the ways are in use.

It is not always the case that all entries in the cache contain valid memory data. A particular
way entry could simply never have been used, because less than 16 addresses with its index
have been cached, or its content could have been invalidated. Invalidation of a cache line
usually occurs when the processor detects that another processor is writing to the address of
the cached data. This means that the copy in the cache is not up to date anymore, so the
detecting processor marks its data block as invalid (a processor does not reload the cache
line until the code it is executing tries to actually access the same physical address).

A cache with this architecture is called a set associative cache, while a cache with only one
way would be a direct mapped cache.

The ideal cache would be a fully associative cache, i.e. one allowing a cache line to be stored
anywhere, without using part of the address as an index. With such a cache, the processor
would need to evict a line only when the whole cache would become full, instead of when
the 16 possible blocks for its index are all in use and the evicted line could be the LRU one of
the whole cache, not just of the 16 blocks. The problem is that realizing a fully associative
cache becomes more complex as the cache size grows and it is not practically possible with
sizes of the order of megabytes, which are found in today's L2 caches. The processor does
have a fully associative cache, named translation lookaside buffer, which we will discuss later
in this book, but is used only for a specialized purpose and is very small (less than 100
entries).

The number of bits used to index into the ways can be computed from the cache size, the
cache line size and the number of ways. In our example:

cache size =4 MB
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total number of lines in the cache = 4 MB / 64 Bytes = 65,536
number of lines per way = 65536 / 16 = 4,096

Each way has 4,096 entries, therefore we need 12 bits to index over it.

17.2 Page Color

The color of a physical memory page is a number which identifies the sets into which
addresses from the page can be cached. Pages with the same color are cached in the same
sets and therefore compete with each other to find room in the 16 ways of the cache.

The starting address of a page is aligned on a 4kB boundary and therefore has bits 0-11 set to
0. For instance, the page containing the address considered in the previous section
(0x781f423) begins at 0x781f000; the set index for the first line in the page is the value of bits
6-17 of this address:

bit # 3333 3322 2222 2222 1111 1111 11
5432 1098 7654 3210 9876 5432 1098 7654 3210
0x781£000 = 0000 0000 0111 1000 0001 1111 0000 0000 0000

| | | | | |
I I ]

tag index offset in line

Figure 19 - Components of the Starting Address of a Page
In the following, we will call the set index of the first page line the page set index. Our page
set index is therefore 01 1111 0000 00.

With 4kB pages and 64 bytes per cache line, a page spans 64 adjacent lines or 64 consecutive
index values beginning from the page set index.

Every page with the same page set index will be cached in the same 64 sets used for this one,
therefore we could define the page color as the page set index. However, since the first line
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is page-aligned, it has bits 0-11 set to 0, so the lower 6 bits of the page set index are always 0:

bit # 3333 3322 2222 2222 1111 1111 11
5432 1098 7654 3210 9876 5432 1098 7654 3210
0x781£000 = 0000 0000 0111 1000 0001 1111 0000 0000 0000

fie | | | I |
| I I I

tag color always0 offset in line

page set index

Figure 20 - Page Set Index

Thus, we define the page color as the 6 leftmost bits of the page set index, or bits 12-17 of
the page starting address. Our page has color = 0y011111 = 0x1f and all the pages with this
color will be cached in the same cache sets with indexes ranging from 0y011111000000 to
Oy011111111111.

But why is the page color important? Because two addresses inside two different pages with
the same color can end up in the same cache set, i.e. have the same cache index, while, on
the other hand, addresses from pages with different colors are guaranteed to occupy
different cache sets. When the VMM allocates physical pages, it keeps this in mind. For
instance, when a new physical page is allocated for the address space of a process, the VMM
tries to locate an available physical page with color equal to the color of the last page
assigned to the same process plus one. A per address space color counter is updated on each
allocation to track the color of the last allocated page. This way, the VMM minimizes the
chance that physical pages of a single address space compete with each other for cache sets,
possibly bumping each other out of the cache while that address space is current.

True, since the cache has 16 ways, it can store up to 16 pages with the same color, but with
today’s memory sizes a process can allocate hundreds of thousands of physical pages, so
distributing them evenly over all the possible colors is important to improve performance.
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Which address bits are actually included in the page color depends on the cache
characteristics (the examples we saw so far were for an Intel Core 2 Duo mobile processor).
The cache line size alone determines the least significant bit of the setindex, e. g. bit 6 for 64
bytes lines. The line size, cache size, and number of ways determine how many entries each
way has and therefore the number of bits in the set index. The color bits begin at bit 12,
because pages are 4kB in size and extend up to the most significant bit of the set index.

For instance, an Intel Core i7 Q720 mobile processor has an L3 cache with the following
characteristics:

size: 6MB
ways: 12
cache line: 64 bytes

This yields a 13 bits set index:
total number of lines in the cache = 6 MB / 64 Bytes = 98,304
number of lines per way = 98.304 /12 = 8,192

13 bits are therefore needed to index into 8,192 entries. The set index will be made up of bits
6-18 of the address and the page color bits will be bits 12-18, with the color number being 7
bits in size.

Windows uses a bitmask stored into the KPRCB.SecondaryColorMask member to filter
the page color bits. To compute the color of a page, the VMM ANDs the PFN with the mask.

It can be observed that, with a Core 2 Duo processor, the mask is set to 0x3f, which filters the
6 rightmost bits of the PFN, i.e. bits 12-17 of the physical address (recall that PFN = physical
address >>12).

Consistently, on the Core i7 processor the mask is set to Ox7f, accounting for the extra bit in
the set index.

17.3 Page Color vs. Other Caches

So far we have been considering the L2 cache of the Core 2 Duo processor and the L3 cache
of the Core i7, but what about the other caches?

In general, caches nearer to the processor, like the L1 cache or, in the case of the Core i7, the
L2, are smaller than the last level cache. As long as all the caches have the same line size, as it
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usually is the case, allocating pages with consecutive colors for the largest cache gives the
same benefit for the smaller ones. Consider for instance the Core i7 L2 cache:

size: 256kB
ways: 8
cache line: 64 bytes

total number of lines in the cache = 256 kB / 64 Bytes = 4,096
number of lines per way = 4,096 / 8 = 512

set index size: 9 bits

set index bits: 6-14

The page color bits with respect to this cache are therefore bits 12-14.

We already saw that the VMM computes the page color as the value of bits 12-18 for this
processor, which is consistent with the characteristics of the larger L3 cache. We also know
that the VMM tries to optimize the page placement in the cache by choosing pages with
consecutive colors. This means the physical address bits for the pages of an address space
will be as in the following table:

L3 Cache Color Bits
L2 Cache Color Bits
L2 Cache L3 Cache
18 17 16 15 14 13 12 | ColorValue | Color Value
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 2 2
0 0 0 0 0 1 1 3 3
0 0 0 0 1 0 0 4 4
0 0 0 0 1 0 1 5 5
0 0 0 0 1 1 0 6 6
0 0 0 0 2§ 1 1 7 7
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The L2 color wraps around with the next allocation

0 0 0 1 0 0 0 0 8

0 0 0 | 0 0 1 1 9

The table lists the pages in order of allocation, assuming the first color value used is 0, but
this is not important. We can see that the color has consecutive values for both the L2 and
the L3 cache, thanks to the fact that the L2 color is a subset of the L3 one and the least
significant bit is the same. Of course, the color of the smaller L2 wraps around first, so it takes
less pages before this cache begins to have lines with the same set index and to rely on
associativity (i.e. having more than one way) to make them fit. This is simply due to the fact
that the cache is smaller and it can’t be helped.

In summary, we can generalize our reasoning and say that with a cache hierarchy consisting
of an arbitrary number of levels, choosing the page color in this way optimizes the placement
of pages in all the caches, as long as they have the same line size, so that the least significant
color bit is the same for all levels.

17.4 L1 Caches

A final note concerns the L1 cache. The physical address of the working set pages has no
effect on the placement of the memory content in this cache, because of a surprising detail.
This cache is not indexed using bits from the physical address, but, rather, from the virtual
one, while the tag bits still come from the physical address.

This may seem surprising, because virtual addresses are mapped to physical ones depending
on where CR3 is pointing and the content of the paging structures, thus an entry associated
with a virtual address is correct only as long as the mappings don't change.

Consider the following scenario: virtual address VA1 is mapped to physical address PA1 and
the content of PA1 is cached in the L1. Afterwards, the virtual to physical mapping is
changed, so that VA1 now maps to PA2. If we index into the L1 ways using VA1, we find the
data block caching PA1, but we really need the memory content for PA2. How do we detect
that the cache content is for the wrong physical address?
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If the size of the L1 cache is small enough, this problem is actually a false one. Consider for
instance, the L1 data cache of the Core 2 Duo Mobile and the Core i7 Mobile, with the
following characteristics:

size: 32kB
ways: 8
cache line: 64 bytes

total number of lines in the cache = 32 kB / 64 Bytes = 512
number of lines per way =512 / 8 = 64

set index size: 6 bits

set index bits: 6-11

The set index bits are completely contained into the page offset bits. The value of these bits
is the same in both the physical and virtual address, because the virtual to physical mapping
only translates bits 12-48. Bits 0-11 are the offset into the page and are unchanged by
address translation, therefore the set index is unchanged and it makes no difference if we
extract it from the virtual or physical address.

Another way of looking at this is that the size of a cache way is less or equal the size of a
page; in this example:

size: 32kB
ways: 8
way size: 4kB

Thus, each way stores one memory page and the set index does not extend to the portion of
the virtual address which is translated.

There are however L1 caches with ways bigger than a single page, for instance the Core i7 L1
instruction cache:

size: 32kB
ways: 4

way size: 8kB
cache line: 64 bytes

total number of lines in the cache = 32 kB / 64 Bytes = 512
number of lines per way =512 /4 = 128

set index size: 7 bits

set index bits: 6-12
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This cache has only 4 ways, so the way size is 8kB, spanning two memory pages. The set index
includes bit 12, which can change between the virtual and physical address. This means
indexing through the virtual address does not guarantee to select a set for the desired
physical address (if the virtual to physical mapping has changed after the data has been
cached).

One possible solution to this problem is to include in the tag all the bits of the PFN, i.e. bits
12-36. This way, when a tag matches the physical address, we are sure the cache data block
stores data from the correct memory page; also, the selected set corresponds to the offset in
page for the desired physical address, because, as we said, the offset does not change with
the virtual to physical mapping. Putting it all together, the data block found refers to the
correct page and the correct offset, thus is for the desired physical address.

An alternate solution would be to have the processor flush the L1 cache when CR3 changes
and flush L1 entries when paging structure entries change. Remember that when software
modifies a paging structure entry, it must inform the processor by invalidating the
corresponding TLB entry, so the processor has a way to know that the virtual to physical
mapping has changed. Since the L1 is small and fast, flushing it can be acceptable ([9], p- 30).

But why go through all this trouble to use virtual addresses? Because the physical address is
known only after the processor has translated the virtual one, thus, if the former is used, the
cache lookup cannot start until the translation is complete. This implies an higher cache
latency, unacceptable for the L1 cache which must be very fast. By using the virtual address
for the index, the processor can select the cache set in parallel with address translation; true,
the physical address is ultimately needed to compare the tags, but translation and set
selection can now take place at the same time. On the other hand, bigger, slower caches like
the L2 in the Core 2 Duo and the L3 in the Core i7 can have higher latencies and are involved
later in instruction execution, when the physical address is already available. These caches
can thus be physically indexed.

A cache like the L1 one is described as virtually indexed, physically tagged; caches of the
other kind are said to be physically indexed, physically tagged.
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18 User Range Content

Basically, the user range of a running process stores the following content:
e Executable for the process
e DLLs
e Process heap(s)
e Thread stacks

This content is stored in regions of the VA range chosen by the VMM and the addresses
outside these regions are invalid, which means that if code tries to access them in any way,
an access violation is generated. If a program wants to use a given region, it must first call
VMM APIs to make it valid. In the next sections we are going to examine what this APIs do
and this will help us understand the inner working of the VMM. For now, we will focus on
user range memory allocated through these APIs. Later, we will examine how the VMM
manages the loading of executable code, the stacks and the heaps.

19 User Range Memory Allocation

In the user range, allocation of a region of memory is done in two steps: first, a range of
virtual addresses is reserved, i.e. taken from the available (that is, unallocated) VAs of the
process and set aside. This does not make the range usable: if the process tries to touch an
address inside this range, it still gets an access violation, i.e. the same exception it would get
for a completely invalid address. The second step is committing the range, which makes it
usable. When a range is committed, we can say (simplifying things a little) that it is either in
physical memory or in the paging file and Windows is prepared to map it into the address
space when it is needed, so code can freely touch the range. VirtualAllocEx is one of the APIs
which can be used for reserving and committing memory.

But why splitting memory allocation in two steps? The main reason is thé way Windows
keeps track of how much virtual memory can be allocated. The system computes a value
called commit limit, which can be retrieved as a performance counter (Memory\Commit
Limit). It's value is somehow less than the amount of physical RAM plus the size of the paging
files and it's the number of bytes that can be kept either in memory or swapped out. Since a
page of data must be kept somewhere, either on disk or in memory, this value represents the
maximum number of pages the system can handle.




94 What Makes It Page?

As processes allocate memory, Windows keeps track of how many pages of data they are
using in the counter named Memory\Committed Bytes. This value, which is also called the
commit charge can't be greater than the commit limit, because these data pages must be
stored somewhere.

Thus, when a process attempts to increase the commit charge, the operation can fail if it
would exceed the commit limit. Actually, the commit limit can grow, because the paging files
themselves can grow, up to a specified maximum size. As long as the paging files are below
their maximum, Windows is forgiving enough to allow the operation to succeed. If we go on
allocating memory, however, we are bound to be stopped by the commit limit, when it can't
grow anymore.

Now suppose we need to write a piece of code which must allocate a very large range of
contiguous memory for a data structure, even though we are not sure how much of this
range we are actually going to use. If allocating memory meant committing pages, we would
consume a large portion of the commit limit (which is system-wide) and perhaps only use a
fraction of it.

Instead, reserving a range of memory allows us to set aside a contiguous range of addresses,
without consuming commit limit. A reserved range can later be committed in separate
smaller chunks, thus increasing the commit charge only when needed.

Besides the system-wide commit limit, Windows allows to impose a per-process limit on how
much memory a process can commit. Although this feature is disabled by default (see [1], p.
162), it can be turned on and it is therefore another good reason for committing memory
only when needed.

It is however true that committing virtual memory does not necessarily mean creating the
paging structures to map physical pages to it: when possible, Windows waits until the
memory is actually referenced to do it, so that this becomes the job of the page fault
handler. We are going to discuss shortly one scenario in which Windows cannot avoid
creating the paging structures at commit time.

Based on this allocation scheme, a virtual address in the user range can be in one of three
allocation states: invalid, reserved or committed. The page storing a committed address is
not necessarily present: before an access to the page is actually made, the VMM does not
actually map the VPN to a physical page; even when the mapping has been done, the page
can be moved to the paging file afterwards. The point is, once a virtual page is committed,
the VMM is ready to make it valid, eventually retrieving its content from the paging file.
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There are memory allocation APIs which take a NUMA node number among their input
parameters, so that we can specify a preferred node for the allocation. This overrides the
default VMM behavior of allocating pages from the ideal node. As an example, VirtualAllocEx
reserves and commits pages according to the default VMM behavior, while
VirtualAllocExNuma allows to specify the preferred node. The node is only considered
preferred, because physical pages are not actually allocated when memory is reserved or
committed, but rather when it is accessed. If, when this happens, there are no available
pages on the specified node, the VMM will use physical pages from the nearest one.

20 VMM Data Structures

20.1 Virtual Address Descriptor (VAD)

VADs are used to keep track of reserved and committed addresses in the user mode range.
For every range which is either reserved or committed, a VAD stores the addresses delimiting
it, whether it's only reserved or committed and it's protection, i.e. the type of access allowed
to the range.

VADs are organized in a tree structure where each node is a VAD instance and can have up to
two children. The left children, if present, is a VAD for an address range below the one
covered by the parent; the right children is for a range above it:

start: 0x150000

end: Ox24FFFF

start: 0x30000 start: 0x670000

end: 0x33FFF end: Ox67FFFF

Figure 21 - VAD Tree
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There are three data types defined for VADs among the Windows symbols: MMVAD SHORT,
_MMVAD and _MMVAD_LONG, where each structure is a superset of the preceding one. The
VMM logic examined here only concerns the members of _MMVAD_SHORT, for which WinDbg
shows us the following definition:

struct _MMVAD SHORT, 8 elements, 0x40 bytes

+0x000 ul : <unnamed-tag>
+0x000 Balance : Pos 0, 2 Bits
+0x000 Parent : Ptré64 _ MMVAD

+0x008 LeftChild : Ptr64 MMVAD
+0x010 RightChild : Ptr64 MMVAD
+0x018 StartingVpn : Uint8B
+0x020 EndingVpn : Uint8B
+0x028 u <unnamed-tag>

+0x000 LongFlags : Uint8B
+0x000 VadFlags : _MMVAD FLAGS
+0x000 CommitCharge : Pos 0, 51 Bits

+0x000 NoChange : Pos 51, 1 Bit
+0x000 VadType : Pos 52, 3 Bits
+0x000 MemCommit : Pos 55, 1 Bit
+0x000 Protection : Pos 56, 5 Bits
+0x000 Spare : Pos 61, 2 Bits
+0x000 PrivateMemory : Pos 63, 1 Bit
+0x030 PushLock : _EX PUSH LOCK
+0x038 ub : <unnamed-tag>

+0x000 VadFlags3
+0x000 PreferredNode : Pos 0, 6 Bits
+0x000 Teb : Pos 6, 1 Bit
+0x000 Spare : Pos 7, 1 Bit
+0x000 SequentialAccess : Pos 8, 1 Bit
+0x000 LastSequentialTrim : Pos 9, 15 Bits

+0x000 Spare2 : Pos 24, 8 Bits
+0x000 LargePageCreating : Pos 32, 1 Bit
+0x000 Spare3 : Pos 33, 31 Bits

Itis also interesting to note that MMVAD SHORT is itself based on _MMADDRESS NODE,
another smaller structure which has the same layout up to the pointer at +0x20 and stores
the essential information to build the VAD tree. The tree itself is named an AVL self-balancing
tree after its inventors: Adelson-Velskii and Landis. Below is the layout of

_MMADDRESS NODE.

struct MMADDRESS_NODE, 5 elements, 0x28 bytes
+0x000 ul : <unnamed-tag>

+0x000 Balance : Pos 0, 2 Bits
+0x000 Parent : Ptr64 _MMADDRESS NODE
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+0x008 LeftChild : Ptr64 MMADDRESS_ NODE
+0x010 RightChild : Ptr64 MMADDRESS_NODE
+0x018 StartingVpn : Uint8B
+0x020 EndingVpn : Uint8B

We can look at the VADs for a process with WinDbg. In the following example, a test
allocation program called MemTests.exe is used: first, the !process extension gives us the
address of the VAD root; afterwards, the lvad command prints out information on the
process VADs:

0: kd> !process 0 1 memtests.exe

PROCESS fffffa80011e7b30

SessionId: 1 Cid: 098c Peb: 7fffffdf000 ParentCid: 02bc
DirBase: 3311c000 ObjectTable: fffff8a00lea9c00 HandleCount: 6.

vads 21 Clone 0 Private 131. Modified 0. Locked 0.

0: kd> !vad ]

VAD level start end commit

ff£f£fa8000e997a0 ( 3) 10 1f 0 Mapped READWRITE
ff£f£ffa8002e48290 ( 4) 20 2f 0 Mapped READWRITE
ff£f££faB8000£45c70 ( 2) 30 33 0 Mapped READONLY
fffffag8002f6d0b0 ( 4) 40 40 1 Private READWRITE
ff£f£ffag8001004010 ( 3) 50 b6 0 Mapped READONLY
ff£fffag8002b92220 ( 4) c0 1bf 32 Private READWRITE
ff£fffag8002bc3720 ( 1) le0 2df 7 Private READWRITE
fffffag8002b607a0 ( 3) 410 50f 41 Private READWRITE
fff£fa8000e295d0 ( 2) 660 66f . 10 Private READWRITE
fff££fa8000£7£fel0 ( 4) 670 a6f 1024 Private EXECUTE
fffffa8002£47640 ( 3) 77020 7713e 4 Mapped Exe EXECUTE WRITECOPY
ff£f£fa8000£df160 ( O) 77140 772ea 12 Mapped Exe EXECUTE WRITECOPY
fffffag8002£fc6980 ( 3) Tefel 7£0df 0 Mapped READONLY
fffffa8000f71lecO ( 2) 7£0e0 7£fdf 0 Private READONLY
fffffag80010454a0 ( 1) 7£fel Tffef -1 Private READONLY
fffffag8002c0£1d0 ( 4) 13£540 13£5b8 5 Mapped Exe EXECUTE WRITECOPY
f££££fa8002d093b0 ( 3) 7fefd190 7fefdlfa 3 Mapped Exe EXECUTE WRITECOPY
fffffag8000e27e50 ( 4) Tfeffde0 7feffd460 0 Mapped Exe EXECUTE WRITECOPY
fffffa8000£d9360 ( 2) TEEf£fb0 7E£££££d2 0 Mapped READONLY
fffffag8002ea52b0 ( 4) T7fffffdd 7fffffde 2 Private READWRITE
fffffa8002eadb80 ( 3) Tfffffdf Tfffffdf 1 Private READWRITE

Actually the "VadRoot address" printed by !process can also be retrieved as follows: given
the address of the _EPROCESS for the process, the VadRoot is given by

_EPROCESS.VadRoot.BalancedRoot.RightChild

97
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The meaning of the output columns is as follows:
e VAD affress, i.e. the address of the VAD data structure

e Level in the VAD tree. The example shows that the VAD at level O has the same
address obtained from !process and supplied to lvad, i.e. this node is the tree root.

e Starting and ending address of the range, expressed as virtual page numbers (VPN),
i e. the address value divided by the page size (4kB), which is also the address value
shifted right by three hexadecimal digits. Thus, for instance, the first row defines a
range starting at address 0x10000 and ending at address Ox1ffff. Note how the
ending address is the VPN of the last page, so the address of the last byte is 0x1FO00

+ OXFFF.

e The # of committed pages in the range. We must remember that we can reserve a
range and then commit only part of it, so this number tells us how many pages in the
range are actually committed. This brings us to an interesting question: how can the
VMM know which pages are committed? We are going to answer in a short while.

e The type of allocation. For now, we are going to examine memory which is private to
a process, which, imagine that, is marked as "Private”

e The type of access allowed on the page. We will expand on this subject later.

20.1.1 Partially Committed Ranges

After having reserved a range, we can commit as many subranges of it as we like, which can
lay anywhere inside the containing range, with the only limitation that each subrange must
start on a page boundary and must consist of whole pages. This is, after all, the point of
reserving and committing memory in separate steps and it implies we can build memory
ranges with uncommitted "holes" in them. The VMM must therefore be able to record which
individual pages in a range are committed. A VAD cannot store this level of detail, so the
VMM uses the PTEs to do the job. This does not mean, however, that the VMM always
initializes PTEs when a range is committed. Rather, it does so when a range is partially
committed and therefore the PTEs are needed.

For instance, it is possible to reserve and commit an address range in a single step, thereby
committing the whole range. When this happens, the VMM does not initialize the PTEs for
the range and if we examine them we find they are set to O (PTEs can also be absent, but we
will see this later). PTEs are also set to O for a range which is reserved but not committed, as
well as for an invalid one, so they don't help the VMM in knowing that the range in our
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example is committed. However, this information is stored in the VAD, because the range is
wholly committed. By performing a few experiments on memory allocation, it is possible to
observe that the member named MMVAD SHORT.u.VadFlags.MemCommit issetto1fora
range that has been reserved and wholly committed at the same time. For such a range, the
VMM updates a PTE only when we access an address inside the range. In this scenario, the
PTE has not been set up at commit time, but at memory access time and the final PTE value
points to a physical page and has the control bits set according to the protection assigned to
the range.

Now consider a different situation, where we reserve a range without committing it. If we
observe the PTEs for the range, they are set to 0, like in the previous case, but this time
_MMVAD_SHORT.u.VadFlags.MemCommit is also 0. When we commit a portion of this
range, the VMM has no choice but to record this fact in the PTEs mapping this subrange,
which are set to nonzero values. However, since we have not actually accessed addresses
inside the range, the PTEs are not yet fully set up to translate virtual addresses: they don't
include a physical address, because physical pages have not yet been assigned to map the
virtual range. At this stage, these PTEs contain an abstract representation of the protection of
the page they map, which we will examine better in a short while and, of course, they still
have the present bit clear. This will change when we will finally access the memory mapped
by these PTEs.

Until now, we have assumed PTEs always existed, however we must remember the
hierarchical nature of the paging structures:

e When a PML4 entry has the present bit clear, no PDPTs, PDs or PTs exist for the
corresponding VA range. There is no physical page storing the PDPT for this range,
there are no pages storing the PDs, etc.

e Likewise, a PML4 entry can point to an existing PDPT, but a PDPT entry can have its
present bit clear, so no PDs or PTs exist for this particular range.

When it comes to tracking reserved and committed memory, this means that it's possible to
have committed memory ranges for which the PTEs don't even exist. This happens when the
VMM does not need to use PTEs to track partial commitments. Thus, in the previous
examples, when we said that the PTEs were set to 0, it is more accurate to say that they can
be 0 or they can be missing.

On the other hand, if the VMM is forced to create a page table, to set up some PTEs for a
partial commitment, it will set all other PTEs in the page to 0, to record that those other
ranges are not committed.
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The behavior explained so far can be observed running a test program which calls
VirtualAllocEx and observing the VADs and PTEs state at various stages. Let's wrap it all up
with a practical example: we use a test program called MemTests which reserves 128MB of
VA, without committing it. We use a large range, to have a better chance of observing not
present PTEs: while the PTs for the beginning of the range may be present because they have
already been used by the VMM for other allocations, the ones at the end of the range have a

good chance of not having been allocated when we call the function.
When we reserve the range, we have the following situation:
Starting address = 0x00000000 00530000

Ending address = 0x00000000 0852FFFF

The starting address has been chosen by VirtualAllocEx, because we did not request a
particular address, just a range size of 128MB, i.e. 0x80000000.
The Ivad command output shows our range with no committed pages:

commit
g Private

end
852f

start
530

level
4)

VAD

fffffag8001452140 ( READWRITE

Thanks to the known relationship between a VA and the VA of its PTE, we can compute the
addresses of the PTEs for the first and last page of the range which are as follows:

first page PTE: OxFFFFF680°00002980

last page PTE: OXFFFFF680°00042978

We can now look at the content of these 2 PTES:

0: kd> dg OXFFFFF68000002980

FFEFE680° 00002980 00000000 00000000 00000000°00000000
FEEFF680°00002990 00000000°00000000 00000000°00000000
FFEFE680°000029a0 00000000 00000000 00000000°00000000
FEEFEG80° 0000290 00000000 00000000 00000000°00000000
FFEFE680°000029cO0 00000000 00000000 00000000°00000000
FFEFE680°000029d0 00000000 00000000 00000000 00000000
FFEEF680° 0000290 00000000 00000000 00000000°00000000
fFEFf£680°000029f0 00000000 00000000 00000000°00000000

0: kd> dq OXFFFFF68000042978
fff££680°

00042978
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This tells us that the PTEs for the first pages of the range are present, so the VMM has
already created the page table for some reason. However, the PTEs are all set to O,
consistently with the fact that we have not committed anything yet.

The last PTE is even more interesting, because it does not exist.

As a side note, when we want to look at PTEs, we must remember that the VAs at which they
are visible map to the PTEs for the current process. We cannot simply break into the
debugger with Ctrl-C and look at the PTEs for MemTests, because when the debugger takes
control the current process is System. One way to solve this problem is use the .process
metacommand with the /i option, which allows to resume execution and break again with
the desired process being the current one. .process requires the address of the EPROCESS
instance for the process, which can be obtained with

Iprocess 0 0 MemTests.exe

Our test program goes on by committing the first and last page of the range and the !vad
output changes accordingly:

VAD level start end commit
ff£fffa8001452140 ( 4) 530 852f g Private READWRITE

The PTEs status is also different:

0: kd> dg OXFFFFF68000002980
fE£F£680°00002980 GHEREEEE I 00000000°00000000
fE£££680°00002990 00000000 00000000 00000000 00000000
fE£££680°000029a0 00000000 00000000 00000000 00000000
fE£££680°000029b0 00000000 00000000 00000000 00000000
fE£££680°000029c0 00000000 00000000 00000000 00000000
fE£££680°000029d0 00000000 00000000 00000000 00000000
fE£££680°000029e0 00000000 00000000 00000000 00000000
fE£££680°000029£0 00000000 00000000 00000000 00000000

0: kd> dg OXFFFFF68000042978

ff£££680°00042978 00000000

The first PTE is now set to 0x80 which represents the page protection in a way we are going
to discuss later. This nonzero PTE tells the VMM the page is committed, therefore an access
to this page will not cause an access violation.
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The same is true for the last PTE, with the addition that now this PTE exists, while, before the
commit, there was not even a physical page to store it.

Both PTEs have the present bit clear and the PFN set to 0, so no physical memory has yet
been used to map the virtual addresses inside these two pages of our range.

Finally, we see that the PTEs for pages beyond the first one are still set to 0 and this tells the
memory manager that they have not been committed. If we were to touch an address inside
these pages we would crash and burn with an access violation.

The last thing our program does is touch the first byte of both pages. Since MemTests did his
homework well and committed those pages it's not slapped with an access violation and the
PTEs change like this:

0: kd> dg OXFFFFF68000002980
fEFFF680°00002980 | 828 00000000°00000000
£E£FF680° 00002990 000000 00000000 00000000
fE£££680°000029a0 00000000 00000000 00000000 00000000
f££££680°000029b0 00000000 00000000 00000000 00000000
fE£££680°000029c0 00000000 00000000 00000000 00000000
fE£££680°000029d0 00000000 00000000 00000000 00000000
f££££680°000029e0 00000000 00000000 00000000 00000000
fE£££680°000029£0 00000000 00000000 00000000 00000000

0: kd> dg OXFFFFF68000042978
fEFFF680°00042978 1

00000000°00000000

Which clearly shows PTEs now mapping physical pages (a little trick: they are odd numbers
and this fact alone tells us the present bit is 1). The other bits in the three rightmost digits are
set according to the protection and caching attributes we specified in the call to
VirtualAllocEx (there will be more on this later). Bit 63, the execute disable bit, is set, so code
can't be executed from these pages, which also stems from the protection we requested in
the first place. Bits 52-62, which are ignored by the processor, are used by the VMM and we
will return on them (they store the truncated working set index of the page). Finally, bits 12-
51 store the PFN. The two physical pages used for these mappings have PFN:

0x1bf22 (first page)
0x308e3 (last page)

A final note: the theoretical limit of x64 physical addresses is 51 bits, however the VMM code
appears to always truncate them to 48 bits, so it can presently handle "only" 256 Terabyte of
physical memory.
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20.1.2 Decomitted Subranges

We can decommit a portion of a reserved range with the VirtualFreeEx AP, leaving it in the
reserved state. When this happens, the corresponding PTEs are set to
0x00000000°00000200, which WinDbg interprets as follows:

0: kd> !pte c0000
VA 00000000000c0000

PXE at FFFFF6FB7DBEDO0O PPE at FFFFF6FB7DA00000 PDE at FFFFF6FB40000000 PTE at FFFFF6800000060
contains 02A000000E8F2867 contains 02E00000141F5867 contains 02F0000009736867 contains GEEGEGEHINTE
pfn e8f2 ---DA--UWEV pfn 141f5 ---DA--UWEV pfn 9736 ---DA--UWEV not valid

PageFile: 0

Offset: 0

brotec : MRS

For a range reserved and committed in one step, where

_MMVAD SHORT.u.VadFlags.MemCommit = 1, the VMM must record inside the PTE the
information that it has been decomitted, because the VAD flag marks the range as wholly
committed. For such a range, the VAD flag is left set to 1 and decommitted PTEs are set as
explained.

For a range with MMVAD SHORT.u.VadFlags.MemCommit =0, the VMM could
conceivably set the PTE to 0: the range is not marked as committed in the VAD, so a PTE set
to O represent an uncommitted page. However, what actually happens is that the PTE is set
to 0x00000000°00000200 like in the previous case.

20.1.3 VAD and Memory Protection

When we call VirtualAllocEx to allocate a range of memory, we can specify how this memory
can be accessed, i.e. its protection, and how it must be cached, through the f1Protect
parameter.

Possible values for f1Protect include:

PAGE_READONLY: the range cannot be written to and code cannot be executed from it
(instruction fetches cause exceptions)

PAGE_READWRITE: reads and writes are allowed; code execution is not.

PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE: similar to the values above, but
instruction fetches are allowed.

A protection value of particular interest is PAGE_EXECUTE, which should make the range
usable only to execute code, disallowing read and write accesses. This kind of protection is
not supported in hardware by x64 processors and does not appear to be actually working on
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the x64 version of Windows. A simple test program can allocate a PAGE_EXECUTE range and
then read it's content (although for a newly allocated range it's just zeroes). It is true,
however, that such a range is not writable and we get an access violation if we try to modify
its content.

The value of the f1Protect parameter passed to VirtualAllocEx determines the value of the
_MMVAD_SHORT.u.VadFlags.Protection member. This can be observed by calling
VirtualAllocEx and dumping the resulting VAD in the debugger; Protection is not set to the
value of f1Protect itself, but is derived from it. This VAD member is particularly interesting,
because its value ends up in a PTE when it is initialized like we saw in the previous section, to
track memory commitment. We will examine PTEs in greater detail later, however bits 5-9 of
a PTE like the one we saw earlier store the value of the Protection member from the VAD.
We must keep in mind that these are still PTEs with the present bit clear, therefore all other
bits are completely ignored by the processor and the VMM is free to use them. We will see
how the VMM uses this value to compute the actual control bits of the PTE when finally
mapping a physical page.

The table below shows the resulting Protection for some of the possible values of

flProtect:
flProtect Allowed Caching Protection
Access Policy
PAGE_EXECUTE_READWRITE | read, normal 6
write,
execute
PAGE_EXECUTE_READ read, normal 3
execute
PAGE_READWRITE read, write | normal 4
PAGE_READONLY read normal 1
PAGE_READWRITE | read, write | no caching® | Oxc
PAGE_NOCACHE
PAGE_READWRITE | read, write | write Ox1c
PAGE_WRITECOMBINE combining™?

Table 3 - Win32 Protection vs. VAD and PTE Protection
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\otes

1. We will analyze the various caching policies later, when we will see how the final PTE
is computed when memory is accessed

2. The term write combining comes from the MSDN documentation for VirtualAllocEx.
We will see how this protection corresponds to WC memory as defined by the Intel
documentation in sec. 26.6.3 on p. 167.

The example of the previous section showed that PTEs initialized to track a committed page
were set to 0x80. The test was performed calling VirtualAllocEx with f1Protect set to
PAGE_READWRITE, which sets MMVAD SHORT.u.VadFlags.Protection=4. By mapping
4 into bits 5-9 of the PTE we have:

6 00 0000 0000
bit # 3 98 7654 3210

PTE = 0... 0000 1000 0000 = 0x80

| |
+—t——+

|
4

We can see in the previous example that the PTEs were actually set to 0x80.

As a final note we can ask ourselves: since we are talking about memory management, where
does the memory for the VADs come from, or, in other words, how is itself managed? It
comes from a memory pool maintained by the VMM for kernel components, named the
nonpaged pool, which we will analyze later. For now, it is better to focus on how the VMM
provides virtual memory to the user address range.

20.1.4 NUMA Support in VADs

The MMVAD SHORT structure has a 6 bits member called u5.vadFlags3. PreferredNode,
which is used when a preferred node is explicitly specified, e. g. through the
VirtualAllocExNuma function. For instance, calling VirtualAllocEx results in PreferredNode
being set to O; calling VirtualAllocExNuma with nndPreferred (the node number) setto O
creates a VAD with PreferredNode = 1. We will see in sec. 26.4.2 on p. 150 how this field is
checked in the page fault handler when choosing the node from which the physical page is
allocated. For now, we can anticipate that, when PreferredNode is set to zero, the fault
handler allocates physical pages from the ideal node as outlined in sec. 16.2 on p. 79; on the
other hand, a nonzero value is decremented and then used as the node number for the
allocation. This explains why PreferredNode is set to nndPreferred + 1: the value zero
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has the special meaning of “no node specified”, so the value passed to the API, whose range
starts at zero, is incremented to avoid ambiguity.

[6] also states, on p. 18, that the preferred node can be specified at VAD level with
VirtualAllocExNuma or MapViewOfFileExNuma.

20.2 Virtual Address Space Bitmaps

20.2.1 The User Mode Address Space Bitmap

Part of the information stored in VADs is replicated in data structures which we will call User
Mode Address Space Bitmaps (UMAB).

Bitmaps are blocks of bytes where each bit is used to track the status of some resource. The
bitmap bytes are usually pointed by an instance of _RTL BITMAP with the following layout:

+0x000 SizeOfBitMap : Uint4B
+0x008 Buffer : Ptr64 Uint4B

For UMABSs, each bit is associated with a 64 kB range in the user mode virtual address range.
Thus, when bit 0 of byte 0 of the bitmap is set, it means the range O - OxFFFF is allocated
(reserved or reserved and committed), bit 1 represents the range 0x10000 - Ox1FFFF, etc.

The VMM maintains an UMAB for each process with the buffer (not the _RTL BITMAP)
starting at address OxFFFFF700°00000000. If we look at the memory map in Figure 17 (p. 76),
we can see that this is the starting address of the Hyperspace region, which is process-
private, so each process has its private UMAB. The UMAB must be long enough to have a bit
for each 64k portion of the user mode range (which is 8 TB), so the number of bits needed is:

0x800°00000000 / 0x10000 = 0x8000000
with each byte storing 8 bits, the UMAB length in bytes is therefore
0x8000000 / 8 = 0x1000000 = 16 MB

Thus, in each address space, the region OxFFFFF700'00000000 OxFFFFF700 00FFFEEF is used
for the UMAB.

But why track virtual addresses both in VADs and in the UMAB? One possible explanation is
that the UMAB is faster when it comes to find a free virtual range.
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VADs are very handy to check whether a given virtual address falls in a range that has been
properly reserved and committed. This is exactly what the page fault handler does when it
must decide whether it has been invoked for an invalid address or for an address that is
unmapped for a legitimate reason (e.g. a page of memory moved to the paging file). The
problem the fault handler has to solve is: "I have this faulting address, is there an allocated
region which encloses it?" The VAD tree can be quickly searched to answer this question.

However, when it comes to allocating a new virtual region the problem is different: unless
the code attempting the allocation asks for a specific starting address, the problem becomes
"Where can | find a free range n bytes long?". It is probably more efficient to look into a
bitmap for the answer, because it amounts to search for a long enough sequence of bits set
to O, so this is what VirtualAllocEx does.

The presence of the UMAB explains why functions like VirtualAllocEx reserve regions whose
starting address must be aligned on a 64kB boundary. VADs and page tables could manage
allocations aligned on page boundaries, but the UMAB cannot. Possibly, the VMM designers
chose to map 64kB for each bit to reduce the UMAB size.

The length of a memory region allocated with VirtualAllocEx does not have to be a multiple
of 64kB, because this would be a waste of committed, and, ultimately, physical memory.
However, given a 1 page region whose starting address is n * 64k, the next virtual region
must begin at (n + 1) * 64k, so the tail of the virtual range is unused.

Although the VMM reserves a virtual range of 16MB for the whole UMARB, it appears that in
most processes it uses a single physical page, so that only the range OxFFFFF700" 00000000 -
OxFFFFF700'00000FFF is actually valid. This results in 0x8000 bitmap entries, mapping up to
the following address:

0x8000 x 0x10000 - 1 = 0x80000000 — 1, i.e. 2GB - 1

This is true even if the process has valid VA ranges above 2GB (several system DLLs are
usually mapped in the range 7-8TB) and therefore means that the VMM is able to manage
the range above 2GB using the VADs only. Possibly, the reasoning behind all this is that
allocations in the lower 2GB of the VA are more frequent and the UMAB is meant to speed
them up, but consuming the 16MB required by the whole UMAB for every process would be
too expensive.

Among the members of MMWST, we find LastVadBit which is usually set to Ox7FFF and is
used to record the last valid bit index in the UMAB (one page stores 0x8000 bits). We will
return on this in sec. 20.2.3.1 on p. 108).

—
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20.2.2 The User Mode Page Tables Bitmap

Immediately following the UMAB is another bitmap, which we are going to call the User
Mode Page Tables Bitmap (UMPB). Each bit corresponds to a page table mapping the user
mode range and, when set, means the page table exists, i.e. the corresponding PDE is valid
(which implies the PML4E and PDPTE for addresses mapped by that page table are valid as
well).

A single PT maps 512 pages or 2 MB, so, in order to map 8 TB of user mode addresses we
need

0x800°00000000 / 0x200000= 0x400000
PTs, i.e. bits in the bitmap, which gives a size for the bitmap buffer of
0x400000 / 8= 0x80000 = 512 kB.

Thus, the UMPB lies in the range OxFFFFF700°01000000 - OxFFFFF700'0107FFFF. We will see
shortly that the process working set list immediately follows the UMPB, beginning at
OxFFFF70001080000.

Unlike the UMAB, the UMPB appears to be used for the whole user mode range and can
actually consume up to 512kB of physical memory. This overhead is not fixed, though,
because the VMM maps UMPB pages only when needed, so its virtual range has holes in it,
where no entries are in use.

20.2.3 Verifying the Presence of Virtual Address Space
Bitmaps
This section shows evidence of the existence of the UMAB and the UMPB.

20.2.3.1 UMAB

We can start with an experiment where the MemTests program (included in the download
package and explained in greater detail later) allocates a range of virtual addresses. Right
before the call to VirtualAllocEx, we break into the debugger and set a breakpoint on access
to the starting address of the UMAB for the thread of MemTests only. When we resume
execution, the breakpoint is hit with the following call stack:

0: kd> !thread @$thread

THREAD fffffa8002076760 Cid 0alc.0al0 Teb: 000007£f£f£fffde000 Win32Thread:
0000000000000000 RUNNING on processor 0

Not impersonating

DeviceMap fffff8a001c8£840




Owning Process
Attached Process
Wait Start TickCount
Context Switch Count
UserTime

KernelTime
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ff££ffa80011d7380 Image: MemTests .EXE
N/A Image: N/A

38323 Ticks: 1 (0:00:00:00.015)

491

00:00:00.031
00:00:00.093

Win32 Start Address MemTests!wmainCRTStartup (0x000000013£997270)

Stack Init fffff8800230edb0 Current fffff8800230e690

Base fffff8800230f000 Limit fffff88002309000 Call O

Priority 9 BasePriority 8 UnusualBoost 0 ForegroundBoost 0 IoPriority 2 PagePriority 5

Child-SP

RetAddr

Call Site
ff£££880°0230e990
ff£f££880° 0230ecal

ff£££800 02bbe4d74
00000000°00003000

fff££880°
00000000°

0230eal0
00000010

ff£f££f800 028bel53
00000000 002£ffbal

f££££880°
00000001 "
f££££880°

0230ebb0
3f997832
0230ec20)

00000000°7775003a
00000000°00000000

00000000
00000000°

002ffb48
00000000

000007fe " £d822a96
00000001°3£996588

00000000°
00000000°

002££fb50
00010000

000007fe £d822ad6
00000001°00000030

00000000"
00000000

002££b90
00000000

00000000°7762c101
00000000°00000000

00000000°
00000000°

002£f£fbd0
00000000

00000001 "3£995b19
00000000°00000000

00000000
00000000°

002ffcl0
00000000

00000001 3£9£5680 :
00000001°00000004 :

: Args to Child

fEEEFfff £EEFEFFf FEFEFFFF " FELFFFFSL

o MiFiedRRpEyAGdESssRARGE -

fEffffff fEEE££E££Ef 00000000 002££fb98
nt!NtAllocateVirtualMemory+0x724

000007fe " £d822a96 00000000 00000000

: nt!KiSystemServiceCopyEnd+0x13 (TrapFrame @

00000000°00000000 00000001°3£997832
ntdll!ZwAllocateVirtualMemory+0xa

00000001°00000003 00000000°00000000
KERNELBASE!VirtualAllocExNuma+0x66

00000001 3£9f1b20 00000001 3fa082cO

KERNELBASE ! i +0x16

00000001 3£f9f5680 00000001 3fa082c0
kernel32!VirtualAllocExStub+0x11

00000001 °3fa082c0 00000000°00000000
MemTests!VirtAllocTest+0x159

[b:\programm\memtests\memtests\main.cpp @ 4175]

00000000 002ffc18 00000001 3fa082c0
00000001 00000004 00000000 002ffcc4

00000000 002f£fc20 00000000°00000000
00000000 002ffcc4 00000000 002f£fc78

00000000 00000000 00000000°00000000

: MemTests! xt z+0x41cO

00000000°00000000 00000001°00000004

: MemTests! iob+0x30

The call stack above shows that VirtualAllocEx transitions to kernel mode and ultimately calls
MiFindEmptyAddressRange where the breakpoint is hit. The breaking instruction can be
examined with the ub (unassemble backwards) command, because the breakpoint is a fault
and rip points to the address after the faulting instruction:

1: kd> ub
nt !MiFindEmptyAddressRange+0xa0:

fEf£££800°02bd12c0 4c89442438 mov gword ptr [rsp+38h],r8
fE£££800°02bd12c5 89542430 mov dword ptr [rsp+30h],edx
fEff££800° 02bd12c9 8bc8 mov ecx,eax
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f££££f800 02bdl2cb 83ff01 cmp edi,1

f££f££800 02bdl2ce 0£8585000000 jne nt!MiFindEmptyAddressRange+0x139
(E££££800 02bd1359)

f£f£££800°02bd12d4 4881£fe00000100 cmp rsi, 10000h

f££f£f£f800° 02bd12db 0£8557d10100 jne nt! ?? ::NNGAKEGL:: string'+0x9628

(E££££800 02bee438)
f£f£f££f800°02bd12el al0000000000f7ffff mov

eax,dword ptr [fi i e

If we step with the debugger for a few instructions, we see the function calls RtIFindClearBits
(documented in the WDK), which takes a pointer to an RTI. BITMAP as its first parameter.
Since such a parameter is passed into rcx, the processor registers tell us where, in memory,

the RTL BITMAP is:

rax=000000003ff££ffof
rdx=0000000000000001
rip=fff£f£80002bd1302

r8=0000000000000005
r11=fffffa80011d7380
r14=£f£ffffag80011d7380

rbx=000000003fffff9%e
rsi=0000000000010000
rsp=fff££f£f8800230e990

r9=f££f££70001080040
r12=fffff8800230ea58
r15=£f£f£f£f70001080034

rex=f££££8800230e9c0
rdi=0000000000000001
rbp=000007fffffdffff
r10=8000000000000000
r13=0000000000010000

iopl=0 nv up ei pl nz na po nc

cs=0010 ss=0018 ds=002b es=002b £s=0053 gs=002b ef1=00000206

nt !MiFindEmptyAddressRange+0xe2:

fEff£800°02bd1302 e81906d1ff call nt!RtlFindClearBits (f£ff£ff800°028e1920)

We see that rcx points a little above the current rsp, so we have an RTL BITMAP on the
stack which we can dump:

0: kd> 2?2 ((nt! RTL BITMAP *) Qrcx)

struct _RTL BITMAP * Oxfffff880°0230e9c0

+0x000 SizeOfBitMap 0x8000

+0x008 Buffer Oxff£££700°00000000 -> Ox3fffff9f

So we are passing to RtlFindClearBits an RTL, BITMAP which points to the UMAB. The value
of RTL BITMAP.SizeOfBitmap, which is set to 0x8000, require some additional
explanation. First of all, if we look at RtlinitializeBitmap, which is also documented in the
WDK, we discover that sizefOfBitmap stores the size in bits of the bitmap.
RtlinitializeBitmap takes this size as its 3™ parameter and copies it into SizeOfBitmap. So
our bitmap il 0x8000 bits or 0x1000 bytes long.

MiFindEmptyAddressRange computes this value by loading MMWSL..LastVadBit at offset
+0x89 and adding 1 to it, so this member contains the index of the last valid bits of the UMAB
(usually Ox7FFF, as we saw earlier).

It is also interesting to compare the allocated address space ranges as resulting from the
VADs with the bitmap content. Below is an excerpt from the ! vad output for the
explorer.exe process:

1: kd> !vad fffffa8000e6ce50
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VAD level start end commit

f£ffffa8000£57410 ( 6) 10 1f 0 Mapped READWRITE

R

fffffaB8000fa8c20 ( 6) 4040 4087 72 Private READWRITE
ff££ffa8001032250 ( 9) 40c0 40c0 1 Mapped WRITECOPY
fffffa800105e290 ( 8) 40d0 40d0 1 Private READWRITE
ff£fffa8000eb2b50 ( 9) 40e0 40e0 1 Private READWRITE

I |

This shows that:
e the range 0x4040000 - Ox4087FFF is allocated
e the range 0x4088000 - Ox40BFFFF is free
e beginning from 0x40C0000, a number of contiguous ranges are in use.

We are now going to compare this with the UMAB content. The offset of the byte for the
range 0x4040000 is:

0x4040000 / 0x10000 / 8 = 0x80

Notice how we divided the address by 64k, because each bit tracks a range of this size. The
index of the bit inside the byte is the remainder of the division by 8:

0x4040000 / 0x10000 % 8 = 4
The size of the first allocated range, in 64k blocks is
(0x4088000 - 0x4040000 + OxFFFF) / 0x10000 = 5

We have added OxFFFF to the range size in bytes to round the result up to the nearest
multiple of 64k. Notice how the actual end address 0x4088000 is not a multiple of 64k, but
since the allocation granularity of VirtualAllocEx is 64k, the range 0x4088000 - Ox408FFFF will
simply be unused. In bitmap terms, a single bit tracks the whole 0x4080000 - Ox408FFFF
range.

So, we expect to find 5 bits set beginning at bit 4 of byte +0x80 inside the UMAB. Here is the
UMAB content:

1: kd> db Oxff£f££70000000000 + 80 12

f££££700°00000080 f£f0 f1




RS
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The byte at +0x80 is 0xf0, which means it has bits 4,5,6,7 set. These are the first 4 bits of our
range. The fifth bit is bit 0 of the next byte (+0x81), which contains Oxf1, so bit O is set, as
expected.

The next bit, i.e. bit 1 of the byte at +0x81, corresponds to the range 0x4090000 - OX409FFFF,
which we know from the VADs to be free, together with the following 64k slots up to address

Ox40BFFFF. This means that we expect, beginning from bit 1, a number of bits set to 0 given
by:

(0x40C0000 - 0x4090000 + OxFFFF) / 0x10000 = 3

that is, bits 1, 2, 3 must be clear, which is consistent with byte Ox81 being set to OxF1.
Furthermore, OxF1 has bits 4, 5, 6, 7 set, which is consistent with the addresses from
0x40C0000 on being in use.

In summary, this shows that the bitmap content mirrors the virtual address space allocation
stored in the VADs.

20.2.3.2 UMPB

Evidence of the UMPB can be found in the code of MmAccessFault, which is called by the
page fault handler. This function examines an address range starting at
OxFFFFF700°01000000, and extending for MMWSL. MaximumUserPageTablePages / 8
bytes. MaximumUserPageTablePages is a member of the working set list (explained in the
next section) and it is usually set to 0x400000. As we saw in sec. 20.2.2 on p. 108 this value is
the number of page tables needed to map 8TB (as the member name name implies). This
tells us that at OxFFFFF700°01000000 begins a data structure whose size is equal to the
number of user mode page tables divided by 8 (incidentally, the division is rounded up to the
nearest multiple of 8), i.e. a data structure with a number of bits equal to the number of page
tables.

We can also compare the content of this region with the address space allocation reported
by the VADs. Below is another excerpt of the VADs for explorer.exe:

0: kd> !vad fffffa8000e6ce50

VAD level start end commi t

[-..]

f£fffa8000e6ce50 ( 0) 7ffel Tffef -1 Private READONLY
ff£fffa8000fblcl0 ( 8) ££500 ff7be 6 Mapped Exe EXECUTE WRITECOPY

\Windows\explorer.exe
[oo-]
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This shows a free VA range from 0x7FFFO000 to OxFFAFFFFF. Now we want to find the PT for
the last in-use page, which is at address 0x7FFEF000. This PT will be in use, while the next
one will be free. Since each PT maps 2MB of address space, the 0-based index of the PT for
Ox7FFEFOQ0Q is:

Ox7FFEFO00 / 0x200000 = Ox3FF
The index of the PT for the first in-use page after the free range is:
OxFF500000 / 0X200000 = Ox7FA

Thus, we expect the bit with index Ox3FF to be set, the ones in the range 0x400 - 0x7F9 to be
clear and bit 0x7FA to be set. The corresponding bitmap offsets are:

Ox3FF / 8 = Ox7F
with the index within the byte given by
Ox3FF % 8 =7
and for the end of the free range:
Ox7FA / 8 = OxFF
Ox7FA % 8 =2

Now let's see the UMPB content:

0: kd> db Oxfffff70001000000 + Ox7F Oxfffff70001000000 + OxXFF

ff££f£700°0100007f ££f 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  wuueeeunnnn.
f££££700°0100008f 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  v'eeewmunnnnnn.
ff£f££700°0100009f 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ®ueeruuunnnnnn.
f£f£f£700°010000af 00 00 00 00 00 00 OO 00-00 00 00 00 00 00 00 00  &uwuueennnnnn.
f££££700°010000bf 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 &evvuueeeennnn.
f££££700°010000cf 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 e uunnnnnn.
f££££700°010000df 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 vevvvwwunennnnn.
ff£££700°010000ef 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  +eevevemunnnnnn.
ff£££700°010000£f Oc

Which shows that bit 7 of byte +Ox7F is set, then all bits are clear up to byte +OxFF, where
bits 0 and 1 are clear and bits 2, 3 are set. This is entirely consistent with the virtual address

space state.
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20.3 Process Working Set Data Structures

This section will cover another fundamental set of VMM data structures, used to keep track
of the working set of a process.

The working set (WS) of a process is a subset of the physical memory pages used by that
process. We define it as a subset, because it does not include:

® Pages in the system range, which, however, are part of the process address space,
i.e. mapped into it. This includes pages used for: kernel mode images, kernel memory
pools, kernel stacks, etc. Some system subranges are an exception and we will cover
them later.

® Large pages, which are inherently non-pageable (see Chapter 40 — p. 392). The
working set is used to decide whether to unmap physical pages used by the process
to increase the amount of free memory, so it accounts for pageable pages only.

On the other hand, the WS includes the pageable pages in the user range, i.e.:
e Pageable private pages.
® Pageable shared pages (we will see later how shared memory works).

The VMM keeps track of the size of the WS and keeps a list of VAs currently mapped by
physical pages, which we will call the working set list (WSL).

One question that could come to mind is: why should we want the WSL? After all, that's what
paging structures are for: to track which VAs have physical pages mapped to them. While this
is true, having the WSL helps the VMM doing its job.

For one thing, there are situations when the VMM needs to round-up all the physical pages
used by a process, e.g. when a process is terminating and its memory must be released.
Collecting this information from the paging structures would mean scanning the PML4 for
existing PDPTs, then scanning each PDPT for existing PDs and so on, which could be quite
expensive. Thus, having a quick list of mapped VAs comes in handy. For non-pageable pages
like large pages, this information is presumably collected from other data structures, like the
VADs.

Also, the WSL stores some additional information for each pageable VA, which the VMM
uses. For instance, it records for how long a page has not been accessed, which helps the
VMM decide whether to move the page content to the paging file.
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20.3.1 Working Set Size

The WS size can be found as follows: the EPROCESS structure has a member called vm of
type MMSUPPORT:

_EPROCESS:
+0x000 Pcb : _KPROCESS
+0x398 §ill : _MMSUPPORT

~ MMSUPPORT stores all kind of information about the process address space, including the
following:

_MMSUPPORT.WorkingSetSize gives the current WS size in pages.

_MMSUPPORT. PeakWorkingSetSize gives the maximum value reached by
WorkingSetSize in this MMSUPPORT lifetime.

20.3.2 Virtual Address Range of the WSL

The address of the WSL is stored in the vm member as well, in the VvmWorkingSetList field
of MMSUPPORT:

_MMSUPPORT:
+0x000 WorkingSetMutex : EX PUSH LOCK

+0x068 VmWorkingSetList : Ptr64 MMWSL

VmWorkingSetList stores the address of the WSL, which is of type MMWSL. Here is an
example with our favorite lab rat, MemTests:

0: kd> !process 0 0 memtests.exe

PROCESS fffffa80012eeb30
SessionId: 1 Cid: 0ab4 Peb: 7fffffd5000 ParentCid: 0adO
DirBase: 1396c000 ObjectTable: fffff8al002aabcl0 HandleCount: 6.
Image: MemTests.EXE

0: kd> dt nt! eprocess fffffa80012eeb30 Vm.VmWorkingSetList
+0x398 Vm g
+0x068 VmWorkingSetList

If we perform the same test for other processes in the system, we discover something
interesting; here is the result for an instance of notepad.exe:

0: kd> !process 0 0 notepad.exe
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PROCESS fffffa8001391b30
SessionId: 1 Cid: 0Ob5c Peb: 7fffffdc000 ParentCid: 0adO
DirBase: 34c67000 ObjectTable: fffff8a0027695f0 HandleCount: 77.
Image: notepad.exe

0: kd> dt nt! eprocess fffffa8001391b30 Vm.VmWorkingSetList
+0x398 Vm .
+0x068 VmWorkingSetList

let's try one of the fundamental Windows processes, Isass:

0: kd> !process 0 0 lsass.exe

PROCESS fffffa80028d94c0
SessionId: 0 Cid: 021c Peb: 7fffffdd000 ParentCid: 0194
DirBase: 1bca3000 ObjectTable: fffff8a005b50520 HandleCount: 588.
Image: lsass.exe

0: kd> dt nt! eprocess fffffa80028d94c0 Vm.VmWorkingSetList
+0x398 Vm :
+0x068 VmWorkingSetList

The address of the list is always the same. Does this mean that there is a single WSL? Not at
all, if we look at the memory map in Figure 17 (p. 76), we see this address is inside the
shaded region called Hyperspace. Recall that each process has a private copy of these shaded
regions, because it has its own PML4 entry for it. Thus, at address OxFFFFF700°01080000 is
usually found the WSL for the address space currently active on a given processor.

20.3.3 WSL Entries

_MMWSL has a member called Ws1e which point to an array of MMWSLE structures:

0: kd> dt nt! MMWSL Wsle
+0x010 Wsle : Ptr64 MMWSLE

An MMWSLE is 8 bytes long and can store a virtual address along with some control bits,
because they store VPNs which are 4 kB aligned, so the lower 12 bits are available.

Working set list entries (WSLE) in the array can be in-use, which means they store a VA of the
process which is mapped to a physical page, or they can be free, with a value which has no
relationship with VAs of the process. This is reflected in the definition for MMWSLE:

struct MMWSLE, 1 elements, 0x8 bytes
+0x000 ul : union <unnamed-tag>, 4 elements, 0x8 bytes
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+0x000 VirtualAddress : Ptré64 Void
+0x000 Long : Uint8B

+0x000 el : MMWSLENTRY
+0x000 Vvalid : Pos 0, 1 Bit
+0x000 Spare : Pos 1, 1 Bit

+0x000 Hashed : Pos 2, 1 Bit

+0x000 Direct : Pos 3, 1 Bit

+0x000 Protection : Pos 4, 5 Bits

+0x000 Age : Pos 9, 3 Bits

+0x000 VirtualPageNumber : Pos 12, 52 Bits
+0x000 e2 : MMWSLE_FREE_ENTRY

+0x000 MustBeZero : Pos 0, 1 Bit

+0x000 PreviousFree : Pos 1, 31 Bits

+0x000 NextFree : Pos 32, 32 Bits

_MMWSLENTRY defines the layout of an in-use entry while MMWSLE FREE_ENTRY is fora
free one.

The array is a mix of in-use and free entries, i.e. the two types are not grouped into
contiguous blocks. This happens for a number of reasons. For instance, the VMM can decide
to unmap a virtual page of a process to free a physical page, so the WSLE which was storing
that VPN becomes free, while others around it may still be in use. Also, a process can
deallocate a range of virtual addresses at a time when they were physically mapped and
were using WSLE entries, which become free.

The values of in-use WSLEs don't appear to be ordered, which suggests the VMM uses the
first free WSLE when it needs one, regardless of the VA it is mapping.

20.3.3.1 In-use WSLEs

In-use WSLESs store instances of MMWSLENTRY, with the VPN in bits 12-63. Their Valid bit is
set to 1, while for free entries the same bit is clear, so that all in-use entries have odd values
and free entries have even ones. The Hashed and Direct bits will be discussed in sec. 37.14 on
p. 331, together with shared memory.

Here is an example of a WSLE array with some in-use entries:

1: kd> dt nt! mmwsl Oxf££££700°01080000

+0x000 FirstFree : 0x179
+0x004 FirstDynamic )
+0x008 LastEntry : 0x259
+0x00c NextSlot @5

+0x010 Wsle

| MMWSLE

1: kd> dq §

FFFFFT00°01080488 fFEFf6fb 7dbed009 FEEEf6Eb 7dbee009
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fEfff£700°01080498 fffff6fb 7dc00049 fffff6£fb 80008409
fff£f£700°010804a8 fEE££700 01080009 ff£fF700°00000c09
fff££700°010804b8 ff££fF700°01000c09 fEEFEF700°0107£009
ffff£f700°010804c8 fffff6fb 7da0f009 fffff6fb 41fFF009
fE££f£700°010804d8 fEffff683 fEEEF009 000007ff fffblcls
ffff£f700°010804e8 000007ff fffb2cl5 000007ff fffb3015
fEf£f£700°010804£8 000007ff fffb4cl5 000007ff fffb5cl5

The odd numbers are all in-use entries; below is the content of the first one:

1: kd> dt nt! mmwslentry fffff700°01080488

+0x000 valid : Oyl

+0x000 Spare : 0yO

+0x000 Hashed : 0yO

+0x000 Direct : Oyl

+0x000 Protection : 0y00000 (0)
+0x000 Age : 0y000

+0x000 VirtualPageNumber : Oy1111111111111111111101101111101101111101101111101101
(Oxfffff6fb7dbed)

Here we see there are WSLEs for system addresses, which may seem curious at first: a
system VA should either be mapped or invalid for all the processes, so why track its status
into the process working set? However, these addresses are inside two of the shaded regions
of the memory map in Figure 17 on p. 76, which are process-private, so the WSL also tracks
these regions besides the user mode range.

The Age member of _MMWSLENTRY is particularly important, because it is used by the VMM
to decide whether the page should be removed from the working set, because it is "aged" i.e.
it has not been accessed for a while ([5], p. 2). This will be explained in greater detail in the
section on working set trimming (sec. 28.2.4 on p. 185).

20.3.3.1.1 The First Five WSL Entries

The first five WSL entries appear to be the same for all the processes and deserve a closer
inspection:

1: kd> dg Oxffff£f700°01080488
fff££700°01080488 6

fE£££700°01080498
f££f££700°010804a8

f££££700°00000c09

The first four entries are all in the paging structures region described on p. 63, so we must
ask ourselves what their meaning is. On one hand, a WSL entry stores the starting address of
a virtual page which is mapped to physical memory. On the other hand, an address in the
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paging structures region is the VA of, say, a PTE, or a PDE, etc. Thus, finding such an address
in the WSL means the paging structure (PT, PD, ...) storing that entry is in physical memory.
For instance, the address of a PDPTE in the WSL means a whole PDPT is in memory, i.e. it
means that the PMLAE pointing to it is valid. These WSL entries store page-aligned addresses
as well: such an address corresponds to the 1* entry in the paging structure (e.g. the 1** PTE)
and the meaning of the entry is that the whole paging structure (e. g. the whole PT), is in
physical memory. Note that this does not mean that the entries are valid: the paging
structure could contain all zeroes. The WSL entry merely tells us that particular paging
structure instance exists in physical memory.

Entry O, OXFFFFF6FB 7DBEDOOQS, is the VA of the PML4 (remember we must ignore the
rightmost three digits, because entries store page-aligned addresses). This means the VMM
tracks in the WSL the fact that this VA is mapped, as with any other VA.

Entry 1, OXFFFFF6FB 7DBEEOQQS is in the PDPTE range, as we can see from Figure 16 on p. 71.
This entry means the PDPT visible at OxFFFFF6FB"7DBEEOQO is mapped to a physical page, i.e.
the PML4 entry selecting it is valid (present bit set). A PDPT maps a 512GB range and we can
compute the starting address of the mapped range as explained in section 15.2.3 on p. 69,
which turns out to be OxFFFFF700°00000000. The meaning of this WSL entry is therefore that
the PDPT mapping the range OxFFFFF700°00000000 - OxFFFFF780'00000000 is in physical
memory. This is the hyperspace range (see Figure 17 on p. 76), where the WSL itself lives. In
other words, this entry records that the PDPT needed to map the whole hyperspace is in
physical memory. Again, this does not mean that the PDPTEs inside of it are valid, only that
the PDPT exists in physical memory.

Entry 2, OxFFFFF6FB 7DC00049 is in the PDE range, so it means a PD is in physical memory.
The 2GB range mapped by this PD is OxFFFFF700°00000000 - OxFFFFF700'80000000, i.e. the
first 2GB of hyperspace, where the WSL itself is stored.

Entry 3, OxFFFFF6FB 80008409 is in the PTE range and tells us the PT mapping the 2MB range
OxFFFFF700° 01000000 — OxFFFFF700°01200000 is present. This range too is inside
hyperspace and it comprises the WSL itself.

Following these four entries is entry 4, OxFFFFF700°01080009, which is not for a paging
structure address, but, rather, it is the address of the page storing the WSL itself.

So, the overall meaning of these 5 entries is that the whole paging structure hierarchy
needed to map the WSL itself is in place. Apparently, the VMM records the use of these
pages in the WSL, just like it does for every other page used by the address space. Also, this
brings to our attention that physical pages storing paging structures are accounted for in the
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process working set, just as “regular” pages storing data (using the term “data” in a broad
sense, which means whatever is stored in memory, as opposed to the paging structures
which are used by the processor to do its job). This is consistent with the fact that both data
pages and paging structures can be unmapped from the virtual address space. The working
set of a process includes both its resident virtual pages and the paging structures needed to
map them to their physical pages. Addresses in the paging structure and hyperspace ranges
are exceptions to our previous statement about the WSL not accounting for system range
addresses. This is consistent with the fact that these virtual address ranges are process-
private.

The MMWSL structure has a member named FirstDynamic which appears to be always set
to 5. We can guess that this member stores the index of the first entry in the WSLE array
available for “normal” usage. Entries 0 — 4 are “fixed” and therefore “not dynamic”, because
they refer to the pages needed to bring the WSL itself into existence, entries from #5 on are
free game. This hypothesis is supported by analysis of VMM code, e.g. the MiUpdateWsle
function, which seems to regard an index less than FirstDynamic as not valid.

20.3.3.2 Free Entries

A free WSLE store an instance of MMWSLE FREE_ENTRY:

_MMWSLE_FREE_ENTRY
+0x000 MustBeZero : Pos 0, 1 Bit
+0x000 PreviousFree : Pos 1, 31 Bits
+0x000 NextFree : Pos 32, 32 Bits

As implied by its name, bit O of a free WSLE must be 0.

PreviousFree and NextFree link the instances into a list of free entries for quick access.
Besides their name, this can be confirmed by analyzing the VMM routine named
MiRemoveWsleFromFreelList. The function logic also shows that the first entry of the chain
has PreviousFree = Ox7FFFFFFF, while the last one has NextFree = OXFFFFFFFF. The values
stored in these fields are not addresses, but rather indexes into the array pointed by
_MMWSL.Wsl1e. It's also interesting to note that this function does consistency checks on
these values when it scans the list of free entries and bugchecks if it finds they are not valid.

20.3.4 Other MMWSL Members

We are now going to see a few other significant members of the _MMWSL structure.

+0x000 FirstFree : Uint4dB
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Points to the head of the list of free MMWSLE in the array pointed by the Wws1le member. Can
be observed in: MiRemoveWsleFromFreelList.

+0x008 LastEntry : Uint4B

It seems to store the highest value among the indexes of in-use entries. In other words, all
existing entries with index greater than LastEntry are free. Can be observed in:
MiRemoveWsleFromFreelList, MiUpdateWsle.

+0x010 Wsle : Ptr64 MMWSLE

Points to the beginning of the WSLE array. It is worth noting that it appears to have always
the same value, with the array beginning right after the MMWSL structure. MMWSL is at
OxFFFFF700°01080000 and is 0x488 bytes in size, thus Ws1le is usually set to
OxFFFFF700°01080488.

+0x020 LastInitializedWsle : Uint4B

Address of the last WSLE. It appears that the VMM maps a variable number of virtual pages
for the WSLE array, probably extending it whenever it becomes full. The array begins at the
address stored into the Ws1e member and extends to the end of the last mapped page. This
member stores the index of the last valid entry, which usually is in the last 8 bytes of the last
mapped page. We can verify this with an instance of notepad.exe:
0: kd> !'process 0 0 notepad.exe
PROCESS §

Sessionld: Peb: 7fffffdc000 ParentCid: 0ad0

DirBase: 34c67000 ObjectTable: fffff8a0027695f0 HandleCount: 77.
Image: notepad.exe

The following command is to switch to the memory context of notepad.exe. We must
remember to do this, because the WSL is in process-private memory.

0: kd> .process /i o]
You need to continue execution (press 'g' <enter>) for the context
to be switched. When the debugger breaks in again, you will be in
the new process context.

0: kd> g

Break instruction exception - code 80000003 (first chance)

nt !DbgBreakPointWithStatus:

f£f££f£800°028bbf60 cc int 3

Now let's dump the address of the WSL. We know it normally is OxFFFFF700°01080000, but
we are not taking any chances:
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0: kd> dt nt! eprocess Vm.VmWorkingSetList @$proc
+0x398 Vm :
+0x068 VmWorkingSetList

B MmvwsL

The content of MMWSL:

0: kd> dt nt! mmwsl §
+0x000 FirstFree
+0x004 FirstDynamic 5
+0x008 LastEntry : Ox6e2
+0x00c NextSlot : 5
+0x010 Wsle s
+0x018 LowestPagableAddress
+0x020 LastInitializedWsle

: (null)

The address of the last initialized entry is given by the value of ws1e (the array start address)
added to LastInitializedWsle multiplied by 8, the size of an entry. Here are the address
and its content:

fEf£££700°01083£ff8 ffffffff 00000eda 22222222 222222722
ff£££700°01084008 e de e o Re e b Boas Be £ S0 2r Bo B X T Bs e o e e Ko B e B o 0o Ko Jip B0 A

fEEEF700°01084018 22222222 22222222 22222222 222222272

fEEFF700 01084028 2722222272 2222727222 227222222 2222922292

fE£££700°01084038 22222222 22222222 22222222 222222292

fEEE£700°01084048 22222222 22222222 22222222 22222222

ff£f£f£700°01084058 o leir Br et be e B Ro R Br Bo o 1o MR Koo Kop e K Ko B oo T Yor Bo Y Yoo o Yo s

fEFFF700 01084068 27222227272 22222222 2222272722 222222292

This address is indeed eight bytes before the end of a page and the next page is not mapped.
The address content is a free entry, because it's even and has
_MMWSLE_FREE_ENTRY.NextFree (i.e. bits 32-63) set to OxFFFFFFFF, so it is the last in the
free entries list.

+0x048 NonDirectHash : Ptr64 MMWSLE NONDIRECT HASH

+0x050 HashTableStart : Ptre4 MMWSLE HASH

We are only going to mention these two members briefly here and we will analyze them
later, together with shared memory (see sec. 37.14 on p. 331). Consider a memory page
shared by two processes. Each process has its own WSLE storing the VA mapped to the page,
but the index of the entry can be different in the two WSLs, i.e. the VA can be stored at
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different entries in different WSLs. When this happens these hash tables are used to
associate VAs and indexes.

20.3.5 The !'wsle Debugger Extension

Armed with the knowledge we gained so far, we can better understand the output of the
' ws e debugger extension. Here is a sample output when the command is used without
arguments:

1: kd> !wsle

Working Set @ ff£f££70001080000

FirstFree llc FirstDynamic 5
LastEntry 60e NextSlot 5 LastInitialized 76e
NonDirect 3 HashTable 0 HashTableSize 0

We can see that the usual WSL address is used and some of the members we discussed
earlier are shown.

NonDirect, HashTable and HashTableSize will be explained in the section on shared memory
(see sec. 37.14 on p. 331).

20.3.6 Getting from the Virtual Address to the WSLE

We will see, in the discussion on how memory content is written to the paging file, that the
VMM uses the WSL to decide which physical pages to remove from a process working set,
when it needs to increase the number of available pages. In this logic, the VMM uses the WSL
as its starting point. Once a particular WSLE has been elected to be removed from the WS,
the VMM knows the VA it refers to, because it's stored in the WSLE itself. From the VA, the
VMM can easily compute the address of the PTE used for the mapping and get to the PFN of
the physical page. In short, the VMM can get to all the data structures it needs to update (we
will analyze this process at length in later sections).

However, there are situations where the VMM only knows a VA and needs to get to the
WSLE for it. Consider, for instance, what happens when a process releases a range of virtual
memory by calling VirtualFreeEx. This function takes a virtual address as input and must
release a virtual range. This, of course, implies freeing any physical pages currently mapped
to the range and free any WSLEs for mapped VAs.

As we saw earlier, in-use WSLEs are not kept in any particular order, so finding the one fora
given VA would mean scanning the entire WSL, which would be inefficient.
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It appears instead that the VMM has a better way of solving this problem. As we are going to
see shortly, the VMM maintains an array of data structures for each physical page in the
system, called PFN database. Each array element stores information on the current state of a
particular physical page. When a physical page is in-use and is mapping a VA included in a
working set, a member of this structure stores the index of the WSLE for the VA. In other
words, the VMM can get from VA to WSLE doing the following:

e compute the PTE address from the VA

e extract the PFN from the PTE

e compute the address of the PFN database element from the PFN
e extract the WSLE index from the PFN database

e access the WSLE

We can corroborate this hypothesis with an experiment. As many other experiments in this
book, this one requires that the system is attached to a kernel debugger.

We use the MemTests program included in the download package to allocate and touch a
region of memory. Allocation is performed by selecting the VirtualAllocExTest() option on the
main menu. MemTests prompts for a set of parameters, which can be set as follows:

IpAddress: 0, to let the allocation function choose the starting address
dwsSize: 0x1000, i.e. 64kB

flAllocationType: 0x3000, to reserve and commit memory

flProtect: 4, for read/write memory

specify NUMA node: n

When the program returns to the main menu, it has allocated the region. We need to take
note of the region starting address, displayed above the menu (in the following it will be
0xC0000). We then must write into the region to ensure physical pages are actually mapped
to it. We can do this by selecting the Access region option, then Private memory region and
Write memory; we leave the start and end address to their default values, so the whole
region is written to.
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Afterwards, we choose Release private region on the main menu to deallocate the region. At
the next prompt we choose to break into the debugger. When the debugger takes control,
we are in the context of the thread about to free the memory region by calling VirtualfFreeEx.

Now we have to anticipate a few things about the PFN database. We are going to place a
breakpoint on accesses to the PFN db entry where the working set index is stored and one on
the WSLE itself. This will allow us to confirm that VirtualFreeEx uses this information to do
the job.

First, we use the ! pte extension to find the physical address of the first page of the region.
We need the virtual address we noted before here:

J: kd> !pte c0000
VA 00000000000c0000

PXE at FFFFF6FB7DBED000 PPE at FFFFF6FB7DA00000 PDE at FFFFF6FB40000000 PTE at FFFFF68000000600
~ontains 02A0000028768867 contains 02E000003916B867 contains 02F0000036F6C867 contains A0500000196A9847
pfn 28768 ---DA--UWEV pfn 3916b ---DA--UWEV pfn 36f6c -—-DA--UWEV pfn EHEEE ---D---UW-V

This tells us that the PFN is 0x196a9 (i.e. the physical address is 0x196a9000). When we feed
it to the !pfn extension, we get information on the PFN database entry for the page:
J: kd> !pfn 196a9

PFN 000196A9 at address §i :
flink 0 B8 blink / share count 00000001 pteaddress FFFFF68000000600

reference coﬁn 001 used entry count 0000 Cached color O Priority 5
restore pte 00000080 containing page 036F6C Active M
Modified

We are not going to examine the PFN entry in detail now. For this experiment, it is enough to
know that the number 205 after £11ink is the WSLE index (in hexadecimal) and that its
address is at the very beginning of the PFN entry, i.e. at the address OxFFFFFA80°004C3FBO
shown above. We can place a breakpoint on reads at this address with the following
debugger command:

2 r 8 /t @Sthread FFFFFA80004C3FBO

This will cause the processor to break into the debugger whenever a byte in the 8 bytes range
beginning at OxFFFFFA80'004C3FBO is read. The /t @$thread option tells the debugger to
actually stop execution only when the breakpoint is hit in the context of the thread that is
now current. This last condition is very important since kernel data structures like the PFN
database are accessed by many system threads and the breakpoint would capture all sorts of
system functions without it.

The following command sets a breakpoint for the current thread on write accesses to entry
0x205 of the WSLE:
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ba w 8 /t @Sthread Q@ ( &(((nt! mmwsl *) Oxff££f£70001080000)->Wsle[0x205]) )

With this, we are about to see what happens when VirtualFreeEx is called. If we resume
execution we see breakpoint 0 being hit at MiDeleteVirtualAddresses+0x484. Note that datz
breakpoints stop the processor at the instruction after the one accessing the memory
address on which the breakpoint is set, so the latter is at offset +0x47a inside the function.
The call stack shows we are inside the call to VirtualFreeEx:

0: kd> k

Child-SP RetAddr Call Site

fEE££880°04877970 ff££f£f800°028c6cda nt!MiDeleteVirtualAddresses+0x484
fff£f£880°04877b30 fff£f£f800°02884153 nt!NtFreeVirtualMemory+0x5ca
fL££££880°04877c20 00000000°770e009a nt!KiSystemServiceCopyEnd+0x13
00000000°002df978 000007fe fd1129cl ntdll!NtFreeVirtualMemory+0xa
00000000°002d£980 00000001 3fa73973 KERNELBASE ! SiSEEEEEE 011
00000000°002d£9p0 00000000 00000000 MemTests!ReleasePrivateRegion+0x83
[b:\programm\memtests\memtests\main.cpp @ 3432]

We can also have a look at WSLE 0x205 and confirm that it is still in use and tracking VA
0xc0000:

0: kd> 2? ((nt! mmwsl *) Oxfffff70001080000)->Wsle[0x205] .ul
union <unnamed-tag>

+0x000 VirtualAddress : 0x00000000°000c0009 Void
+0x000 Long : 0xc0009

+0x000 el : _MMWSLENTRY

+0x000 e2 : MMWSLE FREE ENTRY

When we resume execution, we are stopped by breakpoint 1 at
MiDeleteVirtualAddresses+0x541. This means the WSLE has been updated, so it's better to
have a look at it again:

0: kd> 2?2 ((nt! mmwsl *) Oxfffff70001080000)->Wsle[0x205] .ul
union <unnamed-tag>

+0x000 VirtualAddress : 0x00000000°000c0008 Void
+0x000 Long : 0xc0008

+0x000 el :  MMWSLENTRY

+0x000 e2 : MMWSLE FREE ENTRY

The entry value is now an even number, so the entry is not in use anymore. This is the call
stack at this time:

0: kd> k

Child-SP RetAddr Call Site

££££f£f880°04877970 fffff800 028c6cda nt!MiDeleteVirtualAddresses+0x541
ff£££f880°04877b30 ff£ff£f800 02884153 nt!NtFreeVirtualMemory+0x5ca
F££££880°04877c20 00000000°770e009a nt!KiSystemServiceCopyEnd+0x13
00000000°002df978 000007fe  fd1129cl ntdll!NtFreeVirtualMemory+0xa
00000000°002d£980 00000001 3fa73973 KERNELBASE ! ilieiigeii+0x41
00000000°002d£9b0 00000000°00000000 MemTests!ReleasePrivateRegion+0x83
[b:\programm\memtests\memtests\main.cpp @ 3432]
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We are still in the middle of VirtualFreeEx.

If we go on, we see the WSLE is updated again at MiDeleteVirtualAddresses+0x5bd:

0: kd> ?? ((nt! mmwsl *) Oxfffff70001080000)->Wsle[0x205].ul
union <unnamed-tag>

+0x000 VirtualAddress : 0x00010289 fffffffe Void
+0x000 Long : 0x10289 fffffffe
+0x000 el : MMWSLENTRY
+0x000 e2 : MMWSLE FREE_ ENTRY
0: kd> k
Child-SP RetAddr Call Site

ff£££f880°04877970 ff£ff800° 028c6cda nt!MiDeleteVirtualAddresses+0x5bd
ff£f££f880°04877b30 ff£f££f800°02884153 nt!NtFreeVirtualMemory+0x5ca
ff£f££f880°04877c20 00000000°770e009a nt!KiSystemServiceCopyEnd+0x13
00000000°002df978 000007fe " £d1129cl ntdll!NtFreeVirt
00000000 *002d£980 00000001 3fa73973 KERNELBASE ! iiiuas |
00000000 002d£f900 00000000°00000000 MemTests!ReleasePrivateRegion+0x83
[b:\programm\memtests\memtests\main.cpp @ 3432]

It's interesting to note how the WSLE now appears to be chained in the free list. After some
more hit on breakpoint 1, we hit again the one on the PFN entry inside a function with the
telltale name MilnsertPagelnFreeOrZeroedList, while still inside VirtualFreeEx:

Breakpoint 0 hit
nt!MiInsertPageInFreeOrZeroedList+0x280:

f£f£££f800°0289d890 488bda mov thx, rdx
g kd> k
Child-SP RetAddr Call Site

fEf££f880°048776c0 ff£fff800°028b688f nt!MiInsertPageInFreeOrZeroedList+0x280
£fff£ff880°048777c0 fffff800 028b5b51 nt!MiDeletePteRun+0x49f
fEf£f£f880°04877970 ffff£f800 028c6bcd4a nt!MiDeleteVirtualAddresses+0x408
fff£ff880°04877b30 f£ff££800°02884153 nt!NtFreeVirtualMemory+0x5ca
ff£f£f£880°04877c20 00000000 770e009%9a nt!KiSystemServiceCopyEnd+0x13
00000000°002df978 000007fe £d1129cl ntdll!NtFreeVi y+0xa
00000000°002d£f980 00000001 3fa73973 KERNELBASE! .
00000000°002df9p0 00000000°00000000 MemTests!ReleasePrivateRegion+0x83
[b:\programm\memtests\memtests\main.cpp @ 3432]

We can then remove all the breakpoints with bc* and resume execution.
In summary, this experiment shows us that VirtualFreeEx performs the following steps:
e Accesses the WSLE index inside the PFN database

e Accesses the WSLE, releasing it

These steps are consistent with our initial hypothesis.
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There is still one remaining problem with this approach. As we will see further on, the VMM
allows different processes to share a section of physical memory. It may not always be
possible to use the same WSLE in all the sharing processes: a process can have a shared
physical page mapped to a VA tracked by entry x of the WSL and another process can use
entry y in its own WSL to do the job. This can happen because the WSL is filled depending on
the order in which each process touches virtual addresses according to its own logic.

However, the PFN database for the physical page can accommodate a single WSL index,
which cannot be good for all the sharing processes. We will see when discussing shared
memory that the VMM uses two hash tables which are part of the WSL to solve this problem
(see sec. 37.14 on p. 331). This is where MMWSL.NonDirectHash and
_MMWSL.HashTableStart which we encountered in sec. 20.3.4 on p. 120 come into play.

20.4 Page Frame Number Database
The Page Frame Number Database (PFNDB) is another fundamental VMM data structure.

The PFNDB is used to manage each page of physical memory. It is an array of MMPEFN
structures with a size equal to the number of physical pages. It is located at address
OxFFFFFA80°00000000 (see [1], p. 748) and it is indexed by PFN, i.e. the array element for the
page with physical address 0x12345000 is the one with index 0x12345.

A physical page can be in one of several different states: it can be mapping a virtual page of
some process; it can be in the process of being written out to or read from disk; it can be
unused. The content of an MMPFN instance changes depending on the state of the page. To
keep an MMPFN as small as possible, several members are overloaded with different
meanings depending on the current state of the page.

Keeping MMPFN small is important, because the PFNDB imposes a fixed overhead directly
proportional to the amount of physical memory: if a system has x pages of physical memory,
it also has x MMPFN instances, which are themselves stored in physical memory.
Furthermore, the PFNDB is not pageable, so it uses a fixed amount of physical memory and of
virtual address space.

In the next section, we are going to examine the different page states.

21 Physical Page States

The state of a page is stored in its PFN database occurrence, in the
_MMPEN.u3.el.PageLocation member and the possible values are defined by the
_MMLISTS enumeration. The following sections describe each page state and whether a PTE
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called a soft fault. Actually, some of the PTE control bits are changed when the page is
brought into this state, but the VMM is able to revert them to their values when a soft fault
occurs. Soft faults are analyzed in detail in Chapter 31 (p. 236).

A page enters this state when the memory manager decides to remove it from the WS, to
reduce the WS size. We will see in sec. 38.2.7 on p. 354 that pages used for mapped files can
also enter this state for different reasons.

21.3 Standby

This state is similar to the modified one, except for the fact that the page content has been
written to external storage, so the page can be reused, if the VMM needs it. However, as long
as the page is in this state, its content is still valid and the PTE still points to it, like in the
modified case. If a thread touches the page, the latter is restored into the working set and
becomes active again, as in the modified case (i.e. soft fault).

21.4 Transition

There is an I/O in progress on the page, i.e. its content is either being read from or written to
external storage. For instance, a page in the modified state enters the transition state while
it is being written to storage and the standby state afterwards.

A page arriving from the modified state still has a PTE pointing to it, as explained before. We
will discuss the PTE for a page being read when we will analyze in-paging in Chapter 34 (p.
249).

21.5 Free

The page has unspecified dirty data in it. No PTE points to it and it can be reused. When the
VMM reuses a Free page, it cannot simply map it “as is” to a new virtual address. This would
allow the old page content to be visible at the new address. For instance, a process could
read data left in the page by another one. To avoid this, the VMM fills such a page with
zeroes before mapping it.

21.6 Zeroed

The page is free for use, no PTE points to it and it is also already initialized with zeroes.

21.7 Rom

The physical address corresponds to read-only memory.
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referring to the page exists for any of the possible states. What follows is merely a generic
introduction on page states. We will return on several of them as we go on detailing the
VMM architecture.

The VMM allows to map the content of a file in memory, something we will cover in detail in
Chapter 38 (p. 338). When this happens, the page content is read from and written to the
mapped file, as opposed to the paging file. For this reason, the following sections use the
term external storage to refer to where the page content can be found. We will see later how
paging actually works in both cases.

21.1 Active

A page is active when it is mapping a virtual address and one or more PTEs point to it. This
state also applies to pages storing paging structures. Examples of active pages are:

e Pagesin a process WS, mapping user mode VAs.

e Pages storing paging structures; we already saw these too are accounted for in the
WS.

The PTE which points to the page has the P bit set, so the remainder of its content is as
defined by the Intel x64 architecture.

We will see later when analyzing system range memory, that, for certain virtual ranges, the
VMM does not use working sets. It maps virtual to physical translations, but the mapped VA
is not accounted for in any working set list. Usually, this is done for non-pageable system
regions like the nonpaged pool. For a physical page used in such a mapping,
_MMPFN.u3.el.PageLocation is still set to-Active, so it would not be one hundred
percent correct to state that an Active page is part of a working set. Rather, such a page is
used in a translation (or more than one, if it is shared).

21.2 Modified

The page belonged to a working set, but was removed from it. The content of the page has
not yet been saved to external storage, so the page itself cannot be reused until this
happens.

The PTE which pointed to this page has the P bit clear, so its content is ignored by the
processor, however, most of the remainder of the PTE is still set as it was when P was set, i.e.
the PFN is in bits 12-48, etc. If some code tries to touch this page, the VMM restores it into
the working set. Since this does not involve a disk access, this kind of page fault is usually
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21.8 Bad

The page has generated hardware errors and cannot be used. This state is also used
internally to handle transitions from one state to another ([1], p. 804).

21.9 Modified no-write

This state is similar to the modified one, but, as long as a page is in this state, it cannot be
written to external storage. This state is not used for paging of user mode range virtual
addresses, so we will not examine it for now, but we will return on it in sec 49.4 on p. 546,
while examining the Cache Manager.

22 Page Lists

For some of the possible states, physical pages are kept in a list, so that the VMM can quickly
retrieve a page of that type. There are lists for: Standby, Modified, Free, Zeroed, Modified
no-write and ROM pages ([1], p. 805).

To keep things simple, for now we can think in terms of these lists, even though we will see
later how some of them are actually divided into sub-lists.

These lists are made of MMPFEN instances linked together through some of their members
and each instance represent a physical page in the list (the one with PFN equal to the
instance index into the MMPFN array).

23 Allocation of a New Physical Page

When a newly allocated address is first referenced, a page fault occurs, because the VMM
does not allocate physical pages until the first actual access. This is called a demand-zero
fault, because it must be resolved by mapping the VA to a zero initialized page. The VMM
attempts to handle such a fault by taking a page from the Zeroed list. If the Zeroed list is
empty, it takes a Free page and zeroes it. If the Free list is empty, it takes a Standby page and
zeroes it.

The last possibility, leads us to an interesting question: we know that a Standby page has a
PTE pointing to it, which still holds the page PFN and is ready to be used for an eventual soft
fault. If the page is reused, this PTE must be updated, so that an eventual fault involving it
will be handled as a "hard" one, requiring to read the content back from external storage.
But we also know that PTEs are mapped in a per-process region: when the VMM is looking
for a page to be given to a process, the address space of that process is the current one,
which means the PTEs of that process are mapped in the mapping structures region.
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However, if we want to grab a page from the Standby list, it could belong to another process
and we must have a way to update the PTE belonging to it. We will see how this is done - stay
tuned.

It is a little hard to find out what happens if even the Standby list is empty, because most of
the existing literature does not consider this case.

It is stated, in [7], that a page is taken from the Modified list after its content has been saved
to disk and the page has been moved to the Standby list. It is not further detailed how the
faulting thread is kept waiting while the write is in progress and, anyway, this sounds more
like triggering the replenishing of the Standby list and then taking the page from there.

We will present in sec. 26.4.3.4.3 on p. 158 a detailed analysis of allocation from the Standby
list, albeit limited to demand-zero faults.

Finally, [7] states that if the Modified list is empty, a page is removed from the working set. It
is not stated explicitly which working set, however a reasonable hypothesis is that the page is
taken from the WS of the process which incurred the fault. Possibly, the VMM could look at
pages whose content is already written to external storage first and at unsaved pages later.

When the Standby and Modified lists are empty, the system is seriously running low on
physical memory, because the VMM tries to avoid this, by trimming working sets.

24 Overview of State Transitions

A page goes from one state to another while the VMM does its job, so this section outlines
the state transitions involved. This is not an exhaustive description of all the possible
transitions, in order not to impose too much complexity on the reader at this stage. For
instance, transitions related to file mapping are not mentioned here, because we will cover

this subject later. We will refer to the diagram in Figure 22 on p. 135 to better understand
state transitions.

We can begin our description considering a page which is part of a WS. Such a page can be
removed from the WS as the VMM attempts to keep physical memory available. This can
happen, for instance, because memory is becoming scarce and the page has not been
accessed for a while. Whatever the reason, the page goes to the Standby list if a copy of its
content exists in the paging file, or to the Modified list if it has unsaved content.

From the Modified list the page can be restored into the original WS if the process accesses

it. Since the process incurs a page fault, this operation is also called faulting back the page
and the fault is a soft fault (no disk access).
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A VMM thread named Modified Page Writer is dedicated to writing the content of a modified
page to the paging file. When this happens, the modified page goes into the Transition state
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