

Windows Native API Programming

Pavel Yosifovich

This book is for sale at http://leanpub.com/windowsnativeapiprogramming

This version was published on 2024-06-21

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean

Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get

reader feedback, pivot until you have the right book and build traction once you do.

© 2024 Pavel Yosifovich

Contents

Introduction . 1

1.1: Who should read the book . 1

1.2: Disclaimer and Caution . 1

1.3: Sample Code . 2

1.4: Feedback and Error Reporting . 2

1.5: What’s Next? . 2

Chapter 1: Introduction to Native API Development . 3

2.1: Windows System Architecture . 3

2.2: What is the Native API? . 6

2.3: Getting Started . 8

2.4: Dynamic Linking to NtDll.Dll . 13

2.5: Accessing the Native API . 15

2.6: Summary . 19

Chapter 2: Native API Fundamentals . 20

3.1: Function Prefixes . 20

3.2: Errors . 22

3.3: Strings . 22

3.4: Linked Lists . 25

3.5: Object Attributes . 27

3.6: Client ID . 29

3.7: Time and Time Span . 30

3.8: Bitmaps . 32

3.9: Sample: Terminating a Process . 34

3.10: Summary . 36

Chapter 3: Native Applications . 37

4.1: Native vs. Standard Applications . 37

4.2: Building Native Applications . 43

4.3: The Main Function . 46

4.4: Simple Native Application . 47

4.5: Launching Native Applications . 51

4.6: Debugging Native Applications . 56

4.7: Summary . 59

Chapter 4: System Information . 60

CONTENTS

5.1: Querying and Setting Information . 60

5.2: Process and Thread Information . 68

5.3: Objects and Handles . 78

5.4: The KUSER_SHARED_DATA Structure . 88

5.5: Summary . 89

Chapter 5: Processes . 90

6.1: Creating Processes . 90

6.2: Process Information . 95

6.3: The Process Environment Block (PEB) . 105

6.4: Suspending and Resuming Processes . 113

6.5: Enumerating Processes (Take 2) . 113

6.6: Summary . 115

Chapter 6: Threads . 117

7.1: Creating Threads . 117

7.2: Thread Information . 121

7.3: Synchronization . 125

7.4: The Thread Environment Block (TEB) . 126

7.5: Asynchronous Procedure Calls (APC) . 134

7.6: Thread Pools . 136

7.7: More Thread APIs . 137

7.8: Summary . 139

Chapter 7: Objects and Handles . 140

8.1: Objects . 140

8.2: Enumerating Objects . 145

8.3: Object Manager Namespace . 150

8.4: Handles . 160

8.5: Enumerating Handles . 167

8.6: Specific Object Types . 170

8.7: Other Object Types . 176

8.8: Summary . 176

Chapter 8: Memory (Part 1) . 177

9.1: Introduction . 177

9.2: The Virtual Functions . 179

9.3: Querying Memory . 182

9.4: Reading and Writing . 197

9.5: Other Virtual APIs . 202

9.6: Heaps . 203

9.7: Heap Information . 213

9.8: Summary . 225

Chapter 9: I/O . 227

10.1: Files and Devices . 227

10.2: File and Device API . 229

10.3: File Information . 233

10.4: Directory-Only Information . 241

10.5: NTFS Streams . 245

10.6: Extended Attributes . 247

10.7: Accessing Devices . 251

10.8: I/O Completion Ports . 255

10.9: Miscellaneous Functions . 258

10.10: Summary . 261

Chapter 10: ALPC . 262

11.1: ALPC Concepts . 262

11.2: Simple Client/Server . 268

11.3: Creating Server Ports . 273

11.4: Connecting to Ports . 275

11.5: Message Attributes . 277

11.6: Sending and Receiving Messages . 285

11.7: Summary . 290

Chapter 11: Security . 291

12.1: Overview . 291

12.2: SIDs . 291

12.3: Tokens . 296

12.4: Security Descriptors . 319

12.5: Summary . 334

Chapter 12: Memory (Part 2) . 335

13.1: Sections . 335

13.2: Memory Zones . 347

13.3: Lookaside Lists . 350

13.4: Summary . 351

Chapter 13: The Registry . 352

14.1: Registry Structure . 352

14.2: Creating and Opening Keys . 354

14.3: Working with Keys and Values . 356

14.4: Key Information . 366

14.5: Other Registry Functions . 372

14.6: Key Persistence . 373

14.7: Registry Notifications . 377

14.8: Registry Transactions . 378

14.9: Miscellaneous Functions . 381

14.10: Higher Level Registry Helpers . 384

14.11: Summary . 386

Introduction

Low-level user-mode programming for Windows usually involves working with the documented Windows

API, exported from subsystem DLLs, such as Kernel32.dll, user32.dll, advapi32.dll, kernelbase.dll, and more.

Lurking beneath most of these APIs are system calls, invoked under the covers to access the kernel. Anything

worthwhile in Windows (or any other OS for that matter) must talk to the kernel to get system-level things

done, such as allocating memory, creating processes and threads, performing I/O operations, and more.

The native API, implemented in a couple of DLLs is used to make the transition to the kernel. The most

important one is NtDll.dll - a system wide user-mode DLL that serves this critical role. This book is about

this DLL’s API, as it pertains to invoking system calls that transition the processor to kernel-mode to perform

the requested operation. Other APIs discussed are not system calls per-se, but are still part of NtDll, and are

interesting to get to know. Most of these functions start with Rtl (Runtime Library).

As a simple example, the CreateFile documented Windows API (provided by kernel32.dll) invokes

NtCreateFile in NtDll.Dll to ask the kernel to perform the operation. Most of the native APIs are

undocumented - hence this book.

The other DLL used to invoke system calls isWin32u.dll, used for user interface services and graphics through

the Graphics Device Interface (GDI). Calls from User32.dll and Gdi32.Dll go throughWin32u.dll to reach the

kernel. These APIs are not discussed in this book.

1.1: Who should read the book

The book is for anyone interested in learning about the Windows native API provided byNtDll.dll. This may

be for pure curiosity, reverse engineering, or utilization in applications and tools.

The reader should have a solid understanding of the foundations of Windows, such as processes, threads,

virtual memory, and DLLs. Also recommended is a good familiarity of the Windows documented API. See

my book “Windows 10 System Programming, Part 1” for the required background. The various Windows

concepts used in this book include brief explanations only before diving into the native API details.

1.2: Disclaimer and Caution

Most of the information in this book is frommy own research, and some is from research performed by others

in the developer community. You should treat the information as a “best guess” - I may have made errors

while researching and testing. Even if a piece of information is correct, it may not be so for every Windows

version. Worse still, even if a piece of information is correct now, it may not be correct in a future version of

Introduction 2

Windows. The native API is undocumented for a reason - Microsoft makes no guarantees as to the stability

of the API, meaning it can change at any time and no one can complain. That said, in practice, the API is

mostly stable, as some Microsoft tools use the API extensively, such as Task Manager and the Sysinternals

tools.

1.3: Sample Code

The sample code for this book can be found on Github at https://github.com/zodiacon/

winnativeapibooksamples. It may be updated in the future, so be sure to check for updates from

time to time.

1.4: Feedback and Error Reporting

If you’d like to provide feedback or you found an error, feel free to contact me by emailing zodiacon@live.com,

or contacting me through X (formerly known as Twitter) @zodiacon.

1.5: What’s Next?

The covers many native APIs, but definitely not all. Some parts, like the Loader,Windows Notification Facility

(WNF), Event Tracing for Windows (ETW), Debugging facility, and other parts may be of interest, which I

hope to cover in a future edition. Win32u is yet another possible avenue of exploration.

Happy reading!

Pavel Yosifovich

June, 2024

Chapter 1: Introduction to Native API
Development

In this first chapter, we’ll describe theWindows system architecture as it pertains to application development,

and then see where the native API enters the picture. Finally, we’ll see how to add the required headers to a

Visual Studio C++ application to be able to use the native API.

In this chapter:

• Windows System Architecture

• What is the Native API?

• Getting Started

• Dynamic Linking to NtDll.Dll

• Accessing the Native API

2.1: Windows System Architecture

A simplified Windows system architecture is presented in figure 1-1. A user-mode process (running images

such as Notepad.exe, Explorer.exe, etc.) wants to do some work. Any meaningful work (from a system’s

perspective) requires kernel code to be invoked. Examples include opening and working with files, allocating

memory, creating threads, loading DLLs - all require kernel intervention.

Chapter 1: Introduction to Native API Development 4

Figure 1-1: Windows System Architecture (simplified)

A typical application calls a documented Windows API, implemented in one of a set of Subsystem DLLs. For

example, the CreateFile API is implemented in kernel32.dll (its actual implementation is in kernelbase.dll

- kernel32.dll jumps there, but this detail is unimportant in practice).

Chapter 1: Introduction to Native API Development 5

The term “Subsystem” refers to the original subsystems concept introduced in Windows NT. For a full

description, consult the book *Windows Internals“, 7th edition, part 1. Suffice it to say that the only remaining

subsystem (from the original OS2, POSIX, and Windows subsystems) is the Windows subsystem. This

subsystem provides the APIs system developers are familiar with, such as CreateFile. Also note that the

term “subsystem” as used here has nothing to do with the “Windows Subsystem for Linux”; refer to the same

book for more information.

The CreateFile API will (after some parameter checks) invoke the NtCreateFile native API, part of

NtDll.Dll, which is the lowest-layer DLL that is still in user-mode. This is where the native API is

implemented. Its purpose is to make the transition to kernel-mode, so that the real NtCreateFile function

will be invoked. This is accomplished (on x64 processors) by loading a value into the EAX register, and then

invoking the syscallmachine instruction. The value placed in the EAX register is the one indicating the kind

of “service” required from the kernel. Here is a disassembly of the NtCreateFile function from NtDll.dll on

some Windows 10 machine:

ntdll!NtCreateFile:

00007ffa`d138db40 mov r10,rcx

00007ffa`d138db43 mov eax,55h

00007ffa`d138db48 test byte ptr [SharedUserData+0x308 (00000000`7ffe0308)],1

00007ffa`d138db50 jne ntdll!NtCreateFile+0x15 (00007ffa`d138db55)

00007ffa`d138db52 syscall

00007ffa`d138db54 ret

00007ffa`d138db55 int 2Eh

00007ffa`d138db57 ret

In the above code snippet, the value 0x55 represents the NtCreateFile system call. Every system call

has its own system call number. Behind the scenes, on the kernel side of things, this value is used as an

index to a table known as System Service Dispatch Table (SSDT), that stores the actual system call address

implementations.

Technically, on 64-bit Windows systems, the stored values in the SSDT are not absolute addresses.

Rather, a 32-bit offset from the beginning of the SSDT is stored (in the 28 most significant bits). The

lower 4 bits store the number of arguments passed on the stack to the system call, so that the System

Service Dispatcher (the common function that invokes system calls) knows how many arguments it

needs to clean from the stack after the call returns.

The jne branch instruction just before the syscall is normally not taken, so that syscall is invoked. For

compatibility reasons (at least), using int 0x2E still works if the tested bit happens to be clear, or is invoked

directly.

All system call invocations inside NtDll.Dll look exactly the same, except for the number stored in EAX. It’s

important to note that the “real” system call in the kernel has exactly the same prototype as it does in user-

Chapter 1: Introduction to Native API Development 6

mode (NtDll.Dll). NtDll.Dll is used as a “trampoline” of sorts to make the quantum jump to the kernel; on

the kernel side, the real implementation is invoked.

Once the system call executes within the kernel, which could mean contacting a device driver, or not,

depending on the system call, the call returns back to user-mode. Note that it’s the same thread that makes

the call - it starts in user-mode, transitions to the kernel when syscall is executed, and finally transitions

back to user-mode when the opposite instruction (sysret) is executed.

As shown in figure 1-1, there is yet another NtDll-like DLL - Win32u.Dll. This one serves the same purpose

as NtDll.Dll for USER and GDI (Graphics Device Interface) APIs. A function such as CreateWindowEx

implemented in User32.dll invokes NtUserCreateWindowEx implemented in Win32u.dll. Here is the system

call invocation for that:

win32u!NtUserCreateWindowEx:

00007ffa`cefd1eb0 mov r10,rcx

00007ffa`cefd1eb3 mov eax,1074h

00007ffa`cefd1eb8 test byte ptr [SharedUserData+0x308 (00000000`7ffe0308)],1

00007ffa`cefd1ec0 jne win32u!NtUserCreateWindowEx+0x15 (00007ffa`cefd1ec5)

00007ffa`cefd1ec2 syscall

00007ffa`cefd1ec4 ret

00007ffa`cefd1ec5 int 2Eh

00007ffa`cefd1ec7 ret

Not surprisingly, perhaps, the code is identical to the NtCreateFile code except for the system service

number stashed in EAX - 0x1074 for NtUserCreateWindowEx. USER and GDI system call numbers start with

0x1000 (bit 12 set); this is intentional. On the kernel side, Win32k.sys is the target of these system calls.

Win32k.sys is referred to as the “Kernel component of the Windows subsystem”, essentially implementing

the windowing of the OS and the calls to use the classic GDI.

2.2: What is the Native API?

In this book, we’ll focus on the system calls provided by NtDll.Dll, referred to as the Native API, as these are

more “interesting”, as they deal with the most fundamental pieces of Windows, such as processes, threads,

memory, I/O, and more. From that perspective, the subsystem DLLs are bypassed, as can be seen in figure

1-2.

Chapter 1: Introduction to Native API Development 7

Figure 1-2: System Calls invoked directly

The Native API is mostly undocumented. Some of of it is documented indirectly in the Windows Driver

Kit (WDK), to be used by driver developers. NtCreateFile, for example, happens to be documented in the

WDK. Most of the native API is undocumented, however; even the prototypes are not officially provided.

This begs the question: how can we use something that is not documented?

Before we tackle that question, let’s consider another, perhaps more obvious question: why would we want

to use the Native API in the first place? Is there something wrong with the standard, documented, Windows

API?

Using the native APIs can have the following benefits:

• Performance - using the native API bypasses the standard Windows API, thus removing a software

layer, speeding things up.

Chapter 1: Introduction to Native API Development 8

• Power - some capabilities are not provided by the standard Windows API, but are available with the

native API.

• Dependencies - using the native API removes dependencies on subsystem DLLs, creating potentially

smaller, leaner executables.

• Flexibility - in the early stages ofWindows boot, native applications (those dependent onNtDll.dll only)

can execute, while others cannot.

That said, there are potential disadvantages to using the native API:

• It’s mostly undocumented, making it more difficult to use from the get go. This is where this book

comes in!

• Being undocumented also means that Microsoft can make changes to the native API without warning,

and no one can complain. That said, removal of capabilities from the native API or modification of

existing functionality are rare. This is because some of Microsoft’s own tools and applications leverage

the native API.

Back to the first question: how can we get the prototypes of the native API functions? One source is the

WDK, which provides a good start, although it’s hardly complete. Reverse engineering can help as well, if

you’re so inclined. Fortunately, it’s not necessary. The winsiderss/phnt (used to be processhacker) project on

Github has most of the native API prototypes along with constants, enumerations, and structures - ready to

go.

URL at the time of writing is https://github.com/winsiderss/phnt.

2.3: Getting Started

Let’s start by creating a “hello, world” type of application to use one native API. The API in question is

NtQuerySystemInformation, that packs a lot of functionality into its relatively simple prototype:

NTSTATUS NTAPI NtQuerySystemInformation(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength,

_Out_opt_ PULONG ReturnLength);

The NTAPI macro is expanded to __stdcall, the standard calling convention used by most of the Windows

API and the native API. It only means something in 32-bit processes, as in 64-bit there is just one calling

convention.

We’ll discuss the details of the NtQuerySystemInformation API in the chapter 3. For now, let’s just utilize

it to get some basic system information with a certain SYSTEM_INFORMATION_CLASS value and its associated

structure. Here is the one enumeration value we’ll use along with the expected structure:

Chapter 1: Introduction to Native API Development 9

typedef enum _SYSTEM_INFORMATION_CLASS {

SystemBasicInformation,

} SYSTEM_INFORMATION_CLASS;

typedef struct _SYSTEM_BASIC_INFORMATION {

ULONG Reserved;

ULONG TimerResolution;

ULONG PageSize;

ULONG NumberOfPhysicalPages;

ULONG LowestPhysicalPageNumber;

ULONG HighestPhysicalPageNumber;

ULONG AllocationGranularity;

ULONG_PTR MinimumUserModeAddress;

ULONG_PTR MaximumUserModeAddress;

ULONG_PTR ActiveProcessorsAffinityMask;

CCHAR NumberOfProcessors;

} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

We’ll add these definitions manually to a new C++ console application project created in Visual Studio. Then

we’ll make the call, after which we’ll display some of the returned information. Here is the full main function:

int main() {

SYSTEM_BASIC_INFORMATION sysInfo;

NTSTATUS status = NtQuerySystemInformation(SystemBasicInformation,

&sysInfo, sizeof(sysInfo), nullptr);

if (status == 0) {

//

// call succeeded

//

printf("Page size: %u bytes\n", sysInfo.PageSize);

printf("Processors: %u\n", (ULONG)sysInfo.NumberOfProcessors);

printf("Physical pages: %u\n", sysInfo.NumberOfPhysicalPages);

printf("Lowest Physical page: %u\n", sysInfo.LowestPhysicalPageNumber);

printf("Highest Physical page: %u\n", sysInfo.HighestPhysicalPageNumber);

}

else {

printf("Error calling NtQuerySystemInformation (0x%X)\n", status);

}

return 0;

}

Compiling this code produces a linker error indicating that the implementation of NtQuerySystemInforma-

tion is nowhere to be found:

Chapter 1: Introduction to Native API Development 10

HelloNative.obj : error LNK2019: unresolved external symbol "long __cdecl NtQuerySys\

temInformation(enum _SYSTEM_INFORMATION_CLASS,void *,unsigned long,unsigned long *)"

(?NtQuerySystemInformation@@YAJW4_SYSTEM_INFORMATION_CLASS@@PEAXKPEAK@Z) referenced

in function main

Even though we get one error, we really have two issues here. The first is the fact that the linker has no idea

where NtQuerySystemInformation is implemented. We know it’s inside NtDll.dll, but the linker doesn’t, so

we have to tell it.

One way of doing that is by adding the import library, ntdll.lib, that is provided with a Visual Studio

installation, to the linker’s Input node where additional import libraries can be added (figure 1-3).

Figure 1-3: Linker’s Input node in Visual Studio

Note that it’s best to select All Configurations and All Platforms at the top of the dialog in figure 1-3, so we

don’t have to repeat this setting in every configuration and platform.

The second way to achieve the same thing is to use a #pragma to add the same import library in source code:

#pragma comment(lib, "ntdll")

Even with that change (utilizing either option), we still get the same linker error. The problem is that

NtQuerySystemInformation is defined in a C++ file, that the C++ compiler processes. The function is

named based on the assumption that multiple functions with the same name can exist (function overloading)

with different arguments, so the linker does not connect the function name to its “true” function in NtDll.dll,

which is a C function. You can see the “true” name of the function is mangled by the compiler with weird

symbols to capture the uniqueness of its arguments.

Fortunately, the solution is simple: decorate the function with the extern "C"modifier to force the compiler

to treat the function as a C function (not C++):

Chapter 1: Introduction to Native API Development 11

extern "C" NTSTATUS NTAPI NtQuerySystemInformation(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength,

_Out_opt_ PULONG ReturnLength);

Now everything should link successfully, and we can run the application that produces output similar to the

following:

Page size: 4096 bytes

Processors: 16

Physical pages: 33346913

Lowest Physical page: 1

Highest Physical page: 34142207

Here is the full code (found in the HelloNative project):

#include <Windows.h>

#include <stdio.h>

typedef enum _SYSTEM_INFORMATION_CLASS {

SystemBasicInformation,

} SYSTEM_INFORMATION_CLASS;

typedef struct _SYSTEM_BASIC_INFORMATION {

ULONG Reserved;

ULONG TimerResolution;

ULONG PageSize;

ULONG NumberOfPhysicalPages;

ULONG LowestPhysicalPageNumber;

ULONG HighestPhysicalPageNumber;

ULONG AllocationGranularity;

ULONG_PTR MinimumUserModeAddress;

ULONG_PTR MaximumUserModeAddress;

ULONG_PTR ActiveProcessorsAffinityMask;

CCHAR NumberOfProcessors;

} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

extern "C" NTSTATUS NTAPI NtQuerySystemInformation(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength,

Chapter 1: Introduction to Native API Development 12

_Out_opt_ PULONG ReturnLength);

#pragma comment(lib, "ntdll")

int main() {

SYSTEM_BASIC_INFORMATION sysInfo;

NTSTATUS status = NtQuerySystemInformation(SystemBasicInformation,

&sysInfo, sizeof(sysInfo), nullptr);

if (status == 0) {

//

// call succeeded

//

printf("Page size: %u bytes\n", sysInfo.PageSize);

printf("Processors: %u\n", (ULONG)sysInfo.NumberOfProcessors);

printf("Physical pages: %u\n", sysInfo.NumberOfPhysicalPages);

printf("Lowest Physical page: %u\n", sysInfo.LowestPhysicalPageNumber);

printf("Highest Physical page: %u\n", sysInfo.HighestPhysicalPageNumber);

}

else {

printf("Error calling NtQuerySystemInformation (0x%X)\n", status);

}

return 0;

}

The #include of <Windows.h> is necessary (at least for now), as it provides basic definitions like ULONG,

PVOID, and other standard Windows types.

The $(CoreLibraryDependencies)Visual Studio variable visible in figure 1-3 includesmany of the standard

subsystem DLLs, but it does not include NtDll.lib, which is why the project failed to link. You can verify this

by clicking the rightmost down arrow (figure 1-3) and selecting Edit… and then click theMacros button. You

can type at the top edit box of the expanded window to filter the variable list and get to the default list of

import libraries hiding under this specific variable (figure 1-4).

Chapter 1: Introduction to Native API Development 13

Figure 1-4: $(CoreLibraryDependencies) Visual Studio variable

2.4: Dynamic Linking to NtDll.Dll

Themethod of using an import libraryNtDll.libworks, but sometimes may not be the best way. One potential

problem is using an API that is not supported on some Windows version the application targets. In that case,

the application may compile and link just fine, but when it launches on a system that does not support an

API that is being used - it will crash on startup.

To solve this, APIs can be bound dynamically, at runtime. If the API in question exists, we’ll get a pointer

to it. Otherwise, a NULL pointer is returned, and the application can handle the failure gracefully, without

crashing.

Binding dynamically to functions is achieved with the GetProcAddress Windows API. Here is an example:

Chapter 1: Introduction to Native API Development 14

auto pNtQuerySystemInformation =

(decltype(NtQuerySystemInformation)*)GetProcAddress(

GetModuleHandle(L"ntdll"), "NtQuerySystemInformation");

if (pNtQuerySystemInformation) {

SYSTEM_BASIC_INFORMATION sysInfo;

NTSTATUS status = pNtQuerySystemInformation(SystemBasicInformation,

&sysInfo, sizeof(sysInfo), nullptr);

//...

Using the auto and decltype C++11 keywords simplifies the code, as it does not require to define a function

pointer. But that can be done if needed:

typedef NTSTATUS (NTAPI *PNtQuerySystemInformation)(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength,

_Out_opt_ PULONG ReturnLength);

int main() {

auto NtQuerySystemInformation = (PNtQuerySystemInformation)GetProcAddress(

GetModuleHandle(L"ntdll"), "NtQuerySystemInformation");

if (NtQuerySystemInformation) {

SYSTEM_BASIC_INFORMATION sysInfo;

NTSTATUS status = NtQuerySystemInformation(SystemBasicInformation,

&sysInfo, sizeof(sysInfo), nullptr);

//...

In this case we can define the function pointer type with a “P” prefix, so we can use the “real” function name

as the name of the variable, making the code feel perhaps slightly more “natural”. Notice that extern "C"

is no longer needed, as GetProcAddress always assumes an unmangled function name.

The full code for this example is in the project HelloNative2.

GetModuleHandle is used to retrieve the instance handle (just the address of) theNtDll.Dll DLL in the process,

that is fed to GetProcAddress. This will always succeed because NtDll.Dll is mapped to every user-mode

process by the kernel, and so is available at a very early stage of a process’ lifetime.

Astute readers may be wondering why we’re using GetProcAddress and GetModuleHandle, as one of our

goals is to use native APIs instead of standard Windows APIs; we’ll do that in the next chapter, because the

Chapter 1: Introduction to Native API Development 15

corresponding native APIs require some more background, which is provided in the next chapter. In any

case, the goal is not necessarily to remove all usage of the Windows API in all cases, but to use the native

API to our advantage where it makes sense.

Ultimately, the way code binds to native APIs is up to the developer. It’s also possible to combine both ways -

use static binding (import library) for APIs that exist in all Windows versions being targeted, and use dynamic

binding for functions that may be unavailable.

If you feel rusty as to how to bind to DLLs (statically and dynamically), look it up online, or read

chapter 15 in my book “Windows 10 System Programming, Part 2”.

2.5: Accessing the Native API

The richness of the native API can be viewed by looking at the exports of NtDll.dll. One way to see these is

to use the dumpbin tool, provided with a Visual Studio installation:

C:\>dumpbin /exports c:\windows\System32\ntdll.dll

Microsoft (R) COFF/PE Dumper Version 14.37.32705.0

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\System32\ntdll.dll

File Type: DLL

Section contains the following exports for ntdll.dll

00000000 characteristics

6349A4F2 time date stamp

0.00 version

8 ordinal base

2435 number of functions

2434 number of names

ordinal hint RVA name

9 0 00040280 A_SHAFinal

10 1 000410B0 A_SHAInit

11 2 000410F0 A_SHAUpdate

12 3 000E09C0 AlpcAdjustCompletionListConcurrencyCount

13 4 00070780 AlpcFreeCompletionListMessage

14 5 000E09F0 AlpcGetCompletionListLastMessageInformation

Chapter 1: Introduction to Native API Development 16

15 6 000E0A10 AlpcGetCompletionListMessageAttributes

16 7 000704B0 AlpcGetHeaderSize

17 8 00070470 AlpcGetMessageAttribute

18 9 00010A60 AlpcGetMessageFromCompletionList

19 A 00085E00 AlpcGetOutstandingCompletionListMessageCount

...

2439 97E 00097FF0 wcstok_s

2440 97F 00092410 wcstol

2441 980 000924B0 wcstombs

2442 981 00092470 wcstoul

...

You can also see these with any graphical Portable Executable (PE) viewer, like my own TotalPE, by loading

NtDll.Dll and examining the Exports data directory (figure 1-5). Notice there are 2435 exported functions on

the Windows version where this screenshot was taken.

Figure 1-5: TotalPE showing NtDll.Dll exports

One way to get the prototypes of functions, structures, and enumerations, is to copy what we need from

the headers provided by the winsiderss/phnt1 project. There is one catch, however: certain definitions are

common to many functions, and you would have to hunt down each and every definition and copy them as

1https://github.com/winsiderss/phnt

Chapter 1: Introduction to Native API Development 17

well to make sure everything compiles.

An alternative approach is to clone the above repository (or add it as a submodule), and use the instructions

on the phnt home page on usage. Basically, the following two includes should be used, without including

<Windows.h>:

#include <phnt_windows.h>

#include <phnt.h>

In addition, there are a few macros you can use to let the phnt headers include APIs from required Windows

versions. By default, only Windows 7 functions are included. Set the PHNT_VERSION macro to the required

version selected from the following, before including the above headers:

#define PHNT_VERSION PHNT_WIN2K

#define PHNT_VERSION PHNT_WINXP

#define PHNT_VERSION PHNT_WS03

#define PHNT_VERSION PHNT_VISTA

#define PHNT_VERSION PHNT_WIN7

#define PHNT_VERSION PHNT_WIN8

#define PHNT_VERSION PHNT_WINBLUE

#define PHNT_VERSION PHNT_THRESHOLD

#define PHNT_VERSION PHNT_THRESHOLD2

#define PHNT_VERSION PHNT_REDSTONE

#define PHNT_VERSION PHNT_REDSTONE2

#define PHNT_VERSION PHNT_REDSTONE3

#define PHNT_VERSION PHNT_REDSTONE4

#define PHNT_VERSION PHNT_REDSTONE5

#define PHNT_VERSION PHNT_19H1

#define PHNT_VERSION PHNT_19H2

#define PHNT_VERSION PHNT_20H1

The names used above are the internal names used by Microsoft to represent various Windows versions. The

list is likely to be extended in the future.

There is yet another way to get the phnt headers, by installing the phnt package using vcpkg2. Vcpkg is a

package manager for C++. Follow the instructions on the above link to install Vcpkg (if you haven’t done so

already). Then you can install phnt by typing:

C:\vcpkg> .\vcpkg.exe install phnt:x64-windows

Assuming Vcpkg is integrated with Visual Studio (vcpkg integrate install), you’ll be able to use the phnt

headers without adding anything special to a project.

The following shows the code that performs the same operations as HelloNative, but using the phnt headers,

assuming it has been installed with Vcpkg, copied to the project manually, or added as a submodule to a Git

repository (HelloNative3 project in the samples):

2https://github.com/microsoft/vcpkg

Chapter 1: Introduction to Native API Development 18

#include <phnt_windows.h>

#include <phnt.h>

#include <stdio.h>

#pragma comment(lib, "ntdll")

int main() {

SYSTEM_BASIC_INFORMATION sysInfo;

NTSTATUS status = NtQuerySystemInformation(SystemBasicInformation,

&sysInfo, sizeof(sysInfo), nullptr);

if (status == STATUS_SUCCESS) {

printf("Page size: %u bytes\n", sysInfo.PageSize);

printf("Processors: %u\n", (ULONG)sysInfo.NumberOfProcessors);

printf("Physical pages: %u\n", sysInfo.NumberOfPhysicalPages);

printf("Lowest Physical page: %u\n", sysInfo.LowestPhysicalPageNumber);

printf("Highest Physical page: %u\n", sysInfo.HighestPhysicalPageNumber);

}

else {

printf("Error calling NtQuerySystemInformation (0x%X)\n", status);

}

return 0;

}

Notice that the code can use STATUS_SUCCESS (0) to compare against, as it’s properly defined. Also note that

linking is still the responsibility of the developer. The above example uses the #pragma approach to add the

NtDll.lib dependency to the project.

Install phnt with Vcpkg. Create a new C++ project, add the above code and make sure everything

compiles, links, and executes successfully.

2.5.1: The <Winternl.h> Header File

There is a header provided in the Windows SDK named <Winternl.h>. This header contains a small subset of

native APIs and definitions. It’s tempting to use it, and for very simple requirements, may be good enough.

However, the definitions that exist in that file are not always complete. For example, here is how the SYSTEM_-

BASIC_INFORMATION structure is defined:

Chapter 1: Introduction to Native API Development 19

typedef struct _SYSTEM_BASIC_INFORMATION {

BYTE Reserved1[24];

PVOID Reserved2[4];

CCHAR NumberOfProcessors;

} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

This definition only provides the number of processors, and nothing else. If you try to use this header with

phnt, many definitions will clash. Bottom line - don’t use the <Winternl.h> header for any serious work with

the native API.

2.6: Summary

In this chapter we looked at how system calls are invoked, provided by the native API. We added support

for using native API definitions from the phnt project into a Visual Studio project. In the next chapter, we’ll

examine the foundational structures, enumerations, and constants, used with the native API, and write native

applications.

Chapter 2: Native API Fundamentals

The native API uses common patterns and types throughout. This chapter will focus on these commonalities.

In this chapter:

• Function Prefixes

• Errors

• Strings

• Linked Lists

• Object Attributes

• Client ID

• Time and Time Span

• Bitmaps

• Sample: Terminating a Process

3.1: Function Prefixes

If you browse the exported function in NtDll.Dll, you’ll come across several function prefixes. The most

common one is Nt - these are system calls that are implemented as described in chapter 1.

Another prefix you’ll encounter is Zw. This prefix is used for some functions where an Nt prefix exists as

well. In fact, if a pair of functions have the same name except for the prefix (Nt vs. Zw) - these are the same

function in practice. You can verify that by looking at their RVA (Relative Virtual Address) having the same

value. Figure 2-1 shows TotalPE highlighting some of these pairs.

Chapter 2: Native API Fundamentals 21

Figure 2-1: and prefixes in NtDll.Dll exports

Which prefix you use doesn’t matter (if both exist), but I recommend you stick with the Nt prefix.

Why are there two prefixes? It turns out that within the kernel, these are not identical functions

- the Zw variant changes the previous thread access mode to kernel-mode before invoking the real

system call (the Nt variant). This allows kernel code to invoke system calls directly without being

considered as coming from user-mode. In user-mode, there is no distinction between these pairs of

functions.

What does Zw stand for? Microsoft’s official documentation states that it means absolutely nothing,

and this is why it was chosen. Folklore suggests it’s the initials of a developer within Microsoft.

There is another common prefix within NtDll.Dll’s exports: Rtl, which stands for Runtime Library. There

are two categories these functions are split into:

• Helper routines that do not perform any call into the kernel. Examples include working with

strings, numbers, memory, data structures (bit maps, hash tables, trees). Examples: RtlClearBits,

RtlCompareMemory, RtlComputeCrc32, RtlCreateHashTable.

• Convenient wrappers around Nt functions that make it easier to invoke certain system calls. For

example, RtlCreateUserProcessEx does some work and then delegates to NtCreateUserProcess,

which is the system call itself.

Chapter 2: Native API Fundamentals 22

Finally, there are other, more specific prefixes, such as the following. Some of these are wrappers around

system calls, some provide higher level functionality - it depends on the specific function.

• Tp - thread pool related functions.

• Rtlp - more runtime library functions (“p” stands for private) that are exported for some reason.

• Etw - Event Tracing for Windows related functions.

• Alpc - *Advanced (*or Asynchronous) Local Procedure Call related functions.

• Dbg, DbgUi - debugging related functions.

• Csr - Client Server Runtime - communication with the Windows Subsystem process (Csrss.exe)

functions.

• Ldr - loader related functions.

There are a few more specialized prefixes (MD4, MD5, Sb, Ship, Rtlx, Ki, Exp, Nls, Etwp, Evt) that we may

encounter later in this book.

3.2: Errors

Most native API functions return NTSTATUS as a direct result. This is a 32-bit signed integer, where zero

indicates success (STATUS_SUCCESS), while negative values indicate some kind of failure.

The usual way to check for success or failure is to use the NT_SUCCESS macro, that returns true if the given

status is zero (or positive).

While debugging, you may encounter an error, and would want to get a textual description of the error

without searching in the headers for the particular error. Fortunately, the Visual Studio debugger supports

a suffix (,hr) that can be appended to an error value in the Watch window to get a textual description. See

some examples in figure 2-2.

Figure 2-2: Visual Studio’s Watch window

3.3: Strings

The native API uses strings in many scenarios as needed. In some cases, these strings are simple Unicode

pointers (wchar_t* or one of their typedefs such as WCHAR*), but most functions dealing with strings expect

a structure of type UNICODE_STRING.

Chapter 2: Native API Fundamentals 23

The term Unicode as used in this book is roughly equivalent to UTF-16, which means 2 bytes per character.

This is how strings are stored internally within kernel components. Unicode in general is a set of standards

related to character encoding. You can find more information at https://unicode.org.

The UNICODE_STRING structure is a string descriptor - it describes a string, but does not necessarily own it.

Here is a simplified definition of the structure:

typedef struct _UNICODE_STRING {

USHORT Length;

USHORT MaximumLength;

PWCH Buffer; // pointer to the characters

} UNICODE_STRING, *PUNICODE_STRING;

typedef const UNICODE_STRING *PCUNICODE_STRING;

The Length member stores the string length in bytes (not characters) and does not include a Unicode-NULL

terminator, if one exists (the string does not have to be NULL-terminated). The MaximumLength member is

the number of bytes the string can grow to without requiring a memory reallocation.

Manipulating UNICODE_STRING structures is typically done with a set of Rtl functions that deal specifically

with strings. Table 2-1 lists some of the common functions for string manipulation provided by the Rtl

functions.

Table 2-1: Common ‘UNICODE_STRING‘ functions

RtlInitUnicodeString Initializes a UNICODE_STRING based on an existing C-string pointer. It sets

Buffer, then calculates the Length and sets MaximumLength to the

Length+2 to accommodate the NULL-terminator. Note that this function

does not allocate any memory - it just initializes the internal members.

RtlCopyUnicodeString Copies one UNICODE_STRING to another. The destination string pointer

(Buffer) must be allocated before the copy and MaximumLength set

appropriately.

RtlCompareUnicodeString Compares two UNICODE_STRINGs (equal, less, greater), specifying whether

to do a case sensitive comparison.

RtlCompareUnicodeStrings Compares two NULL-terminated (C-style) Unicode strings, specifying

whether to do a case sensitive comparison.

RtlEqualUnicodeString Compares two UNICODE_STRINGs for equality, with case sensitivity

specification.

RtlAppendUnicodeStringToString Appends one UNICODE_STRING to another.

RtlAppendUnicodeToString Appends a C-style string to a UNICODE_STRING.

RtlPrefixUnicodeString Checks if the first string is a prefix of the second string, with optional case

sensitivity.

Function Description

Chapter 2: Native API Fundamentals 24

In addition to the above functions, there are functions that work on C-string pointers. Moreover, some of

the well-known string functions from the C Runtime Library are implemented within NtDll.Dll as well for

convenience: wcscpy_s, wcscat_s, wcslen, wcschr, strcpy, strcpy_s and others. The reason for this

implementation (compared to using the Visual C++ Runtime Library) will be clear in the next chapter where

we discuss native applications.

The wcs prefix works with C Unicode strings, while the str prefix works with C Ansi strings. The

suffix _s in some functions indicates a safe function, where an additional argument indicating the

maximum length of the string must be provided so the function would not transfer more data than

the string buffer can accommodate.

Don’t use the non-safe functions. You can include <dontuse.h> to get errors for deprecated functions

if you do use these in code.

Initializing a UNICODE_STRING is a common operation. RtlInitUnicodeString is a simple way to initialize

it with an existing C-style Unicode string. A common case is initializing with a literal string. Here is an

example:

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"SomeString");

This works, but is slightly inefficient, since calculation of the string length is performed at runtime even

though the string’s length can be computed at compile time. To get over this slight inefficiency, the RTL_-

CONSTANT_STRING macro is provided by phnt, and can be used like so:

UNICODE_STRING name = RTL_CONSTANT_STRING(L"SomeString");

This, however, at the time of writing, fails in a C++ compilation because of a constness issue that the macro

does not take care of. The definition of this macro in the WDK headers is more complex, and caters for

constness properly, as well as for Ansi string initialization.

Here is one possible definition for this macro that forcefully casts away the constness for a Unicode string

initialization:

#ifdef RTL_CONSTANT_STRING

#undef RTL_CONSTANT_STRING

#endif

#define RTL_CONSTANT_STRING(s) { sizeof(s) - sizeof((s)[0]), sizeof(s), (PWSTR)s }

We can add a similar macro for Ansi literal strings initialization (needed in a few cases):

Chapter 2: Native API Fundamentals 25

#define RTL_CONSTANT_ANSI_STRING(s) { sizeof(s)-sizeof((s)[0]), sizeof(s), (PSTR)s }

You can technically copy the definition of this macro from the WDK, but the above definitions do

the work just fine and are simple to understand and use.

3.4: Linked Lists

The native API uses circular doubly linked lists in many of its internal data structures. For example, all

modules loaded into a process are store with such linked lists in the PEB structure (see chapter 5 for more on

the PEB).

All these lists are built in the same way, centered around the LIST_ENTRY structure defined like so:

typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;

struct _LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

Figure 2-3 depicts an example of such a list containing a head and three instances.

Figure 2-3: Circular linked list

One such structure is embedded inside the real structure of interest. For example, in the EPROCESS structure,

the member ActiveProcessLinks is of type LIST_ENTRY, pointing to the next and previous LIST_ENTRY

objects of other EPROCESS structures. The head of a list is stored separately; in the case of the process,

that’s PsActiveProcessHead. To get the pointer to the actual structure of interest given the address of a

LIST_ENTRY can be obtained with the CONTAINING_RECORD macro.

For example, suppose you want to manage a list of structures of typeMyDataItem defined like so:

Chapter 2: Native API Fundamentals 26

struct MyDataItem {

// some data members

LIST_ENTRY Link;

// more data members

};

Whenworking with these linked lists, we have a head for the list, stored in a variable. This means that natural

traversal is done by using the Flink member of the list to point to the next LIST_ENTRY in the list. Given a

pointer to the LIST_ENTRY, what we’re really after is the MyDataItem that contains this list entry member.

This is where the CONTAINING_RECORD macro comes in:

MyDataItem* GetItem(LIST_ENTRY* pEntry) {

return CONTAINING_RECORD(pEntry, MyDataItem, Link);

}

The macro does the proper offset calculation and does the casting to the actual data type (MyDataItem in the

example).

Table 2-2 shows the common functions (implemented inline in the header) for working with these linked

lists. All operations use constant time.

Table 2-2: Functions for working with circular linked lists

InitializeListHead Initializes a list head to make an empty list. The forward and back pointers point to the

forward pointer.

InsertHeadList Insert an item to the head of the list.

AppendTailList Appends one list to another.

InsertTailList Insert an item to the tail of the list.

IsListEmpty Check if the list is empty.

RemoveHeadList Remove the item at the head of the list.

RemoveTailList Remove the item at the tail of the list.

RemoveEntryList Remove a specific item from the list.

Function Description

The following code example shows the list of modules loaded in the current process (see chapter 5 for more

details):

Chapter 2: Native API Fundamentals 27

#include <phnt_windows.h>

#include <phnt.h>

#include <stdio.h>

int main() {

PPEB peb = NtCurrentPeb();

auto& head = peb->Ldr->InLoadOrderModuleList;

for (auto next = head.Flink; next != &head; next = next->Flink) {

auto mod = CONTAINING_RECORD(next, LDR_DATA_TABLE_ENTRY, InLoadOrderLinks);

printf("0x%p: %wZ\n", mod->DllBase, &mod->BaseDllName);

}

return 0;

}

NtCurrentPeb is a macro that returns the pointer to the current process’ PEB. Loaded modules are stored

in three separate linked lists - the example uses one of them, that stored the modules in load order (we’ll

examine the other lists in chapter 5). The head of the in-load-order list is stored within a member variable

called Ldr (of type PPEB_LDR_DATA) in its InLoadOrderModuleList member (a LIST_ENTRY).

“%wZ” can be used to format a UNICODE_STRING in a printf-style formatting.

Since the list is circular, iterating by looking for a NULL pointer is futile - that will never happen. Instead the

pointer next is initialized with the first element, moving through the loop until next becomes the same as

the address of peb->Ldr->InLoadOrderModuleList - this indicates the end of iteration.

Each next pointer points to a LIST_ENTRY within the structure representing a module (LDR_DATA_TABLE_-

ENTRY) in the InLoadOrderLinksmember. This is where the CONTAINING_RECORDmacro comes in - it moves

the pointer back to the beginning of the structure and performs the cast to the provided type. Using the C++

auto keyword is particularly nice here, since the type (LDR_DATA_TABLE_ENTRY*) needs no repetition.

Running this example in Debug x64 build shows something like this (ModList project in the source code for

this chapter):

0x00007FF6B0B40000: ModList.exe

0x00007FF937EF0000: ntdll.dll

0x00007FF937510000: KERNEL32.DLL

0x00007FF935C50000: KERNELBASE.dll

0x00007FF8D5D50000: VCRUNTIME140D.dll

0x00007FF847280000: ucrtbased.dll

Chapter 2: Native API Fundamentals 28

3.5: Object Attributes

One of the common structures that shows up in many native APIs is OBJECT_ATTRIBUTES, defined like so:

typedef struct _OBJECT_ATTRIBUTES {

ULONG Length;

HANDLE RootDirectory;

PUNICODE_STRING ObjectName;

ULONG Attributes;

PVOID SecurityDescriptor; // SECURITY_DESCRIPTOR

PVOID SecurityQualityOfService; // SECURITY_QUALITY_OF_SERVICE

} OBJECT_ATTRIBUTES;

typedef OBJECT_ATTRIBUTES *POBJECT_ATTRIBUTES;

typedef CONST OBJECT_ATTRIBUTES *PCOBJECT_ATTRIBUTES;

The structure is typically initialized with the InitializeObjectAttributes macro, that allows specifying

all the structure members except Length (set automatically by the macro), and

SecurityQualityOfService, which is not normally needed. Here is the description of the members:

• ObjectName is the name of the object to be created or opened, provided as a pointer to a UNICODE_-

STRING. In some cases it may be ok to set it to NULL, for objects that don’t have names, such as processes.

• RootDirectory is an optional directory pointer in the object manager namespace if the name of the

object is a relative one. If ObjectName specifies a fully-qualified name, RootDirectory should be set

to NULL.

• Attributes allows specifying a set of flags that have effect on the operation in question. Table 2-3

shows the defined flags and their meaning.

• SecurityDescriptor is an optional security descriptor (SECURITY_DESCRIPTOR) to set on the newly

created object. NULL indicates the new object gets a default security descriptor, based on the caller’s

token.

• SecurityQualityOfService is an optional set of attributes related to the new object’s impersonation

level and context tracking mode. It has no meaning for most object types. Consult the documentation

for more information.

Table 2-3: Object attributes flags

Chapter 2: Native API Fundamentals 29

INHERIT (0x02) The returned handle should be marked as inheritable

PERMANENT (0x10) The object created should be marked as permanent. Permanent

objects have an additional reference count that prevents them from

dying even if all handles to them are closed

EXCLUSIVE (0x20) If creating an object, the object is created with exclusive access. No

other handles can be opened to the object. If opening an object,

exclusive access is requested, which is granted only if the object was

originally created with this flag

CASE_INSENSITIVE (0x40) When opening an object, perform a case insensitive search for its

name. Without this flag, the name must match exactly (except for

files)

OPENIF (0x80) Open the object if it exists. Otherwise, fail the operation (don’t create

a new object)

OPENLINK (0x100) If the object to open is a symbolic link object, open the symbolic link

object itself, rather than following the symbolic link to its target

KERNEL_HANDLE (0x200) The returned handle should be a kernel handle. This flag cannot be

used from user-mode

FORCE_ACCESS_CHECK (0x400) Access checks should be performed even if the object is opened in

KernelMode access mode (not valid for user-mode)

IGNORE_IMPERSONATED_DEVICEMAP (0x800) Use the process device map instead of the user’s if it’s impersonating

(consult the documentation for more information on device maps)

DONT_REPARSE (0x1000) Don’t follow a reparse point, if encountered. Instead an error is

returned (STATUS_REPARSE_POINT_ENCOUNTERED). Reparse Points are

beyond the scope of this book.

Flag (OBJ_) Description

A second way to initialize an OBJECT_ATTRIBUTES structure is available with the RTL_CONSTANT_OBJECT_-

ATTRIBUTES macro, that uses the most common members to set - the object’s name (a pointer to UNICODE_-

STRING) and the attributes.

3.6: Client ID

The CLIENT_ID structure is a fairly simple one, but deserves attention since it can be somewhat confusing:

typedef struct _CLIENT_ID {

HANDLE UniqueProcess;

HANDLE UniqueThread;

} CLIENT_ID, *PCLIENT_ID;

Its purpose is to specify a process and/or thread ID. The confusing part is that these IDs are typed as HANDLEs,

rather than simple integers. The reason has to do with the fact that the kernel generates unique process and

thread IDs by using a private handle table. This means the type internally is HANDLE, but it should be treated

as an ID.

Chapter 2: Native API Fundamentals 30

Process (and thread IDs) are limited to about 26 bits, which means a 64-value is not needed to represent them.

If you have a 32-bit value that needs to be placed into a HANDLE, some casting are required for the compiler

to be happy. Here is one way of doing it:

ULONG pid = ...;

CLIENT_ID cid;

cid.UniqueProcess = (HANDLE)(ULONG_PTR)pid;

The double cast is necessary for 64-bit processes - first extending the value to 64-bit and then turning it into

a HANDLE (all handles are typed as void pointers).

If you’re strict about “proper” c++ usage, you can use more specific casts:

cid.UniqueProcess = reinterpret_cast<HANDLE>(static_cast<ULONG_PTR>(pid));

Feel free to use such forms, I will stick with C-style casts for simplicity and for catering for C developers and

beginning C++ developers.

There is yet another way to do the same thing - using simple functions/macros provided byWindows headers:

cid.UniqueProcess = ULongToHandle(pid);

You may notice there is a macro, UlongToHandle (notice the lowercase l), that just calls the inline

function. Either option works.

I recommend using the inline functions/macros for these kind of conversions - it’s clearer and less

cluttered.

3.7: Time and Time Span

When date/time is provided by native APIs, they use a 64-bit value, typically wrapped as a LARGE_INTEGER:

Chapter 2: Native API Fundamentals 31

typedef union _LARGE_INTEGER {

struct {

DWORD LowPart;

LONG HighPart;

};

LONGLONG QuadPart;

} LARGE_INTEGER;

It’s a glorified 64-bit integer, typically accessed directly with the QuadPart member. dates and times are

conveyed in 100 nano-second units, measured from January 1, 1601 at midnight GMT. For example, the

number 10000000 (10 million) represents one second after midnight on that date.

The fact that 100 nano-second units are used does not mean that Windows is capable of such resolution,

although it may be capable of that in the future. The units of measurement, however, apply.

For time spans, the same units are used, but they are relative to the time of invocation. Some APIs allow

specifying either absolute time or relative time. In such a case, negative values are interpreted as relative

time, while positive values are interpreted as absolute time.

An canonical example is the NtDelayExecutionAPI (which is a rough equivalent of the Sleep(Ex) Windows

API, where the time to sleep can be specified as relative or absolute. Note that Sleep(Ex) only support relative

times in units of milliseconds.

Here is an example that sets a sleep of 100 milliseconds:

LARGE_INTEGER interval;

interval.QuadPart = -100 * 10000; // 100 msec

NtDelayExecution(FALSE, &interval);

The following is an example that causes a sleep until March 12, 2026 at noon GMT:

TIME_FIELDS tf{};

tf.Year = 2026;

tf.Month = 3;

tf.Day = 12;

tf.Hour = 12;

LARGE_INTEGER interval;

RtlTimeFieldsToTime(&tf, &interval);

NtDelayExecution(FALSE, &interval);

This example uses the helper TIME_FIELDS structure, that is easier for human consumption:

Chapter 2: Native API Fundamentals 32

typedef struct _TIME_FIELDS {

CSHORT Year; // 1601...

CSHORT Month; // 1..12

CSHORT Day; // 1..31

CSHORT Hour; // 0..23

CSHORT Minute; // 0..59

CSHORT Second; // 0..59

CSHORT Milliseconds; // 0..999

CSHORT Weekday; // 0..6 = Sunday..Saturday

} TIME_FIELDS, *PTIME_FIELDS;

To get the current time as a LARGE_INTEGER, use NtQuerySystemTime:

NTSTATUS NtQuerySystemTime(_Out_ PLARGE_INTEGER SystemTime);

Another function that provides potentially more precision is RtlGetSystemTimePrecise:

LARGE_INTEGER RtlGetSystemTimePrecise();

RtlGetSystemTimePrecise is currently not in the phnt headers. Add it manually if you need it.

There are other Rtl functions for working with times, such as RtlCutoverTimeToSystemTime, RtlSystem-

TimeToLocalTime, RtlLocalTimeToSystemTime, RtlTimeToElapsedTimeFields, and others.

3.8: Bitmaps

A bitmap, represented by the RTL_BITMAP type, provides an efficient way to store the existence or absence

of something, each occupying a single bit. Functions exit to set, clear, and otherwise manipulate the bitmap.

Here is RTL_BITMAP:

typedef struct _RTL_BITMAP {

ULONG SizeOfBitMap;

PULONG Buffer;

} RTL_BITMAP, *PRTL_BITMAP;

A bitmap stores its size (in bits) in the SizeOfBitMap member, and a pointer to the buffer, which must be 4-

byte aligned where the actual bits are stored. Initializing such a bitmap is done with RtlInitializeBitMap:

Chapter 2: Native API Fundamentals 33

VOID RtlInitializeBitMap(

Out PRTL_BITMAP BitMapHeader,

In PULONG BitMapBuffer,

In ULONG SizeOfBitMap);

BitMapBuffer is a pointer where the bits are stored, allocated by the client. SizeOfBitMap is the number of

bits to manage. RtlInitializeBitMap copies the pointer to the bits and the number of bits to the provided

structure. It does not initialize the bits, a job left to the caller.

The following simple APIs are used with bitmaps:

VOID RtlClearBit(// clear a single bit

In PRTL_BITMAP BitMapHeader,

_In_range_(<, BitMapHeader->SizeOfBitMap) ULONG BitNumber);

VOID RtlSetBit(// set a single bit

In PRTL_BITMAP BitMapHeader,

_In_range_(<, BitMapHeader->SizeOfBitMap) ULONG BitNumber);

BOOLEAN RtlTestBit(// check the status of a bit

In PRTL_BITMAP BitMapHeader,

_In_range_(<, BitMapHeader->SizeOfBitMap) ULONG BitNumber);

VOID RtlClearAllBits(_In_ PRTL_BITMAP BitMapHeader);

VOID RtlSetAllBits(_In_ PRTL_BITMAP BitMapHeader);

VOID RtlClearBits(// clear a range of bits

In PRTL_BITMAP BitMapHeader,

_In_range_(0, BitMapHeader->SizeOfBitMap - NumberToClear) ULONG StartingIndex,

_In_range_(0, BitMapHeader->SizeOfBitMap - StartingIndex) ULONG NumberToClear);

VOID RtlSetBits(// set a range of bits

In PRTL_BITMAP BitMapHeader,

_In_range_(0, BitMapHeader->SizeOfBitMap - NumberToSet) ULONG StartingIndex,

_In_range_(0, BitMapHeader->SizeOfBitMap - StartingIndex) ULONG NumberToSet);

ULONG RtlNumberOfClearBits(_In_ PRTL_BITMAP BitMapHeader);

ULONG RtlNumberOfSetBits(_In_ PRTL_BITMAP BitMapHeader);

These APIs are self-explanatory. The more interesting APIs relate to finding a set of one or more bits with a

given value (set or clear):

Chapter 2: Native API Fundamentals 34

ULONG RtlFindClearBits(

In PRTL_BITMAP BitMapHeader,

In ULONG NumberToFind,

In ULONG HintIndex);

ULONG RtlFindSetBits(

In PRTL_BITMAP BitMapHeader,

In ULONG NumberToFind,

In ULONG HintIndex);

ULONG RtlFindClearBitsAndSet(

In PRTL_BITMAP BitMapHeader,

In ULONG NumberToFind,

In ULONG HintIndex);

ULONG RtlFindSetBitsAndClear(

In PRTL_BITMAP BitMapHeader,

In ULONG NumberToFind,

In ULONG HintIndex);

All the above functions search for a set of bits given a hint index to begin with (HintIndex) and return the bit

index for the beginning of the range. If no such range could be found, these functions return -1 (0xFFFFFFFF).

The latter two functions also flip the state of the bits. Note that the hint is just that, and if the searched range

cannot be found from the hinted index, the search continues from index zero.

More search APIs are available, including RtlFindFirstRunClear, RtlFindNextForwardRunClear,

RtlFindLastBackwardRunClear, and others. They are documented in the Windows Driver Kit.

All the mentioned functions are not thread-safe. There are, however, some that are thread-safe that use

Interlocked instructions for thread and CPU safety:

VOID RtlInterlockedClearBitRun(

In PRTL_BITMAP BitMapHeader,

_In_range_(0, BitMapHeader->SizeOfBitMap - NumberToClear) ULONG StartingIndex,

_In_range_(0, BitMapHeader->SizeOfBitMap - StartingIndex) ULONG NumberToClear);

VOID RtlInterlockedSetBitRun(

In PRTL_BITMAP BitMapHeader,

_In_range_(0, BitMapHeader->SizeOfBitMap - NumberToSet) ULONG StartingIndex,

_In_range_(0, BitMapHeader->SizeOfBitMap - StartingIndex) ULONG NumberToSet);

3.9: Sample: Terminating a Process

To demonstrate the usage of CLIENT_ID and OBJECT_ATTRIBUTES, we’ll write a function that terminates a

process given its ID. We’ll compare a Windows API version against a native API version. First, the Windows

API version:

Chapter 2: Native API Fundamentals 35

bool KillWin32(ULONG pid) {

auto hProcess = OpenProcess(PROCESS_TERMINATE, FALSE, pid);

if (!hProcess)

return false;

auto success = TerminateProcess(hProcess, 1);

CloseHandle(hProcess);

return success;

}

OpenProcess is called to obtain a handle powerful enough to terminate a process (PROCESS_TERMINATE

access mask). If successful, it calls TerminateProcess and finally closes the handle.

The native API version uses the system calls used behind the scenes in the example above - NtOpenProcess

to open a process, and NtTerminateProcess to terminate a process. NtOpenProcess has the following

prototype (I’ll drop the NTAPI macro to simplify):

NTSTATUS NtOpenProcess(

Out PHANDLE ProcessHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PCLIENT_ID ClientId);

The function returns the handle to the process in the first parameter (if the call succeeds). DesiredAccess

is the access mask requested (should be PROCESS_TERMINATE in our case). We must provide an OBJECT_-

ATTRIBUTES structure, which may seem a bit odd.

Processes have no names - they have IDs. The ID is clearly provided by the last parameter. Why is OBJECT_-

ATTRIBUTES needed? The attributes flags may make a difference, and that’s why its needed; the name can

be set to NULL.

Given the above information, we can implement a native version of terminating a process:

NTSTATUS KillNative(ULONG pid) {

OBJECT_ATTRIBUTES procAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

CLIENT_ID cid{}; // zero-out structure

cid.UniqueProcess = ULongToHandle(pid);

HANDLE hProcess;

auto status = NtOpenProcess(&hProcess, PROCESS_TERMINATE, &procAttr, &cid);

if (!NT_SUCCESS(status))

return status;

status = NtTerminateProcess(hProcess, 1);

NtClose(hProcess);

Chapter 2: Native API Fundamentals 36

return status;

}

Notice that it’s important to zero out the CLIENT_ID. Otherwise, a garbage thread ID is provided to the API,

which causes it to fail, even though it’s not interested in the thread ID at all. Here is the rest of the code:

#include <phnt_windows.h>

#include <phnt.h>

#include <stdio.h>

#include <stdlib.h>

#pragma comment(lib, "ntdll")

int main(int argc, const char* argv[]) {

if (argc < 2) {

printf("Usage: Kill <pid>\n");

return 0;

}

auto pid = strtoul(argv[1], nullptr, 0);

auto status = KillNative(pid);

if (NT_SUCCESS(status))

printf("Success!\n");

else

printf("Error: 0x%X\n", status);

return 0;

}

Notice the use of the strtoul C function (defined in <stdlib.h>), that allows receiving numeric values in

hexadecimal if these are prefixed with 0x. The last parameter to that function is a radix (base), where zero

indicates the function should figure it out on its own.

Similar functions exist for other integer sizes and types: strtol, strtoll, etc.

3.10: Summary

This chapter focused on common types and patterns of the native API. In the next chapter, we’ll examine

what native applications are, and how (and why) to write them.

Chapter 3: Native Applications

The sample applications we looked at in the previous chapters were “standard” Windows applications, that

happened to use the native API. They had a dependency on NtDll.dll, but not just NtDll.Dll. An executable

that depends on NtDll.dll only is a Native Application.

In this chapter:

• Native vs. Standard Applications

• Building Native Applications

• The Main Function

• Simple Native Application

• Launching Native Applications

• Debugging Native Applications

4.1: Native vs. Standard Applications

Looking at the header of a normal Portable Executable (PE), such as Explorer.exe, Notepad.exe, and the

samples from the previous chapters show that they belong to the Windows Subsystem. For console

applications, the value is 3 (figure 3-1), and for GUI applications that value is 2 (figure 3-2).

Chapter 3: Native Applications 38

Figure 3-1: Console application subsystem value

Figure 3-2: GUI application subsystem value

Although the two numbers are different, they represent the same thing: the Windows Subsystem. These

are equivalent because a console application can create a graphical user interface, and a GUI application can

create a console (AllocConsole Windows API).

If you examine the dependencies of such executables, you may or may not see NtDll.dll in the Imports PE

directory, but that dependency always exists (albeit indirectly). Looking at the Imports directory for Kill.exe

from chapter 2 (Release build) shows it has dependencies on Kernel32.dll, NtDll.Dll, and VCRuntime140.Dll.

Selecting a specific DLL shows the imported functions at the bottom (figure 3-3).

Chapter 3: Native Applications 39

Figure 3-3: Imports of Kill.exe

A native application is one that has a sole dependency on NtDll.Dll and nothing else. A canonical example is

Smss.exe (the session manager), which is the first user-mode process created in the system. Figure 3-4 shows

it’s part of the Native subsystem (value of 1), which can be described as no subsystem at all. Looking at its

imports, NtDll.Dll is the only dependency (figure 3-5).

Chapter 3: Native Applications 40

Figure 3-4: Subsystem of Smss.exe

Figure 3-5: Imports of Smss.exe

Another example of a native application is AutoChk.exe, found in the System32 directory. This is a native

application that does some work when Windows does not shutdown cleanly, and there is a chance that hard

disk integrity has been affected. It offers to check the disk(s) when Windows boots.

There is, however, another version of AutoChk.exe called ChkDsk.exe, which is a normal console Windows

application, that has dependencies on themsvcrt.dll and other DLLs (figure 3-6). Why have two versions that

Chapter 3: Native Applications 41

do essentially the same thing?

Figure 3-6: Imports of Chkdsk.exe

First, native applications cannot be run directly by normal means such as double-clicking in Explorer or

running from a command window. Here is what you get if you try to run AuthoChk.exe:

The C:\Windows\system32\autochk.exe application cannot be run in Win32 mode.

In other words, the CreateProcess Windows API is unable to launch native applications. Second,

only native applications can run early in Windows boot process. In fact, one of Smss.exe’s jobs

is to run native applications based on a multi-string value named BootExecute in the Registry key

HKLM\System\CurrentControlSet\Control\Session Manager. Figure 3-7 shows what that value looks like in

RegEdit.

Chapter 3: Native Applications 42

Figure 3-7: The BootExecute value

Each line in themulti-string value consists of an executable name and command line arguments. Autochk gets

special treatment, and has a friendly name to identify it as such. As can be seen in figure 3-7, “autocheck” is

the friendly name, and “autochk *” is the executable name and command line arguments. The executable must

be in the System32 directory - full paths are not supported. This is intentional, because writing to System32

requires administrator privileges by default. The Registry key itself allows write access to administrator

accounts only, to further limit arbitrary users from making changes to this key.

You can also see the BootExecute information in a somewhat friendliermannerwith the Sysinternals Autoruns

utility (figure 3-8).

Chapter 3: Native Applications 43

Figure 3-8: The BootExecute value in Autoruns

Any string added to BootExecute will be run by Smss.exe at system startup. Such applications, however, must

be native, as the Windows subsystem process (Csrss.exe) has not been loaded yet.

The Session Manager is responsible for loading Csrss.exe for each session. At the time BootExecute

executables run, the Session Manager is the only user-mode process alive.

4.2: Building Native Applications

Building native applications requires removing all the “standard” dependencies, such as Kernel32.dll, the

Visual C++ runtime - everything. Only NtDll.dll can remain. Here are the steps required after creating a

standard console C++ application:

• Open the project’s properties, select “All Platforms” and “All Configurations” in the top comboboxes,

so that you don’t have to repeat these procedures for every combination of platform/configuration

separately.

• Navigate to the Linker / Input node, and set “Ignore all Default Libraries” to Yes. While you’re at it,

add NtDll.lib as a dependency (figure 3-9).

Chapter 3: Native Applications 44

Figure 3-9: Linker Input options

• Navigate to the Linker / System node, and change the Subsystem to “Native” (figure 3-10).

Figure 3-10: Linker System options

• Navigate to the C/C++ / Code Generation node. Change “Basic Runtime Checks” to “Default”, which

effectively turns off runtime checks. This is required, because these checks are provided by the CRT.

Chapter 3: Native Applications 45

Change “Security Check” to “Disable Security Check”. See figure 3-11.

Figure 3-11: Compiler Code Generation options

• Navigate to the C/C++ / General node. Change “SDL Checks” to “No”. Change “Debug Information

Format” to “Program Database”. See figure 3-12.

Chapter 3: Native Applications 46

Figure 3-12: Compiler General options

This should be it. At this point, assuming the project has just an empty main function, it will compile but

fail to link, complaining about an unresolved external called NtProcessStartup. As they say - we’re not in

Kansas anymore.

4.3: The Main Function

Standard console applications have a main function that can accept the number of arguments on the command

line, an array of arguments, and even an array of environment variables:

int main(int argc, const char* argv[], const char* envp[]) {

Another supported variant is with Unicode strings:

int wmain(int argc, const wchar_t* argv[], const wchar_t* envp[]) {

A natural question to ask is who calls these functions with the correct arguments? It is the CRT. This is one

reason the CRT provides the startup code for the process, with function names like mainCRTStartup; you

Chapter 3: Native Applications 47

can see that clearly when looking the the call stack if you set a breakpoint in the main function. In fact, the

CRT source code is provided with Visual Studio, which means you can trace (and debug) these calls.

The CRT makes the call to the provided main/wmain with the expected semantics to adhere to the C/C++

standards. The CRT has other duties - for example, it’s responsible for invoking constructors for global

objects (before main is even invoked). This is necessary to comply with the C++ standard rules.

Now that we removed any dependency on the CRT (which we have to for native applications), there is no

one that can call a standard main function, nor invoke constructors for global objects. The basic “main” for

a Windows user-mode process looks like this:

NTSTATUS NtProcessStartup(PPEB peb);

The name of the function itself can be changed with a linker option, but the parameter and return type are

as shown. The return value is conceptually the same as with the normal main function - the exit code of

the process. The input, however, is fundamentally different - it’s a pointer to the Process Environment Block

(PEB).

We expect that information such as command line arguments to be present in the PEB, and they are.

Specifically, they can be found in the ProcessParameters member, which is a large structure of type

RTL_USER_PROCESS_PARAMETERS.

The PEB of the current process is always available with NtCurrentPeb.

4.4: Simple Native Application

Let’s build a simple native application and register it with the BootExecute value. The application’s name is

SimpleNative, and it’s configured with the steps in the previous section to make it a proper native application.

The application will display the Windows version on the boot screen, and pause for few seconds so we can

see it. The main function will call RtlGetVersion to get some version information:

NTSTATUS NtProcessStartup(PPEB peb) {

RTL_OSVERSIONINFOEXW osvi = { sizeof(osvi) };

RtlGetVersion(&osvi);

RtlGetVersion is a simple API, defined like so:

NTSTATUS RtlGetVersion(_Out_ PRTL_OSVERSIONINFOW VersionInformation);

It expects one of two structures, PRTL_OSVERSIONINFOW or the extended PRTL_OSVERSIONINFOEXW, both

defined in <WinNt.h>. The function itself, however, is not defined in the documented headers. Both structures

have a first “size” member, that must be correctly initialized so the API knows how much information to

provide:

Chapter 3: Native Applications 48

typedef struct _OSVERSIONINFOW {

DWORD dwOSVersionInfoSize;

DWORD dwMajorVersion;

DWORD dwMinorVersion;

DWORD dwBuildNumber;

DWORD dwPlatformId;

WCHAR szCSDVersion[128];

} OSVERSIONINFOW, *POSVERSIONINFOW, RTL_OSVERSIONINFOW, *PRTL_OSVERSIONINFOW;

typedef struct _OSVERSIONINFOEXW {

DWORD dwOSVersionInfoSize;

DWORD dwMajorVersion;

DWORD dwMinorVersion;

DWORD dwBuildNumber;

DWORD dwPlatformId;

WCHAR szCSDVersion[128];

WORD wServicePackMajor;

WORD wServicePackMinor;

WORD wSuiteMask;

BYTE wProductType;

BYTE wReserved;

} OSVERSIONINFOEXW, *POSVERSIONINFOEXW, RTL_OSVERSIONINFOEXW, *PRTL_OSVERSIONINFOEXW;

Once we have the information, we need to build a string that uses some of the returned members. We can use

the swprintf_s function that is exported from NtDll.dll, and thus available. Unfortunately, the phnt headers

don’t provide the prototypes for the CRT-like functions, so we need to define it ourselves. Fortunately, this

is easy since the definition is known and documented for usage with the standard CRT:

extern "C" int swprintf_s(

wchar_t* _Buffer, USHORT size,

wchar_t const* _Format, ...);

You may be temped to simply #include <stdio.h> to get the definition. Unfortunately, this won’t compile,

because the header has other C++ dependencies that get rejected by the compiler when there is no CRT. You

can, however, copy the definition from the official headers.

Now we can build a string, and pass it to NtDrawText to show on the boot screen:

Chapter 3: Native Applications 49

WCHAR text[256];

swprintf_s(text, ARRAYSIZE(text), L"Windows version: %d.%d.%d\n",

osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.dwBuildNumber);

UNICODE_STRING str;

RtlInitUnicodeString(&str, text);

NtDrawText(&str);

The string uses the major and minor versions of the OS, as well as the build number. Feel free to use other

structure members of interest.

NtDrawText requires a UNICODE_STRING, so we initialize such a string with RtlInitUnicodeString, as what

we have is a NULL-terminated string to begin with.

The last thing to do is to delay the thread for a few seconds before the process shuts down:

LARGE_INTEGER li;

li.QuadPart = -10000000 * 10;

NtDelayExecution(FALSE, &li);

NtDelayExeution is a rough native equivalent to the SleepExWindows API. We’ll discuss its full semantics

in a later chapter, but for now the above code causes a 10 second sleep. Here is the full code for this sample:

#include <phnt_windows.h>

#include <phnt.h>

extern "C" int swprintf_s(

wchar_t* _Buffer, USHORT size,

wchar_t const* _Format, ...);

NTSTATUS NtProcessStartup(PPEB peb) {

RTL_OSVERSIONINFOEXW osvi = { sizeof(osvi) };

RtlGetVersion(&osvi);

WCHAR text[256];

swprintf_s(text, ARRAYSIZE(text), L"Windows version: %d.%d.%d\n",

osvi.dwMajorVersion, osvi.dwMinorVersion, osvi.dwBuildNumber);

UNICODE_STRING str;

RtlInitUnicodeString(&str, text);

NtDrawText(&str);

LARGE_INTEGER li;

li.QuadPart = -10000000 * 10;

Chapter 3: Native Applications 50

NtDelayExecution(FALSE, &li);

return STATUS_SUCCESS;

}

Unfortunately, building the project fails with the linker complaining that swprintf_s is not found (“unre-

solved external”). How could this be?

As it turns out, the import libraryNtDll.Lib that is provided with theWindows SDK does not list the CRT-like

functions that are implemented in NtDll.Dll, so the linker complains.

One way to resolve this is to bind to the function dynamically as discussed in chapter 2. This is certainly

possible, but obviously we cannot use GetModuleHandle and GetProcAddress, as these are unavailable. The

functions we need are LdrGetDllHandle and LdrGetProcedureAddress. We’ll look at this in chapter 5. For

now, there is another thing we can try.

We could build our own NtDll.lib. Remember, that an import library consists of two pieces of information:

the DLL name (without any path information), and a list of exported symbols. There is no need to really

implement anything, because it’s implemented by the DLL itself. It’s just about making the linker happy, so

the binding to functions is deferred to runtime.

As it turns out, someone already did that. A Github project at https://github.com/Fyyre/ntdll provides such

an “extended” NtDll.lib. To get the extended library, clone the repository (or download the code to some

folder), open a Visual Studio command window, navigate to the project directory on your system, and type

the following:

C:\Github\ntdll>nmake msvc

The result is two files, NtDll64.lib (for 64-bit) andNtDll86.lib (for 32-bit). Just copy the correct file (NtDll64.lib

in our case, as only 64-bit executables work as native applications on 64-bitWindows), and use that file instead

of the “standard” NtDll.lib. I have included this LIB file in the SimpleNative sample project.

Now the executable should compile and link successfully.

The next step, if we wish to run the executable on startup, is to copy the SimpleNative.exe file to the System32

directory, and then to modify the BootExecute Registry value to include our executable. Figure 3-13 shows

the change to the Registry value.

Chapter 3: Native Applications 51

Figure 3-13: BootExecute with SimpleNative

Now reboot the machine (you can test on a Virtual Machine if you prefer), and you should see the Windows

version string showing up for a few seconds (figure 3-14).

Figure 3-14: SimpleNative running

4.5: Launching Native Applications

There may be cases where we want to run a native application directly, without going through BootExecute.

As we’ve seen already, trying to run such an application directly from a command window, Explorer, or

Chapter 3: Native Applications 52

similar means fails. In all these cases, the CreateProcess (or one of its variants like CreateProcessAsUser)

is utilized, but these APIs cannot run native applications.

We’ll create a standard Windows application that can run a native application, given its executable path and

optional command line arguments.

Create a new C++ console application named nativerun. We’ll add the usual phnt headers, since we’ll have

to use native APIs to accomplish launching native applications!

Let’s start with a standard wmain function to get the native application path and any optional arguments to

be passed to the executable:

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: nativerun <executable> [arguments...]\n");

return 0;

}

Next, we need to build the command line arguments to the executable as a UNICODE_STRING. We’ll use the

std::wstring C++ class from the standard library for easy concatenation:

std::wstring args;

for (int i = 2; i < argc; i++) {

args += argv[i];

args += L" ";

}

UNICODE_STRING cmdline;

RtlInitUnicodeString(&cmdline, args.c_str());

We also need the executable path itself as a UNICODE_STRING:

UNICODE_STRING name;

RtlInitUnicodeString(&name, argv[1]);

Creating a process requires two steps: the first is creating a helper structure called RTL_USER_PROCESS_-

PARAMETERS by calling RtlCreateProcessParameters like so:

PRTL_USER_PROCESS_PARAMETERS params;

auto status = RtlCreateProcessParameters(¶ms, &name,

nullptr, nullptr, &cmdline,

nullptr, nullptr, nullptr, nullptr, nullptr);

There are quite a few parameters to this function, and we’ll deal with these in more detail in chapter 5. For

now, just note the name of the executable and the command line arguments passed to this function.

Next, we create the process by calling RtlCreateUserProcess with the parameters structure and other

details like so:

Chapter 3: Native Applications 53

RTL_USER_PROCESS_INFORMATION info;

status = RtlCreateUserProcess(&name, 0, params,

nullptr, nullptr, nullptr, 0, nullptr, nullptr, &info);

RtlDestroyProcessParameters(params);

Detailed discussion of this API is deferred to chapter 5. The last parameter is an output structure that contains

some details of the created process if successful. Part of that is provided in a CreateProcess call in the

PROCESS_INFORMATION structure.

The created process has the first thread ready to go, but it’s suspended initially. We need to resume the thread

to kick the process into action:

auto pid = HandleToULong(info.ClientId.UniqueProcess);

printf("Process 0x%X (%u) created successfully.\n", pid, pid);

ResumeThread(info.ThreadHandle);

We can finally close the two handles we received back, even though in this case it’s not a big deal, as our

NativeRun process will soon exit:

CloseHandle(info.ThreadHandle);

CloseHandle(info.ProcessHandle);

Either CloseHandle or NtClose will do the job.

Here is the full code with error handling:

#include <phnt_windows.h>

#include <phnt.h>

#include <stdio.h>

#include <string>

#pragma comment(lib, "ntdll")

int Error(NTSTATUS status) {

printf("Error (status=0x%08X)\n", status);

return 1;

}

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: nativerun <executable> [arguments...]\n");

return 0;

Chapter 3: Native Applications 54

}

//

// build command line arguments

//

std::wstring args;

for (int i = 2; i < argc; i++) {

args += argv[i];

args += L" ";

}

UNICODE_STRING cmdline;

RtlInitUnicodeString(&cmdline, args.c_str());

UNICODE_STRING name;

RtlInitUnicodeString(&name, argv[1]);

PRTL_USER_PROCESS_PARAMETERS params;

auto status = RtlCreateProcessParameters(¶ms, &name,

nullptr, nullptr, &cmdline,

nullptr, nullptr, nullptr, nullptr, nullptr);

if (!NT_SUCCESS(status))

return Error(status);

RTL_USER_PROCESS_INFORMATION info;

status = RtlCreateUserProcess(&name, 0, params, nullptr,

nullptr, nullptr, 0, nullptr, nullptr, &info);

if (!NT_SUCCESS(status))

return Error(status);

RtlDestroyProcessParameters(params);

auto pid = HandleToULong(info.ClientId.UniqueProcess);

printf("Process 0x%X (%u) created successfully.\n", pid, pid);

ResumeThread(info.ThreadHandle);

CloseHandle(info.ThreadHandle);

CloseHandle(info.ProcessHandle);

return 0;

}

Let’s test the application by invoking a native application like SimpleNative from the previous section. Open

Chapter 3: Native Applications 55

a command window, navigate to the location of the resulting NativeRun.exe file, and type the following:

C:\Chapter03\x64\Debug>nativerun.exe SimpleNative.exe

Error (status=0xC000003B)

We get an error, whose value means “Object Path Component was not a directory object”. Well, maybe we

need a full path:

C:\Chapter03\x64\Debug>nativerun.exe C:\Chapter03\x64\Debug\SimpleNative.exe

Error (status=0xC000003B)

Same result. The problem is that the native API expects paths to be in “NT” style rather than Win32 style.

This means paths must be based on the Object Manager’s namespace. It may seem that something like “C:”

is very fundamental, but it’s not. Drive letters get special treatment by standard Windows APIs.

One way to fix this is to prepend “??” before continuing with the normal path like so:

C:\Chapter03\x64\Debug>nativerun.exe \??\C:\Chapter03\x64\Debug\SimpleNative.exe

Process 0xAC48 (44104) created successfully.

What does this strange “\??\” mean? It’s a directory in the Object Manager’s namespace where symbolic links

are stored, one of which is “C:”. You can view all this with the Sysinternals WinObj tool, or my own Object

Explorer. Figure 3-15 shows WinObj displaying the “\Global??\” directory (another name for “\??\”). It also

shows the target of this symbolic link: “Device\Harddiskvolume3” (on your system it may be different).

Figure 3-15: WinObj showing symbolic links

You can replace “\??\c:” with “\Device\Harddiskvolume3” and it would work just as well:

Chapter 3: Native Applications 56

C:\Chapter03\x64\Debug>nativerun.exe \Device\harddiskvolume3\Chapter03\x64\Debug\Sim\

pleNative.exe

Process 0x93B0 (37808) created successfully.

4.6: Debugging Native Applications

Debugging a native application presents some challenges. Since CreateProcess and its variants are unable

to launch a native application, standard debuggers like Visual Studio or WinDbg are unable to launch such

executables.

However, once such an executable is launched, these debuggers are perfectly capable to attach to the

running process. A simple tweak would be to add a call to NtDelayExecution at the beginning of the

NtProcessStartup function to have a few seconds time in which to ask Visual Studio to attach to the process.

We can do better, however. When creating a native application process, the main thread does not start

running, so we can take advantage of this and attach a debugger at this point, and then let the thread resume

execution. It would be simple enough to add support for that in NativeRun like so:

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: nativerun [-d] <executable> [arguments...]\n");

return 0;

}

int start = 1;

bool debug = _wcsicmp(argv[1], L"-d") == 0;

if (debug)

start = 2;

std::wstring args;

for (int i = start + 1; i < argc; i++) {

args += argv[i];

args += L" ";

}

UNICODE_STRING cmdline;

RtlInitUnicodeString(&cmdline, args.c_str());

UNICODE_STRING name;

RtlInitUnicodeString(&name, argv[start]);

PRTL_USER_PROCESS_PARAMETERS params;

auto status = RtlCreateProcessParameters(¶ms, &name,

Chapter 3: Native Applications 57

nullptr, nullptr, &cmdline,

nullptr, nullptr, nullptr, nullptr, nullptr);

if (!NT_SUCCESS(status))

return Error(status);

RTL_USER_PROCESS_INFORMATION info;

status = RtlCreateUserProcess(&name, 0, params, nullptr,

nullptr, nullptr, 0, nullptr, nullptr, &info);

if (!NT_SUCCESS(status))

return Error(status);

RtlDestroyProcessParameters(params);

auto pid = HandleToULong(info.ClientId.UniqueProcess);

printf("Process 0x%X (%u) created successfully.\n", pid, pid);

if (debug) {

printf("Attach with a debugger. Press ENTER to resume thread...\n");

char dummy[3];

gets_s(dummy);

}

ResumeThread(info.ThreadHandle);

CloseHandle(info.ThreadHandle);

CloseHandle(info.ProcessHandle);

return 0;

}

4.6.1: Debugging BootExeutable Native Applications

What about debugging BootExecute applications? These run too early to use any user-mode debugger. For

these, we have to use a kernel-mode debugger, such asWinDbg. The configuration of the debugger and target

(where the native application will execute) is done in the same manner as any other kernel debugging setup.

If you are not familiar with kernel-mode debugging, consult theWinDbg documentation or look online. Also,

chapter 5 in my book “Windows Kernel Programming” has a good introduction to WinDbg for user-mode

and kernel-mode debugging.

As a reminder, copy the executable’s PDB (symbols) file to the target’s System32 directory (where the

executable is) to make it easy for the debugger to locate the symbols.

Chapter 3: Native Applications 58

Once the target restarts and the initial debugger breakpoint is hit, you can set an event to break when the

native application executable is loaded:

!gflag +ksl

sxe ld:simplenative.exe

The first command instructs the debugger to load kernel symbols automatically rather than be lazy about

it. It improves its ability to satisfy the second command which indicates that the first time the image name

indicated is loaded, the debugger should break.

At the breakpoint, the process is (barely) created. In fact, the command !process 0 0 will not show it.

However, you can view the basics with !process @$proc or !process -1, because it’s the current process:

2: kd> !process @$proc

PROCESS ffff820384609140

SessionId: none Cid: 0000 Peb: 00000000 ParentCid: 02bc

DirBase: 132381000 ObjectTable: ffffe689c2516d40 HandleCount: 0.

Image: SimpleNative.exe

VadRoot ffff820382c75960 Vads 3 Clone 0 Private 12. Modified 0. Locked 0.

DeviceMap 0000000000000000

Token ffffe689c255a360

ElapsedTime 00:00:00.000

UserTime 00:00:00.000

KernelTime 00:00:00.000

QuotaPoolUsage[PagedPool] 4280

QuotaPoolUsage[NonPagedPool] 408

Working Set Sizes (now,min,max) (12, 50, 345) (48KB, 200KB, 1380KB)

PeakWorkingSetSize 4

VirtualSize 0 Mb

PeakVirtualSize 0 Mb

PageFaultCount 12

MemoryPriority BACKGROUND

BasePriority 8

CommitCharge 26

No active threads

Unfortunately, the debugger is not happy enough with the process, so any breakpoints set will fail or be

ignored, for example:

bp simplenative!NtProcessStartup

bp /p ffff820384609140 simplenative!NtProcessStartup

Chapter 3: Native Applications 59

Setting breakpoints inNtDll.dll similarly fails. The best way I have found to make it work is to artificially add

NtDelayExecution code to the beginning of NtProcessStartup and then forcefully break into the debugger

while the main thread is sleeping. Then we can set a breakpoint normally using commands or by opening

the source file and pressing F9 where a breakpoint should hit.

4.7: Summary

In this chapter we looked at native applications that depend on NtDll.Dll only. These are mostly useful for

running at system boot, by Smss.exe. Once we learn more about the native API you may come up with ideas

of things to do at this early time in the Windows boot process.

In the next chapter, we’ll look at system information that can be obtained and/or changed with the native

API.

Chapter 4: System Information

In this chapter we’ll focus on getting and setting various system-level details. Some of the native API

capabilities have Windows API counterparts, but some do not. The chapter is not exhaustive by any means

- the sheer number of information classes used with NtQueryInformationClass is staggering. The chapter

covers some of the more “interesting” or non-trivial system information details, that can be difficult to

intuitively use.

In this chapter:

• Querying and Setting Information

• General System Information

• Processes and Threads

• Handles and Objects

• The KUSER_SHARED_DATA Structure

• Miscellaneous Information

5.1: Querying and Setting Information

There are two most useful functions for getting and setting system-related information: NtQuerySystemIn-

formation and its complementary NtSetSystemInformation:

NTSTATUS NtQuerySystemInformation(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength,

_Out_opt_ PULONG ReturnLength);

NTSTATUS NtSetSystemInformation(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_In_reads_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength);

Chapter 4: System Information 61

Both functions are generic, based on a SYSTEM_INFORMATION_CLASS enumeration and some associated

expected buffer. For query, there are cases where the expected buffer size is fixed, but in others the

information retrieved is dynamic, so the size may not be known in advance. A typical pattern is to call

NtQuerySystemInformation once with a NULL buffer and a size of zero to get back the required size (in

the last argument) (the return value in this case is STATUS_INFO_LENGTH_MISMATCH). Next, the buffer is

allocated, and the call is reissued, but this time with the real buffer and the allocated size. Care must be taken

in some cases to allocate a bit more than the returned size indicates in case the information size has increased

between getting the required size and issuing the second call. For example, if a list of processes is requested,

new processes may have been added just after the required size is returned.

The SYSTEM_INFORMATION_CLASS enumeration is a large one, and keeps growing with newer versions of

Windows. Since these APIs are generic, their prototypes don’t need to change. We’ll spend some time to

look at some enumeration values and how to use them.

The phnt definition of SYSTEM_INFORMATION_CLASS provides comments for most values and the

expected structure, and whether the enumeration supports querying, setting, or both.

Another query variant exists which takes an input buffer (not just an output buffer):

NTSTATUS NtQuerySystemInformationEx(

In SYSTEM_INFORMATION_CLASS SystemInformationClass,

_In_reads_bytes_(InputBufferLength) PVOID InputBuffer,

In ULONG InputBufferLength,

_Out_writes_bytes_opt_(SystemInformationLength) PVOID SystemInformation,

In ULONG SystemInformationLength,

_Out_opt_ PULONG ReturnLength);

The input buffer serves as an extra detail that affects the output. Only a subset of system information classes

support this API. A NULL input buffer or an input length of zero are invalid - the function fails rather than

call NtQuerySystemInformation.

5.1.1: General System Information

In this section, we’ll examine some system information classes that provide various general details for the

system as a whole.

5.1.1.1: SystemBasicInformation (0) (Query)

Using SystemBasicInformation is possible with query only, returning a SYSTEM_BASIC_INFORMATION

structure:

Chapter 4: System Information 62

typedef struct _SYSTEM_BASIC_INFORMATION {

ULONG Reserved;

ULONG TimerResolution;

ULONG PageSize;

ULONG NumberOfPhysicalPages;

ULONG LowestPhysicalPageNumber;

ULONG HighestPhysicalPageNumber;

ULONG AllocationGranularity;

ULONG_PTR MinimumUserModeAddress;

ULONG_PTR MaximumUserModeAddress;

ULONG_PTR ActiveProcessorsAffinityMask;

CCHAR NumberOfProcessors;

} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

Some of the above information is available with the Windows API functions GetSystemInfo and

GetNativeSystemInfo.

Most members are self-explanatory, or are explained in the documentation of the SYSTEM_INFO structure. A

few that may not be:

• TimerResolution - number of 100 nsec units used for the default timer ticks, used with thread

scheduling. This value should be 156250 (15.625 msec) on most systems. This value is the maximum

number, where the current timer resolution and the minimum one is available with another native API,

NtQueryTimerResolution, discussed later in this chapter.

• LowestPhysicalPageNumber, HighestPhysicalPageNumber - lowest and highest physical page num-

bers supported on the system. The lowest is typically 1, meaning the first page in physical memory is

not used.

• NumberOfPhysicalPages - total number of physical pages, indicating the amount of RAM supported

on the system (multiply by PAGE_SIZE (4 KB) to get the number of bytes.

• NumberOfProcessors - this might seem obvious, but notice the type (CCHAR) - it’s between 0 and 255.

Windows supports more than 255 logical processors. This number is actually the number of processors

in the current processor group, which can be between 1 and 64. The total number of processors is given

by a different system information class (SystemProcessorInformation), discussed next.

5.1.1.2: SystemProcessorInformation (1) (Query)

This information class returns a structure of type SYSTEM_PROCESSOR_INFORMATION:

Chapter 4: System Information 63

typedef struct _SYSTEM_PROCESSOR_INFORMATION {

USHORT ProcessorArchitecture;

USHORT ProcessorLevel;

USHORT ProcessorRevision;

USHORT MaximumProcessors;

ULONG ProcessorFeatureBits;

} SYSTEM_PROCESSOR_INFORMATION, *PSYSTEM_PROCESSOR_INFORMATION;

The total number of logical processors in the system is returned in MaximumProcessors (not just the

current processor group). The other members are documented as part of the SYSTEM_INFO structure, except

ProcessorFeatureBits, which provides CPU-specific feature bits.

5.1.1.3: SystemPerformanceInformation (2) (Query)

The returned structure is of type SYSTEM_PERFORMANCE_INFORMATION, and it’s a huge one. Most members

are self-explanatory.

5.1.1.4: SystemTimeOfDayInformation (3) (Query)

This information class returns a structure of type SYSTEM_TIMEOFDAY_INFORMATION:

typedef struct _SYSTEM_TIMEOFDAY_INFORMATION {

LARGE_INTEGER BootTime;

LARGE_INTEGER CurrentTime;

LARGE_INTEGER TimeZoneBias;

ULONG TimeZoneId;

ULONG Reserved;

ULONGLONG BootTimeBias;

ULONGLONG SleepTimeBias;

} SYSTEM_TIMEOFDAY_INFORMATION, *PSYSTEM_TIMEOFDAY_INFORMATION;

• BootTime is the local time the system booted (in the standard 100 nsec units since January 1, 1601).

• CurrentTime is the current local time.

• TimeZoneBias is the difference (in the usual 100 nsec units) from Universal Time.

• BootBiasTime and SleepBiasTime are typically zero.

• TimeZoneId is the index of the time zone configured.

The current time zone information is available with RtlQueryTimeZoneInformation:

Chapter 4: System Information 64

typedef struct _RTL_TIME_ZONE_INFORMATION {

LONG Bias;

WCHAR StandardName[32];

TIME_FIELDS StandardStart;

LONG StandardBias;

WCHAR DaylightName[32];

TIME_FIELDS DaylightStart;

LONG DaylightBias;

} RTL_TIME_ZONE_INFORMATION, *PRTL_TIME_ZONE_INFORMATION;

NTSTATUS RtlQueryTimeZoneInformation(

Out PRTL_TIME_ZONE_INFORMATION TimeZoneInformation);

The returned names may not be normal strings, but rather have a Multiple User Interface (MUI) format

involving a DLL and an ID. For example: “@tzres.dll,-112”. This means the string is a resource ID 112 in

a DLL named tzres.dll (in one of the system directories, typically System32) or one based on the current

locale. For example, if the locale is “en-US”, then the file where the string is actually located is *System32\en-

US\tzres.dll.mui“.

Reaching into these DLLs to locate the actual string is tedious and error prone. Fortunately, the Shell provides

an API that does the work:

HRESULT SHLoadIndirectString(

In PCWSTR pszSource,

_Out_writes_(cchOutBuf) PWSTR pszOutBuf,

In UINT cchOutBuf,

Reserved void **ppvReserved);

Here is an example usage to bring the standard name of the current time zone:

RTL_TIME_ZONE_INFORMATION tzinfo;

RtlQueryTimeZoneInformation(&tzinfo);

WCHAR text[64];

SHLoadIndirectString(tzinfo.StandardName, text, _countof(text), nullptr);

printf("Time zone: %ws\n", text);

The full example is part of the SysInfo sample project for this chapter.

5.1.2: Timer Resolution

The kernel works with an internal timer, used to control all timing-related activities, such as wait times,

scheduler wakeups, etc. The basic “tick” of this timer is queryable and controllable with the following APIs:

Chapter 4: System Information 65

NTSTATUS NtQueryTimerResolution(

Out PULONG MaximumTime,

Out PULONG MinimumTime,

Out PULONG CurrentTime);

NTSTATUS NtSetTimerResolution(

In ULONG DesiredTime,

In BOOLEAN SetResolution,

Out PULONG ActualTime);

NtQueryTimerResolution returns the maximum, minimum and current timer tick interval, in the usual

100n sec units.

The clockres Sysinternals tool shows exactly these values.

Since multiple processes may want to affect the timer resolution, the kernel keeps track of each change done

by which process. The highest resolution requested is the one used, but once a process exits, or removes its

resolution effect (calling NtSetTimerResolution with SetResolution being FALSE), the kernel will reduce

the resolution (increment the tick count) if other processes did not request that small tick.

The last argument to NtSetTimerResolution returns the actual value set, based on the hardware’s

capabilities and other process requests, in 100 nsec unites (the same units used for DesiredTime).

5.1.3: Processor Dynamic Information

Several information classes provide dynamic information on each processor in the current processor group

or in a specific processor group if calling NtQuerySystemInformationEx. Table 4-1 lists the information

classes, and their corresponding structures. The processor group number can be specified as the input buffer

(USHORT), or the current processor group is used if NtQuerySystemInformation is called. Note that the

special ALL_PROCESSOR_GROUPS value is invalid for these calls.

Table 4-1: Processor information classes

SystemProcessorPerformanceInformation (8) SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION

SystemInterruptInformation (23) SYSTEM_INTERRUPT_INFORMATION

SystemProcessorIdleInformation (42) SYSTEM_PROCESSOR_IDLE_INFORMATION

SystemProcessorPowerInformation (61) SYSTEM_PROCESSOR_POWER_INFORMATION

SystemProcessorIdleCycleTimeInformation (83) SYSTEM_PROCESSOR_IDLE_CYCLE_TIME_INFORMATION

SystemProcessorPerformanceDistribution (100) SYSTEM_PROCESSOR_PERFORMANCE_DISTRIBUTION

SystemProcessorCycleTimeInformation (108) SYSTEM_PROCESSOR_CYCLE_TIME_INFORMATION

SystemProcessorPerformanceInformationEx (141) SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION_EX

Information class Structure type

Chapter 4: System Information 66

SystemLogicalProcessorInformation (73) SYSTEM_LOGICAL_PROCESSOR_INFORMATION

SystemProcessorCycleStatsInformation (160) SYSTEM_PROCESSOR_CYCLE_STATS_INFORMATION

Information class Structure type

The expected output buffer must be a multiple of a single structure, one instance for each processor

information required. If zero size is provided for the output buffer, the API returns the needed size for

all processors in the requested group.

The following example shows one way to get one of these processor details:

ULONG len;

USHORT group = 0; // group 0

NtQuerySystemInformationEx(SystemProcessorPerformanceInformation,

&group, sizeof(group), nullptr, 0, &len);

ULONG cpuCount = len / sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION);

auto pi = std::make_unique<SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION[]>(cpuCount);

NtQuerySystemInformationEx(SystemProcessorPerformanceInformation,

&group, sizeof(group), pi.get(), len, nullptr);

for(ULONG i = 0; i < cpuCount; i++) {

// use pi[i] to access information for CPU i

}

Let’s examine one of the basic structures, SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION:

typedef struct _SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION {

LARGE_INTEGER IdleTime;

LARGE_INTEGER KernelTime;

LARGE_INTEGER UserTime;

LARGE_INTEGER DpcTime;

LARGE_INTEGER InterruptTime;

ULONG InterruptCount;

} SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION, *PSYSTEM_PROCESSOR_PERFORMANCE_INFORMATI\

ON;

Here is the breakdown of the members (all times are in 100 nsec units):

• IdleTime - the time the processor was idle.

• KernelTime - the time the processor spent executing code in kernel-mode. Note that this time includes

IdleTime, which is considered kernel mode execution.

• UserTime - the time the processor spent executing in user-mode.

• DpcTime - the time the CPU spend executing Deferred Procedure Calls (DPCs). These routines are

provided by kernel drivers and typically execute after Interrupt Service Routines (ISRs) execute. Full

discussion of DPCs and ISRs is beyond the scope of this book.

Chapter 4: System Information 67

• InterruptTime - the time the CPU spend executing ISRs.

• InterruptCount - the number of interrupts serviced by the processor.

The CpuInfo sample provides a full example.

5.1.4: Module Information

The loaded kernel modules (the kernel itself, the HAL, and all drivers) can be obtained with two information

classes, SystemModuleInformation and SystemModuleInformationEx. Here are the associated structures:

typedef struct _RTL_PROCESS_MODULE_INFORMATION {

HANDLE Section;

PVOID MappedBase;

PVOID ImageBase;

ULONG ImageSize;

ULONG Flags;

USHORT LoadOrderIndex;

USHORT InitOrderIndex;

USHORT LoadCount;

USHORT OffsetToFileName;

UCHAR FullPathName[256];

} RTL_PROCESS_MODULE_INFORMATION, *PRTL_PROCESS_MODULE_INFORMATION;

typedef struct _RTL_PROCESS_MODULES {

ULONG NumberOfModules;

RTL_PROCESS_MODULE_INFORMATION Modules[1];

} RTL_PROCESS_MODULES, *PRTL_PROCESS_MODULES;

typedef struct _RTL_PROCESS_MODULE_INFORMATION_EX {

USHORT NextOffset;

RTL_PROCESS_MODULE_INFORMATION BaseInfo;

ULONG ImageChecksum;

ULONG TimeDateStamp;

PVOID DefaultBase;

} RTL_PROCESS_MODULE_INFORMATION_EX, *PRTL_PROCESS_MODULE_INFORMATION_EX;

Although the name “process” is part of these structure names, they just describe modules - kernel or user. In

the context of the above information classes, it’s the former.

Chapter 4: System Information 68

The details of these members will be discussed in chapter 5. For kernel modules (as used here), the section

handle and mapped base are always zero.

The following shows how to get module information using the extended information class:

ULONG size;

NtQuerySystemInformation(SystemModuleInformationEx, nullptr, 0, &size);

std::unique_ptr<BYTE[]> buffer;

for (;;) {

buffer = std::make_unique<BYTE[]>(size);

auto status = NtQuerySystemInformation(SystemModuleInformationEx,

buffer.get(), size, &size);

if (NT_SUCCESS(status))

break;

}

auto mod = (RTL_PROCESS_MODULE_INFORMATION_EX*)buffer.get();

for (;;) {

// do something with mod

if (mod->NextOffset == 0)

break;

mod = (RTL_PROCESS_MODULE_INFORMATION_EX*)((PBYTE)mod + mod->NextOffset);

}

The full code is in the ModList sample.

5.2: Process and Thread Information

NtQuerySystemInformation has several information classes for providing details on processes and threads

running on the system. The following lists the information class values and the associated structures.

• SystemProcessInformation (5) provides SYSTEM_PROCESS_INFORMATION (process) and SYSTEM_-

THREAD_INFORMATION array (threads), see figure 4-1.

• SystemExtendedProcessInformation (57) provides SYSTEM_PROCESS_INFORMATION (process) and

SYSTEM_EXTENDED_THREAD_INFORMATION array (threads), see figure 4-2.

• SystemFullProcessInformation (148) provides SYSTEM_PROCESS_INFORMATION followed by SYS-

TEM_EXTENDED_THREAD_INFORMATION array (threads), and then SYSTEM_PROCESS_INFORMATION_EX-

TENSION (more information about the process), see figure 4-3. Using this information class requires

admin rights.

Chapter 4: System Information 69

Task Manager uses this API to enumerate processes, and Process Explorer uses these APIs to

enumerate processes and threads.

For processes, the basic structure looks like so:

typedef struct _SYSTEM_PROCESS_INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfThreads;

LARGE_INTEGER WorkingSetPrivateSize;

ULONG HardFaultCount;

ULONG NumberOfThreadsHighWatermark;

ULONGLONG CycleTime;

LARGE_INTEGER CreateTime;

LARGE_INTEGER UserTime;

LARGE_INTEGER KernelTime;

UNICODE_STRING ImageName;

KPRIORITY BasePriority;

HANDLE UniqueProcessId;

HANDLE InheritedFromUniqueProcessId;

ULONG HandleCount;

ULONG SessionId;

ULONG_PTR UniqueProcessKey; // (requires SystemExtendedProcessInformation)

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG PageFaultCount;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

SIZE_T QuotaPeakPagedPoolUsage;

SIZE_T QuotaPagedPoolUsage;

SIZE_T QuotaPeakNonPagedPoolUsage;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivatePageCount;

LARGE_INTEGER ReadOperationCount;

LARGE_INTEGER WriteOperationCount;

LARGE_INTEGER OtherOperationCount;

LARGE_INTEGER ReadTransferCount;

LARGE_INTEGER WriteTransferCount;

LARGE_INTEGER OtherTransferCount;

SYSTEM_THREAD_INFORMATION Threads[1];

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

Chapter 4: System Information 70

Figure 4-1: SystemProcessInformation details

Most of its members are self-explanatory. Here are a few that may be not obvious:

• ImageName is the executable path in NT device form (“\Device\HarddiskVolume…”) rather than Win32

path. For kernel processes, the special name is provided: “System”, “Secure System”, “Registry”,

“Memory Compression”. The Idle process (PID 0) is provided with no name.
• InheritedFromUniqueProcessId is the process parent ID.
• NextEntryOffset is the key to moving to the next process. This is the byte offset of the next process

in the list. The enumeration should terminate when this value is zero.
• NumberOfThreadsHighWatermark is the highest number of threads that ever existed in this process.
• UniqueProcessKey is the same as the process ID, since the process uniqueness is defined by its ID for

as long as the object is alive.
• VirtualSize describes the total usage of address space in the process (committed and reserved

memory). All other memory counters don’t consider reserved memory. More details on memory

counters are provided in chapter 7.

The *Pool members represent kernel memory that is attributes to this process. For example, handle entries

are allocated from the paged memory pool in the kernel.

Chapter 4: System Information 71

The following example shows how to obtain process information and iterate through the process list:

ULONG size = 0;

auto status = NtQuerySystemInformation(SystemProcessInformation, nullptr, 0, &size);

std::unique_ptr<BYTE[]> buffer;

while(status == STATUS_INFO_LENGTH_MISMATCH) {

size += 1024; // in case some processes get created

buffer = std::make_unique<BYTE[]>(size);

status = NtQuerySystemInformation(SystemProcessInformation,

buffer.get(), size, &size);

}

auto p = (SYSTEM_PROCESS_INFORMATION*)buffer.get();

for(;;) {

//

// use p...

//

if (p->NextEntryOffset == 0)

break;

//

// move to the next process

//

p = (SYSTEM_PROCESS_INFORMATION*)((PBYTE)p + p->NextEntryOffset);

}

A full example is in the ProcList sample project.

Chapter 4: System Information 72

Figure 4-2: SystemExtendedProcessInformation details

Moving to the next process is accomplished by adding NextEntryOffset to the current SYSTEM_PROCESS_-

INFORMATION pointer, just note the casting to a BYTE pointer so that the addition is done in units of bytes.

A list of threads for each process is provided in the Threads array. The basic structure follows:

typedef struct _SYSTEM_THREAD_INFORMATION {

LARGE_INTEGER KernelTime;

LARGE_INTEGER UserTime;

LARGE_INTEGER CreateTime;

ULONG WaitTime;

PVOID StartAddress;

CLIENT_ID ClientId;

KPRIORITY Priority;

LONG BasePriority;

ULONG ContextSwitches;

KTHREAD_STATE ThreadState;

Chapter 4: System Information 73

KWAIT_REASON WaitReason;

} SYSTEM_THREAD_INFORMATION, *PSYSTEM_THREAD_INFORMATION;

Here is a description of the non-self explanatory members:

• ClientId is the thread and process IDs.

• Priority is the current (dynamic) priority of the thread, while BasePriority is the base priority. See

chapter 6 for more on threads and priorities.

• ThreadState is the current thread state represented by the KTHREAD_STATE enumeration. Full

explanation of thread states is deferred to chapter 6.

• WaitReason is the reason the thread is waiting (if it’s in the Waiting state) of type KWAIT_REASON.

Don’t take any dependency on this value, as it’s a hint only, and has no real meaning in practice.

• StartAddress is the thread’s start address. For user-mode threads, it has the same value, pointing

to the address of RtlUserThreadStart in NtDll.Dll. This is different from the start address provided

to thread creation functions. That other address, referred to as “Win32 Address” is available in the

extended structure, SYSTEM_EXTENDED_THREAD_INFORMATION, described shortly.

The thread description structures have fixed sizes, which means iteration is generally simpler. Given a pointer

to a SYSTEM_PROCESS_INFORMATION, thread iteration could take this form (assuming the system info class is

SystemProcessInformation):

void EnumThreads(SYSTEM_PROCESS_INFORMATION* p) {

auto t = p->Threads;

for (ULONG i = 0; i < p->NumberOfThreads; i++) {

// do something with t

t++;

}

}

See the ThreadList sample for a full example.

Chapter 4: System Information 74

Figure 4-3: SystemFullProcessInformation details

The extension process information structure looks like so:

Chapter 4: System Information 75

typedef enum _SYSTEM_PROCESS_CLASSIFICATION {

SystemProcessClassificationNormal = 0,

SystemProcessClassificationSystem = 1, // System

SystemProcessClassificationSecureSystem = 2, // Secure Kernel

SystemProcessClassificationMemCompression = 3, // Memory Compression

SystemProcessClassificationRegistry = 4, // Registry

SystemProcessClassificationMaximum = 5

} SYSTEM_PROCESS_CLASSIFICATION, *PSYSTEM_PROCESS_CLASSIFICATION;

typedef struct _PROCESS_DISK_COUNTERS {

ULONGLONG BytesRead;

ULONGLONG BytesWritten;

ULONGLONG ReadOperationCount;

ULONGLONG WriteOperationCount;

ULONGLONG FlushOperationCount;

} PROCESS_DISK_COUNTERS, *PPROCESS_DISK_COUNTERS;

typedef struct _SYSTEM_PROCESS_INFORMATION_EXTENSION {

PROCESS_DISK_COUNTERS DiskCounters;

ULONGLONG ContextSwitches;

union {

ULONG Flags;

struct {

ULONG HasStrongId : 1;

ULONG Classification : 4; // SYSTEM_PROCESS_CLASSIFICATION

ULONG BackgroundActivityModerated : 1;

ULONG Spare : 26;

};

};

ULONG UserSidOffset;

ULONG PackageFullNameOffset; // since THRESHOLD

PROCESS_ENERGY_VALUES EnergyValues; // since THRESHOLD

ULONG AppIdOffset; // since THRESHOLD

SIZE_T SharedCommitCharge; // since THRESHOLD2

ULONG JobObjectId; // since REDSTONE

ULONG SpareUlong; // since REDSTONE

ULONGLONG ProcessSequenceNumber;

} SYSTEM_PROCESS_INFORMATION_EXTENSION, *PSYSTEM_PROCESS_INFORMATION_EXTENSION;

Here is a description of the non-trivial members:

• UserSidOffset is an offset from the beginning of the SYSTEM_PROCESS_INFORMATION_EXTENSION

Chapter 4: System Information 76

structure to where the SID of the user running this process is stored in its binary format. To convert to

a string, you can call RtlConvertSidToUnicodeString like so:

std::wstring SidToString(PSID sid) {

UNICODE_STRING str;

if (NT_SUCCESS(RtlConvertSidToUnicodeString(&str, sid, TRUE))) {

std::wstring result(str.Buffer, str.Length / sizeof(WCHAR));

RtlFreeUnicodeString(&str);

return result;

}

return L"";

}

Another option for converting a SID to a string is using theWindows API ConvertSidToStringSid.

• PackageFullNameOffset is an offset to a NULL-terminated string from the beginning of the SYSTEM_-

PROCESS_INFORMATION_EXTENSION object to a full package name of a UWP application this process

is executing. If the process in question is not such a process, PackageFullNameOffset is zero. In

addition, the HasStrongId member is TRUE if PackageFullNameOffset is non-zero and vice versa.

• AppIdOffset is an offset to a NULL-terminated string from the beginning of the SYSTEM_PROCESS_-

INFORMATION_EXTENSION object to an Application ID, used for some Shell features, such as Taskbar

jump lists. It may be zero if the process is not associated with an Application ID.

• JobObjectId is the ID of a job that contains this process (if any). A job ID is usedmainly withWindows

Containers.

• ProcessSequenceNumber is a unique process identifier valid since Windows booted that is not reused

(as opposed to the process ID that can be reused when the process object is destroyed).

To get a unique process ID on a system for any time, combine the process ID and the process creation

time. Together, these are guaranteed to be unique at any time on the same machine.

Accessing the extended process information is a bit tricky if the SYSTEM_PROCESS_INFORMATION is declared

as shown earlier. This is because the Threads first array index is included in the declaration. It would

be somewhat easier to remove the Threads item from the declaration, and you can certainly do that. The

declaration provided by the phnt header makes it easy to use SystemProcessInformation, but makes it

clunkier to use SystemFullProcessInformation.

Nevertheless, this is possible as shown in the following code snippet:

Chapter 4: System Information 77

// assume the NtQuerySystemInformation call succeeded

auto p = (SYSTEM_PROCESS_INFORMATION*)buffer.get();

for (;;) {

auto px = (SYSTEM_PROCESS_INFORMATION_EXTENSION*)((PBYTE)p

+ sizeof(*p) - sizeof(SYSTEM_THREAD_INFORMATION)

+ p->NumberOfThreads * sizeof(SYSTEM_EXTENDED_THREAD_INFORMATION));

//

// use p and px as needed...

//

if (p->NextEntryOffset == 0)

break;

p = (SYSTEM_PROCESS_INFORMATION*)((PBYTE)p + p->NextEntryOffset);

}

See the ProcList sample for a full example.

As can be seen from the code above, with SystemFullProcessInformation (and SystemExtendedPro-

cessInformation), each thread information is now an SYSTEM_EXTENDED_THREAD_INFORMATION:

typedef struct _SYSTEM_EXTENDED_THREAD_INFORMATION {

SYSTEM_THREAD_INFORMATION ThreadInfo;

PVOID StackBase;

PVOID StackLimit;

PVOID Win32StartAddress;

PTEB TebBase;

ULONG_PTR Reserved2;

ULONG_PTR Reserved3;

ULONG_PTR Reserved4;

} SYSTEM_EXTENDED_THREAD_INFORMATION, *PSYSTEM_EXTENDED_THREAD_INFORMATION;

The basic structure is the first member, thus an “extended” structure, rather than “extension” in the process

case which is distinct from the original structure.

Here is a quick rundown of the extra members:

• StackBase and StackLimit provide the beginning and end of the current thread stack. For user-mode

threads, the addresses are in user-space, whereas for kernel-mode threads the addresses are in kernel

space. StackBase is greater than StackLimit on Intel/AMD platforms, as the stack grows down in

memory.

Chapter 4: System Information 78

• Win32StartAddress is the address provided to a user-mode thread creation function, as opposed to the

RtlUserThreadStart address seen in the SYSTEM_THREAD_INFORMATION structure. For kernel threads,

this value is zero.

• TebBase is the Thread Environment Block (TEB) address for this thread (zero for kernel threads). See

chapter 6 for more on the TEB.

Extend the thread enumeration example to include the extended information.

5.3: Objects and Handles

Windows is an object-based operating system, whichmeans that a lot of functionality is based around objects,

such as processes, threads, sections, files, semaphores, and many more. Kernel objects are accessed in user-

mode (and optionally kernel-mode) using handles, serving as an indirect “pointer” to kernel objects in system

space, along with some handle-specific attributes.

Full discussion of handles and objects is beyond the scope of this book.

Briefly, a handle entry has the following data associated with it:

• The address of the object it points to.

• The access mask used to obtain this handle, which specifies what “power” this handle has over the

object.

• Three optional flags: inheritable handle (“I”) - indicates if the handle should be inherited by a child

process if such a process is created by the current process; protect from close (“P”) - indicates the handle

cannot be closed without first removing this flag. This serves as a precaution against accidentally

closing the handle; audit on close (“A”) - indicates closing of this handle should be audited in the event

log.

5.3.1: Handles

NtQuerySystemInformation has information classes to retrieve the list of handles in the system: Sys-

temHandleInformation (16) and SystemExtendedHandleInformation (64). The former should be con-

sidered deprecated, as the information it provides is more limited than the latter, but also because it uses

USHORT as a data type for process IDs and handle values, which is too small. Process IDs and handle values

are limited to 26 bits (and not just 16); therefore, we’ll be using SystemExtendedHandleInformation only.

The structures associated with this information class are as follows:

Chapter 4: System Information 79

typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX {

PVOID Object;

ULONG_PTR UniqueProcessId;

ULONG_PTR HandleValue;

ULONG GrantedAccess;

USHORT CreatorBackTraceIndex;

USHORT ObjectTypeIndex;

ULONG HandleAttributes;

ULONG Reserved;

} SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO_EX;

typedef struct _SYSTEM_HANDLE_INFORMATION_EX {

ULONG_PTR NumberOfHandles;

ULONG_PTR Reserved;

SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX Handles[1];

} SYSTEM_HANDLE_INFORMATION_EX, *PSYSTEM_HANDLE_INFORMATION_EX;

Object is the object’s address in kernel space. UniqueProcessId is the process ID handle table where

this handle is part of, while HandleValue is the handle’s numeric value. Handle values are multiples of

4, where the first valid handle is 4. GrantedAccess is the access mask this handle has towards the object.

ObjectTypeIndex is the type index referring to the object type (e.g. process, thread, file, etc.). We’ll see how

to retrieve the type name based on that index in the next section. Finally, HandleAttributes consists of the

optional handle flags mentioned earlier. The possible values are OBJ_PROTECT_CLOSE (1), OBJ_INHERIT (2),

and OBJ_AUDIT_OBJECT_CLOSE (4). CreateorBackTraceIndex is always zero as far as I can tell.

The usual technique of calling NtQuerySystemInformationwith zero size and getting back the required size

does not work with SystemExtendedHandleInformation; more precisely, it will return the size of SYSTEM_-

HANDLE_INFORMATION_EX as the minimum required, which just provides the handle count.

One approach here is to allocate memory, check if it’s large enough, and if not - double the allocation, and

so on, until the allocation is large enough:

std::unique_ptr<BYTE[]> buffer;

ULONG size = 1 << 20; // start with 1MB

NTSTATUS status;

do {

buffer = std::make_unique<BYTE[]>(size);

status = NtQuerySystemInformation(SystemExtendedHandleInformation,

buffer.get(), size, nullptr);

if (NT_SUCCESS(status))

break;

size *= 2;

} while (status == STATUS_INFO_LENGTH_MISMATCH);

Chapter 4: System Information 80

if(!NT_SUCCESS(status)) {

// some error

}

auto p = (SYSTEM_HANDLE_INFORMATION_EX*)buffer.get();

for (ULONG_PTR i = 0; i < p->NumberOfHandles; i++) {

auto& h = p->Handles[i];

// do something with h

}

A full example is in the Handles sample project.

5.3.2: Object Types

Windows supports many object types; different Windows versions may support a slightly different set of

object types. You can see details of object types in my tool Object Explorer (figure 4-4). How can we get to

this information?

Figure 4-4: Object Explorer showing object types

Object types information is available with NtQueryObject:

Chapter 4: System Information 81

typedef enum _OBJECT_INFORMATION_CLASS {

ObjectBasicInformation, // OBJECT_BASIC_INFORMATION

ObjectNameInformation, // OBJECT_NAME_INFORMATION

ObjectTypeInformation, // OBJECT_TYPE_INFORMATION

ObjectTypesInformation, // OBJECT_TYPES_INFORMATION

ObjectHandleFlagInformation, // OBJECT_HANDLE_FLAG_INFORMATION

ObjectSessionInformation,

ObjectSessionObjectInformation,

} OBJECT_INFORMATION_CLASS;

NTSTATUS NtQueryObject(

_In_opt_ HANDLE Handle,

In OBJECT_INFORMATION_CLASS ObjectInformationClass,

_Out_writes_bytes_opt_(ObjectInformationLength) PVOID ObjectInformation,

In ULONG ObjectInformationLength,

_Out_opt_ PULONG ReturnLength);

This API normally requires a handle to an object in order to provide the requested detail. However, to get

information about all existing object types, a NULL handle can be provided along with ObjectTypesInfor-

mation. This case also requires “guessing” the size of the required buffer, rather than getting the needed size.

The returned information size is fixed, however, as it’s about types and not any specific object.

The returned pointer is of type OBJECT_TYPES_INFORMATION:

typedef struct _OBJECT_TYPES_INFORMATION {

ULONG NumberOfTypes;

} OBJECT_TYPES_INFORMATION, *POBJECT_TYPES_INFORMATION;

The following shows how to get object types information assuming some fixed allocation that is large enough

(error handling omitted):

ULONG size = 1 << 14;

auto buffer = std::make_unique<BYTE[]>(size);

NtQueryObject(nullptr, ObjectTypesInformation, buffer.get(), size, nullptr);

auto p = (OBJECT_TYPES_INFORMATION*)buffer.get();

auto type = (OBJECT_TYPE_INFORMATION*)((PBYTE)p + sizeof(ULONG_PTR));

for (ULONG i = 0; i < p->NumberOfTypes; i++) {

// do something with type...

// move to the next type

auto offset = sizeof(OBJECT_TYPE_INFORMATION) + type->TypeName.MaximumLength;

if(offset % sizeof(ULONG_PTR))

Chapter 4: System Information 82

offset += sizeof(ULONG_PTR) - ((ULONG_PTR)type + offset) % sizeof(ULONG_PTR);

type = (OBJECT_TYPE_INFORMATION*)((PBYTE)type + offset);

}

The code is complicated by the fact that every type object starts on an aligned address (4 bytes in 32-bit

processes, or 8 bytes in 64-bit processes). The offset to the next type must take into account the type’s name

and add padding if the final address is not a multiple of the alignment size.

For every type we get the following information:

typedef struct _OBJECT_TYPE_INFORMATION {

UNICODE_STRING TypeName;

ULONG TotalNumberOfObjects;

ULONG TotalNumberOfHandles;

ULONG TotalPagedPoolUsage;

ULONG TotalNonPagedPoolUsage;

ULONG TotalNamePoolUsage;

ULONG TotalHandleTableUsage;

ULONG HighWaterNumberOfObjects;

ULONG HighWaterNumberOfHandles;

ULONG HighWaterPagedPoolUsage;

ULONG HighWaterNonPagedPoolUsage;

ULONG HighWaterNamePoolUsage;

ULONG HighWaterHandleTableUsage;

ULONG InvalidAttributes;

GENERIC_MAPPING GenericMapping;

ULONG ValidAccessMask;

BOOLEAN SecurityRequired;

BOOLEAN MaintainHandleCount;

UCHAR TypeIndex;

CHAR ReservedByte;

ULONG PoolType;

ULONG DefaultPagedPoolCharge;

ULONG DefaultNonPagedPoolCharge;

} OBJECT_TYPE_INFORMATION, *POBJECT_TYPE_INFORMATION;

The following members are used (all others are always zero):

• TypeName is the type’s name, e.g., “Process”, “Event”, “Desktop”, etc.

• TotalNumberOfObjects is the current number of objects of this type.

• TotalNumberOfHandles is the current number of handles to objects of this type.

• HighWatermarkNumberOfObjects is the peak number of objects of this type since the most recent boot.

Chapter 4: System Information 83

• HighWatermarkNumberOfHandles is the peak number of handles to objects of this type since the most

recent boot.

• InvalidAttributes is the set of attribute flags (OBJ_xxx) that are not valid for handles of this type.

• GenericMapping is the mappings of standard right (GENERIC_READ, GENERIC_WRITE, GENERIC_EXE-

CUTE and GENERIC_ALL) to specific rights for this type of object. See the GENERIC_MAPPING structure

SDK documentation.

• ValidAccessMask is the set of valid access bits for this type.

• SecurityRequired indicates whether objects of this type must be created with a Security Descriptor.

• MaintainHandleCount indicates whether a list of handles to objects of this type is maintained within

the type object. This flag is set mostly for UI-related kernel objects (Window Stations, Desktops,

Composition, and a few others).

• TypeIndex is the index of this type. This allows correlation with the ObjectTypeIndex member in

SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX.

• PoolType is the type of pool that should be used to allocate objects of this type. The following

enumeration (not present in phnt) provides the values:

enum class PoolType {

PagedPool = 1,

NonPagedPool = 0,

NonPagedPoolNx = 0x200,

NonPagedPoolSessionNx = NonPagedPoolNx + 32,

PagedPoolSessionNx = NonPagedPoolNx + 33

};

• DefaultPagedPoolCharge and DefaultNonPagedPoolCharge is the default sizes of paged/non-paged

kernel memory required when allocating an object of this type.

The ObjectTypes sample provides a full example of showing the set of types with some of their members.

The bulk of the code is as follows:

const char* PoolTypeToString(ULONG poolType) {

switch ((PoolType)poolType) {

case PoolType::PagedPool: return "Paged";

case PoolType::NonPagedPool: return "Non Paged";

case PoolType::NonPagedPoolNx: return "Non Paged NX";

case PoolType::NonPagedPoolSessionNx: return "Session Non Paged NX";

case PoolType::PagedPoolSessionNx: return "Session Paged NX";

}

return "";

}

void DisplayType(OBJECT_TYPE_INFORMATION* type) {

Chapter 4: System Information 84

printf("%2d %-34wZ H: %6u O: %6u PH: %6u PO: %6u Pool: %s\n",

type->TypeIndex, &type->TypeName,

type->TotalNumberOfHandles, type->TotalNumberOfObjects,

type->HighWaterNumberOfHandles, type->HighWaterNumberOfObjects,

PoolTypeToString(type->PoolType));

}

int main() {

ULONG size = 1 << 14;

auto buffer = std::make_unique<BYTE[]>(size);

if (!NT_SUCCESS(NtQueryObject(nullptr, ObjectTypesInformation,

buffer.get(), size, nullptr))) {

return 1;

}

auto p = (OBJECT_TYPES_INFORMATION*)buffer.get();

auto type = (OBJECT_TYPE_INFORMATION*)((PBYTE)p + sizeof(ULONG_PTR));

long long handles = 0, objects = 0;

for (ULONG i = 0; i < p->NumberOfTypes; i++) {

DisplayType(type);

handles += type->TotalNumberOfHandles;

objects += type->TotalNumberOfObjects;

auto offset = sizeof(OBJECT_TYPE_INFORMATION) + type->TypeName.MaximumLength;

if (offset % sizeof(ULONG_PTR))

offset += sizeof(ULONG_PTR) -

((ULONG_PTR)type + offset) % sizeof(ULONG_PTR);

type = (OBJECT_TYPE_INFORMATION*)((PBYTE)type + offset);

}

printf("Types: %u Handles: %llu Objects: %llu\n",

p->NumberOfTypes, handles, objects);

return 0;

}

Here is an example output (trimmed) on a Windows 10 machine:

Chapter 4: System Information 85

2 Type H: 0 O: 69 PH: 0 PO: 69 Non Paged NX

3 Directory H: 1234 O: 179 PH: 1325 PO: 197 Paged

4 SymbolicLink H: 529 O: 847 PH: 546 PO: 868 Paged

5 Token H: 2969 O: 12009 PH: 3354 PO: 12506 Paged

6 Job H: 495 O: 2083 PH: 534 PO: 2095 Non Paged NX

7 Process H: 9324 O: 3372 PH: 9888 PO: 3378 Non Paged NX

8 Thread H: 16679 O: 15504 PH: 17467 PO: 15995 Non Paged NX

...

68 CrossVmEvent H: 0 O: 0 PH: 0 PO: 0 Non Paged NX

69 CrossVmMutant H: 0 O: 0 PH: 0 PO: 0 Non Paged NX

70 VRegConfigurationContext H: 0 O: 12 PH: 0 PO: 13 Paged

Types: 69 Handles: 317539 Objects: 629165

Check this on a Windows 11 machine. You’ll discover some new and removed object types.

5.3.3: Object Names

Some kernel objects have string-based names associated with them. Using QuerySystemInformation with

SystemExtendedHandleInformation does not provide the object’s name each handle points to (if any). One

reason is that it may be expensive and not strictly necessary. Furthermore, multiple handles to the same object

might allocate the same name multiple times, or else it would be costly to maintain a list of objects whose

names was already retrieved.

To get an object’s name (pointed to with a handle), the native API offers NtQueryObject with the

ObjectNameInformation information class. One issue that may be evident when enumerating handles

is that handle values returned from the enumeration only have meaning in their respective process. This

means that to get an object’s name we first have to duplicate the handle into the calling process before using

NtQueryObject.

Here is an initial version to return an object’s name (if any) as a std::wstring given a process ID and a

handle that is valid in that process. The first step is to open a handle to the provided process for handling

duplication purposes:

Chapter 4: System Information 86

NTSTATUS GetObjectName(HANDLE h, DWORD pid, std::wstring& name) {

OBJECT_ATTRIBUTES procAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

CLIENT_ID cid{};

cid.UniqueProcess = ULongToHandle(pid);

HANDLE hProcess;

auto status = NtOpenProcess(&hProcess, PROCESS_DUP_HANDLE, &procAttr, &cid);

if (!NT_SUCCESS(status))

return status;

The next step is to invoke NtDuplicateObject, which (despite the name) is the equivalent of the Windows

API DuplicateHandle. Full discussion of NtDuplicateObject is saved for chapter 7:

HANDLE hDup;

status = NtDuplicateObject(hProcess, h, NtCurrentProcess(),

&hDup, READ_CONTROL, 0, 0);

We duplicate the handle to our process, so that hDup now has meaning. Assuming the call succeeds, we can

continue like so:

BYTE buffer[1024]; // hopefully large enough :)

auto sname = (UNICODE_STRING*)buffer;

status = NtQueryObject(hDup, ObjectNameInformation,

sname, sizeof(buffer), nullptr);

if (NT_SUCCESS(status))

name.assign(sname->Buffer, sname->Length / sizeof(WCHAR));

NtClose(hDup);

}

NtClose(hProcess);

return status;

}

This works for most object types, except for many file objects - the call to NtQueryObject hangs. This

is because many file objects cannot be accessed for name query without grabbing locks that are usually

maintained by the file system in question.

The only reasonable way I have found to skip “problematic” file objects is to perform the query on a separate

thread, and if it blocks for too long, terminate it, and move on.

The code becomes more complicated, but cannot be avoided. The following shows the full GetObjectName

implementation, where a Boolean flag indicates the handle in question is for a file. Discussion of

NtCreateThreadEx, NtWaitForSingleObject, NtTerminateThread, and NtQueryInformationThread is

deferred to chapters 6 (“Threads”) and 7 (“Objects and Handles”).

Chapter 4: System Information 87

NTSTATUS GetObjectName(HANDLE h, DWORD pid, std::wstring& name, bool file) {

OBJECT_ATTRIBUTES procAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

CLIENT_ID cid{};

cid.UniqueProcess = ULongToHandle(pid);

HANDLE hProcess;

auto status = NtOpenProcess(&hProcess, PROCESS_DUP_HANDLE, &procAttr, &cid);

if (!NT_SUCCESS(status))

return status;

HANDLE hDup;

status = NtDuplicateObject(hProcess, h, NtCurrentProcess(),

&hDup, READ_CONTROL, 0, 0);

if (NT_SUCCESS(status)) {

static BYTE buffer[1024]; // hopefully large enough :)

auto sname = (UNICODE_STRING*)buffer;

if (file) {

//

// special case for files

// get name on a separate thread

// kill thread if not available after some waiting

//

HANDLE hThread;

//

// create the thread

//

status = NtCreateThreadEx(&hThread, THREAD_ALL_ACCESS,

&procAttr, NtCurrentProcess(),

(PTHREAD_START_ROUTINE)[](auto param) -> DWORD {

auto h = (HANDLE)param;

auto status = NtQueryObject(h, ObjectNameInformation,

buffer, sizeof(buffer), nullptr);

//

// status becomes the exit code of the thread

//

return status;

}, hDup, 0, 0, 0, 0, nullptr);

if (NT_SUCCESS(status)) {

LARGE_INTEGER interval;

interval.QuadPart = -50 * 10000; // 50 msec

status = NtWaitForSingleObject(hThread, FALSE, &interval);

if (status == STATUS_TIMEOUT) {

Chapter 4: System Information 88

NtTerminateThread(hThread, 1);

}

else {

//

// read the thread's exit code

//

THREAD_BASIC_INFORMATION tbi;

NtQueryInformationThread(hThread, ThreadBasicInformation,

&tbi, sizeof(tbi), nullptr);

status = tbi.ExitStatus;

}

NtClose(hThread);

}

}

else {

//

// not a File object, perform normal query

//

status = NtQueryObject(hDup, ObjectNameInformation,

sname, sizeof(buffer), nullptr);

}

//

// assign the result to std::wstring

//

if (NT_SUCCESS(status))

name.assign(sname->Buffer, sname->Length / sizeof(WCHAR));

NtClose(hDup);

}

NtClose(hProcess);

return status;

}

The Handles sample contains the full code. More information on objects and handles is provided in chapter

7.

5.4: The KUSER_SHARED_DATA Structure

The KUSER_SHARED_DATA data structure is partly documented by Microsoft, and provides global system

information. The structure is read-only from user-mode, and is mapped to the same virtual address in every

process (0x7ffe0000). Thus, accessing the data is easy:

Chapter 4: System Information 89

auto data = (KUSER_SHARED_DATA*)0x7ffe0000;

// access data...

Some of the details in that structure are provided by NtQuerySystemInformation. Regardless, it can be

accessed directly. For example, the Windows version can be displayed like so:

auto data = (KUSER_SHARED_DATA*)0x7ffe0000;

printf("Version: %d.%d.%d\n",

data->NtMajorVersion, data->NtMinorVersion, data->NtBuildNumber);

The phnt headers provide the macro USER_SHARED_DATA to access the structure without casting.

5.5: Summary

A lot of system information is available with just one function: NtQuerySystemInformation. I recommend

an exploration mindset when looking at the various information classes, including trial and error. That said,

this chapter is likely to be expanded in future versions of this book.

Chapter 5: Processes

Processes are probably the most recognizable of all kernel object types. In this chapter, we’ll examine the

native APIs related to process creation, enumeration, and manipulation.

In this chapter:

• Creating Processes

• Process Information

• The Process Environment Block

• Suspending and Resuming Processes

• Enumerating Processes (Take 2)

• Jobs

6.1: Creating Processes

The Windows API provides several functions to create processes, such as CreateProcess and CreatePro-

cessAsUser. Although these APIs eventually invoke native APIs, they do a lot of work, making it difficult

to reproduce the same behavior when creating processes that belong to the Windows subsystem (that is,

non-native applications).

The native API provides the RtlCreateUserProcess(Ex) functions, with supporting structures and functions.

We have used RtlCreateUserProcess in chapter 3 to run native applications, because CreateProcess is

not implemented to handle this case. In this section, I’ll describe some aspects of the native APIs, but I

recommend they are only used for creating processes for native applications.

There have been several attempts in the Infosec community to utilize RtlCreateUserProcess and/or

NtCreateUserProcess to allow running Windows subsystem applications, with varying degrees of success.

Part of the problem is the need to communicate with theWindows Subsystem process (csrss.exe) to notify it of

the new process and thread. This turns out to be fragile, as different Windows versions may have somewhat

different expectations. This may still be an interesting research project, but is out of scope for this book.

Here are the RtlCreateUserProcess(Ex) functions with the returned structure that contains information on

the created process if successful:

Chapter 5: Processes 91

typedef struct _RTL_USER_PROCESS_INFORMATION {

ULONG Length;

HANDLE ProcessHandle;

HANDLE ThreadHandle;

CLIENT_ID ClientId;

SECTION_IMAGE_INFORMATION ImageInformation;

} RTL_USER_PROCESS_INFORMATION, *PRTL_USER_PROCESS_INFORMATION;

NTSTATUS RtlCreateUserProcess(

In PUNICODE_STRING NtImagePathName,

In ULONG AttributesDeprecated,

In PRTL_USER_PROCESS_PARAMETERS ProcessParameters,

_In_opt_ PSECURITY_DESCRIPTOR ProcessSecurityDescriptor,

_In_opt_ PSECURITY_DESCRIPTOR ThreadSecurityDescriptor,

_In_opt_ HANDLE ParentProcess,

In BOOLEAN InheritHandles,

_In_opt_ HANDLE DebugPort,

_In_opt_ HANDLE TokenHandle, // used to be ExceptionPort

Out PRTL_USER_PROCESS_INFORMATION ProcessInformation);

NTSTATUS RtlCreateUserProcessEx(

In PUNICODE_STRING NtImagePathName,

In PRTL_USER_PROCESS_PARAMETERS ProcessParameters,

In BOOLEAN InheritHandles,

_In_opt_ PRTL_USER_PROCESS_EXTENDED_PARAMETERS ExtendedParameters,

Out PRTL_USER_PROCESS_INFORMATION ProcessInformation);

It may be surprising that the extended function has less parameters than the original function. In this case,

some of the less common parameters from the original function are bundled in an extended parameters

structure defined like so:

typedef struct _RTL_USER_PROCESS_EXTENDED_PARAMETERS {

USHORT Version; // currently must be set to 1

USHORT NodeNumber;

PSECURITY_DESCRIPTOR ProcessSecurityDescriptor;

PSECURITY_DESCRIPTOR ThreadSecurityDescriptor;

HANDLE ParentProcess; // for inheritance

HANDLE DebugPort;

HANDLE TokenHandle; // requires SeAssignPrimaryTokenPrivilege

HANDLE JobHandle;

} RTL_USER_PROCESS_EXTENDED_PARAMETERS, *PRTL_USER_PROCESS_EXTENDED_PARAMETERS;

Chapter 5: Processes 92

At the time of this writing, the above structure is not defined by the phnt headers.

The non-optional process parameters structure is a big one, defined likes so:

typedef struct _RTL_USER_PROCESS_PARAMETERS {

ULONG MaximumLength;

ULONG Length;

ULONG Flags;

ULONG DebugFlags;

HANDLE ConsoleHandle;

ULONG ConsoleFlags;

HANDLE StandardInput; // STARTUPINFO.hStdInput

HANDLE StandardOutput; // STARTUPINFO.hStdOutput

HANDLE StandardError; // STARTUPINFO.hStdError

CURDIR CurrentDirectory;

UNICODE_STRING DllPath;

UNICODE_STRING ImagePathName;

UNICODE_STRING CommandLine;

PVOID Environment;

ULONG StartingX; // STARTUPINFO.dwX

ULONG StartingY; // STARTUPINFO.dwY

ULONG CountX; // STARTUPINFO.dwXSize

ULONG CountY; // STARTUPINFO.dwYSize

ULONG CountCharsX; // STARTUPINFO.dwXCountChars

ULONG CountCharsY; // STARTUPINFO.dwYCountChars

ULONG FillAttribute; // STARTUPINFO.dwFillAttribute

ULONG WindowFlags; // STARTUPINFO.dwFlags

ULONG ShowWindowFlags; // STARTUPINFO.wShowWindow

UNICODE_STRING WindowTitle; // STARTUPINFO.lpTitle

UNICODE_STRING DesktopInfo;

UNICODE_STRING ShellInfo;

UNICODE_STRING RuntimeData;

RTL_DRIVE_LETTER_CURDIR CurrentDirectories[RTL_MAX_DRIVE_LETTERS];

ULONG_PTR EnvironmentSize;

Chapter 5: Processes 93

ULONG_PTR EnvironmentVersion;

PVOID PackageDependencyData;

ULONG ProcessGroupId;

ULONG LoaderThreads;

UNICODE_STRING RedirectionDllName; // REDSTONE4

UNICODE_STRING HeapPartitionName; // 19H1

ULONG_PTR DefaultThreadpoolCpuSetMasks;

ULONG DefaultThreadpoolCpuSetMaskCount;

} RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS;

Some of the structuremembers correspond directly to the STARTUPINFO structure defined in theWindowsAPI

and used with CreateProcess. Other members are more obscure. After a process is created, this structure

can be found in the PEB.ProcessParamaters member.

This is a variable-length structure, as there are some strings inside. The native API provides two functions

to create and partly initialize an RTL_USER_PROCESS_PARAMETERS, and another one to free the structure:

NTSTATUS RtlCreateProcessParameters(

Out PRTL_USER_PROCESS_PARAMETERS *pProcessParameters,

In PUNICODE_STRING ImagePathName,

_In_opt_ PUNICODE_STRING DllPath,

_In_opt_ PUNICODE_STRING CurrentDirectory,

_In_opt_ PUNICODE_STRING CommandLine,

_In_opt_ PVOID Environment,

_In_opt_ PUNICODE_STRING WindowTitle,

_In_opt_ PUNICODE_STRING DesktopInfo,

_In_opt_ PUNICODE_STRING ShellInfo,

_In_opt_ PUNICODE_STRING RuntimeData);

NTSTATUS RtlCreateProcessParametersEx(

Out PRTL_USER_PROCESS_PARAMETERS *pProcessParameters,

In PUNICODE_STRING ImagePathName,

_In_opt_ PUNICODE_STRING DllPath,

_In_opt_ PUNICODE_STRING CurrentDirectory,

_In_opt_ PUNICODE_STRING CommandLine,

_In_opt_ PVOID Environment,

_In_opt_ PUNICODE_STRING WindowTitle,

_In_opt_ PUNICODE_STRING DesktopInfo,

_In_opt_ PUNICODE_STRING ShellInfo,

_In_opt_ PUNICODE_STRING RuntimeData,

In ULONG Flags);

Chapter 5: Processes 94

NTSTATUS RtlDestroyProcessParameters(

In _Post_invalid_ PRTL_USER_PROCESS_PARAMETERS ProcessParameters);

The two creation functions are practically identical except for the extra Flags parameter. The most

common flag is RTL_CREATE_PROC_PARAMS_NORMALIZED (1) that indicates the structure should be initialized

as “normalized”. Normalized means that the string pointers within are true pointers and can be readily used

in subsequent calls that require this structure. The downside is that copying the structure for later use is

not possible, as the pointers are absolute. Creating the structure as de-normalized stores offsets only in the

various UNICODE_STRING.Buffer members so that copying the structure can be done by a simple memcpy-

like call. The non-Ex function initializes the structure as de-normalized. RtlCreateUserProcess normalizes

the structure if needed before using it.

The native API provides two functions to perform the normalization or de-normalization:

PRTL_USER_PROCESS_PARAMETERS RtlNormalizeProcessParams(

Inout PRTL_USER_PROCESS_PARAMETERS ProcessParameters);

PRTL_USER_PROCESS_PARAMETERS RtlDeNormalizeProcessParams(

Inout PRTL_USER_PROCESS_PARAMETERS ProcessParameters);

The Flags member of RTL_USER_PROCESS_PARAMETERS keeps track of the normalization state so that the

operation is not performed if not required.

Here is more information on members of RTL_USER_PROCESS_PARAMETERS:

• ShellInfo - arbitrary string or buffer that is passed as is to the new process. Some console application

use this internally.

• DesktopInfo is an optional string that points to another Window Station and/or Desktop in the format

“winstaname\desktopname”. This is the same parameter passed in STARTUPINFO.lpDesktop.

• RuntimeData - arbitrary strings or buffers that are passed as is to the new process. Remember that it

does not have to be a string, since UNICODE_STRING has a length, meaning the buffer can point to any

arbitrary data.

• DllPath - optional NT path that serves as another directory to look for DLLs by the loader for the new

process.

• CommandLine - optional command line arguments to pass to the new process.

• Environment - optional environment block created by calling RtlCreateEnvironment. If NULL, copies

the environment from the parent process. See the the documentation for the lpEnvironment argument

to CreateProcess.

• RedirectionDllName - optional NT path DLL that instructs the loader to perform function redirection.

If specified, the DLL must export a global variable named __RedirectionInformation__ that is of

type REDIRECTION_DESCRIPTOR defined like so:

Chapter 5: Processes 95

typedef struct _REDIRECTION_FUNCTION_DESCRIPTOR {

PCSTR DllName;

PCSTR FunctionName;

PVOID RedirectionTarget;

} REDIRECTION_FUNCTION_DESCRIPTOR, *PREDIRECTION_FUNCTION_DESCRIPTOR;

typedef const REDIRECTION_FUNCTION_DESCRIPTOR *PCREDIRECTION_FUNCTION_DESCRIPTOR;

typedef struct _REDIRECTION_DESCRIPTOR {

ULONG Version;

ULONG FunctionCount;

PCREDIRECTION_FUNCTION_DESCRIPTOR Redirections;

} REDIRECTION_DESCRIPTOR, *PREDIRECTION_DESCRIPTOR;

Two optional functions can be further exported from that DLL named __ShouldApplyRedirection__ and

__ShouldApplyRedirectionToFunction__ whose expected prototypes are the following:

typedef BOOLEAN (*RedirectCbFunc)(PCWSTR); // name

typedef BOOLEAN (*RedirectByFunctionCbFunc)(PWSTR, ULONG); // name, index

6.2: Process Information

The first step in getting or setting process information is to obtain a handle to the requested process with an

appropriate access mask by calling NtOpenProcess:

NTSTATUS NtOpenProcess(

Out PHANDLE ProcessHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PCLIENT_ID ClientId);

DesiredAccess is the access mask required, either one of the generic ones (e.g. GENERIC_READ) or better yet,

a combination of specific ones for processes (e.g. PROCESS_TERMINATE, PROCESS_VM_OPERATION) - all which

are officially documented.

ObjectAttributes does not need a name (as processes don’t have names), so can be initialized very simply

by using RTL_CONST_OBJECT_ATTRIBUTES like so:

OBJECT_ATTRIBUTES processAttributes = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

The most important piece is ClientId, where the process ID is specified. Note that the thread ID must be

zero, or the call fails. Here is an example that returns a handle to a given process ID and access mask (if

successful):

Chapter 5: Processes 96

HANDLE OpenProcess(ULONG pid, ACCESS_MASK access) {

OBJECT_ATTRIBUTES processAttributes = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

CLIENT_ID cid {};

cid.UniqueProcess = ULongToHandle(pid);

HANDLE hProcess = nullptr;

NtOpenProcess(&hProcess, access, &processAttributes, &cid);

return hProcess;

}

With a process handle in hand, the primary APIs to get and set information are the following:

NTSTATUS NtQueryInformationProcess(

In HANDLE ProcessHandle,

In PROCESSINFOCLASS ProcessInformationClass,

_Out_writes_bytes_(ProcessInformationLength) PVOID ProcessInformation,

In ULONG ProcessInformationLength,

_Out_opt_ PULONG ReturnLength);

NTSTATUS NtSetInformationProcess(

In HANDLE ProcessHandle,

In PROCESSINFOCLASS ProcessInformationClass,

_In_reads_bytes_(ProcessInformationLength) PVOID ProcessInformation,

In ULONG ProcessInformationLength);

The pattern should look familiar - NtQuerySystemInformation and NtSetSystemInformation use the same

pattern.

The PROCESSINFOCLASS enumeration provides the various pieces of data that can be retrieved and modified.

It’s not shown here for brevity, but the following subsections list some of the more useful ones.

Unless otherwise specified, the required access mask for the process handle is PROCESS_QUERY_LIMITED_-

INFORMATION or PROCESS_QUERY_INFORMATION.

6.2.1: ProcessBasicInformation (0, Query)

This information class provides some basic details about the process. One of the following structures are

accepted for this query:

Chapter 5: Processes 97

typedef struct _PROCESS_BASIC_INFORMATION {

NTSTATUS ExitStatus;

PPEB PebBaseAddress;

ULONG_PTR AffinityMask;

KPRIORITY BasePriority;

HANDLE UniqueProcessId;

HANDLE InheritedFromUniqueProcessId;

} PROCESS_BASIC_INFORMATION, *PPROCESS_BASIC_INFORMATION;

typedef struct _PROCESS_EXTENDED_BASIC_INFORMATION {

SIZE_T Size;

PROCESS_BASIC_INFORMATION BasicInfo;

union {

ULONG Flags;

struct {

ULONG IsProtectedProcess : 1;

ULONG IsWow64Process : 1;

ULONG IsProcessDeleting : 1;

ULONG IsCrossSessionCreate : 1;

ULONG IsFrozen : 1;

ULONG IsBackground : 1;

ULONG IsStronglyNamed : 1;

ULONG IsSecureProcess : 1;

ULONG IsSubsystemProcess : 1;

ULONG SpareBits : 23;

};

};

} PROCESS_EXTENDED_BASIC_INFORMATION, *PPROCESS_EXTENDED_BASIC_INFORMATION;

A description of PROCESS_BASIC_INFORMATION members follows:

• ExitStatus is the exit code of the process (if exited). Otherwise, STATUS_PENDING is returned (0x103);

this is called STILL_ACTIVE in Windows API headers.

• PebBaseAddress is the address of the Process Environment Block (PEB). See the next section for more

details on the PEB.

• AffinityMask is a processor bitmask, indicating which processors can be used by threads in this process

(for the current process group). A usable processor is represented with a 1 bit.

• UniqueProcessId is the process ID.

• InheritedFromUniqueProcessId is the parent process ID, from which certain properties are inherited

(if not explicitly specified), such as current directory, environment variables, and more.

The extended structure has some additional flags for the process:

Chapter 5: Processes 98

• IsProtectedProcess indicates the process is protected (“standard” protection or Protected Process

Light (PPL).

• IsWow64Process indicates the process is 32-bit and running on a 64-bit system.

• IsProcessDeleting indicates the process is no longer running code, but is kept alive because it’s still

being referenced (such as having a handle open to it). This is sometimes referred to as a “Zombie

Process”. You can see such processes with my Object Explorer tool (System / Zombie Processes menu

item).

• IsCrossSessionCreate indicates the process was created by a process running in a different session.

The most common case is UWP processes, which are always launched by the DCOM Launch service,

hosted in a standard SvcHost.exe running in session zero.

• IsFrozen indicates the process’ threads are all suspended. This is typical for UWP processes whose

windows are minimized.

• IsBackground indicates the process is in BackgroundMode. All the process’ threads run at base priority

of 4, the process I/O priority is “Very Low”, and its memory priority is 1. See the official documentation

for more on background mode. Chapter 6 provides more details.

• IsStronglyNamed indicates the process has some application identifier associated with it. The typical

case is UWP processes having their full package name.

• IsSecureProcess indicates a process running in Virtual Trust Level (VTL 1), if Virtualization Based

Security (VBS) is active. Typical secure processes are the Secure Kernel and Lsaiso.exe.

• IsSubsystemProcess indicates the process is running under theWindows Subsystem for Linux (WSL)

version 1 - a process running a Linux application. This is also referred to as a Pico Process.

There is no need to set the Size member; it’s filled in automatically by the API based on the passed

in buffer size.

Here is an example that uses ProcessBasicInformation to display some process details:

std::string ProcessFlagsToString(PROCESS_EXTENDED_BASIC_INFORMATION const& ebi) {

std::string flags;

if (ebi.IsProtectedProcess)

flags += "Protected, ";

if (ebi.IsFrozen)

flags += "Frozen, ";

if (ebi.IsSecureProcess)

flags += "Secure, ";

if (ebi.IsCrossSessionCreate)

flags += "Cross Session, ";

if (ebi.IsBackground)

flags += "Background, ";

if (ebi.IsSubsystemProcess)

flags += "WSL, ";

if (ebi.IsStronglyNamed)

Chapter 5: Processes 99

flags += "Strong Name, ";

if (ebi.IsProcessDeleting)

flags += "Deleting, ";

if (ebi.IsWow64Process)

flags += "Wow64, ";

if (!flags.empty())

return flags.substr(0, flags.length() - 2);

return "";

}

void DisplayInfo(HANDLE hProcess) {

PROCESS_EXTENDED_BASIC_INFORMATION ebi;

if (NT_SUCCESS(NtQueryInformationProcess(hProcess,

ProcessBasicInformation, &ebi, sizeof(ebi), nullptr))) {

auto& bi = ebi.BasicInfo;

printf("PID: %6u PPID: %6u Pri: %2u PEB: 0x%p %s\n",

HandleToULong(bi.UniqueProcessId),

HandleToULong(bi.InheritedFromUniqueProcessId),

bi.BasePriority, bi.PebBaseAddress,

ProcessFlagsToString(ebi).c_str());

}

}

6.2.2: ProcessIoCounters (2, Query)

This information class returns some I/O statistics for the process using the following structure (defined in

WinNt.h):

typedef struct _IO_COUNTERS {

ULONGLONG ReadOperationCount;

ULONGLONG WriteOperationCount;

ULONGLONG OtherOperationCount;

ULONGLONG ReadTransferCount;

ULONGLONG WriteTransferCount;

ULONGLONG OtherTransferCount;

} IO_COUNTERS;

6.2.3: ProcessVmCounters (3, Query)

This information class provides various memory counters for the process. It accepts any of the following

structures:

Chapter 5: Processes 100

typedef struct _VM_COUNTERS {

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG PageFaultCount;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

SIZE_T QuotaPeakPagedPoolUsage;

SIZE_T QuotaPagedPoolUsage;

SIZE_T QuotaPeakNonPagedPoolUsage;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

} VM_COUNTERS, *PVM_COUNTERS;

typedef struct _VM_COUNTERS_EX {

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG PageFaultCount;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

SIZE_T QuotaPeakPagedPoolUsage;

SIZE_T QuotaPagedPoolUsage;

SIZE_T QuotaPeakNonPagedPoolUsage;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivateUsage; // same as PagefileUsage

} VM_COUNTERS_EX, *PVM_COUNTERS_EX;

typedef struct _VM_COUNTERS_EX2 {

VM_COUNTERS_EX CountersEx;

SIZE_T PrivateWorkingSetSize;

SIZE_T SharedCommitUsage;

} VM_COUNTERS_EX2, *PVM_COUNTERS_EX2;

The various terms used for the memory counters are officially documented, so will not be detailed here.

6.2.4: ProcessTimes (4, Query)

This information class provides the process creation time, exit time (if exited), user-time and kernel-time

execution using the following structure:

Chapter 5: Processes 101

typedef struct _KERNEL_USER_TIMES {

LARGE_INTEGER CreateTime;

LARGE_INTEGER ExitTime;

LARGE_INTEGER KernelTime;

LARGE_INTEGER UserTime;

} KERNEL_USER_TIMES, *PKERNEL_USER_TIMES;

The Windows API provides the GetProcessTimes function to retrieved this same data.

CreateTime and ExitTime are in the usual 100 nsec units from January 1, 1601. KernelTime and UserTime

are in the usual 100 nsec units.

6.2.5: ProcessBasePriority (5, Set) and ProcessPriorityClass (18,
Query/Set)

These information classes allow changing the process base priority, which affects all thread priorities within a

process. Both information classes require the process handle to have the PROCESS_SET_INFORMATION access

mask bit.

The Windows API provides six possible values, referred to as Priority Classes: Low (4), Below Normal (6),

Normal (8), Above Normal (10), Highest (13), and Realtime (24) (see the docs for SetPriorityClass API).

ProcessPriorityClass allows querying and setting a priority class value based on the following structure:

#define PROCESS_PRIORITY_CLASS_UNKNOWN 0

#define PROCESS_PRIORITY_CLASS_IDLE 1

#define PROCESS_PRIORITY_CLASS_NORMAL 2

#define PROCESS_PRIORITY_CLASS_HIGH 3

#define PROCESS_PRIORITY_CLASS_REALTIME 4

#define PROCESS_PRIORITY_CLASS_BELOW_NORMAL 5

#define PROCESS_PRIORITY_CLASS_ABOVE_NORMAL 6

typedef struct _PROCESS_PRIORITY_CLASS {

BOOLEAN Foreground;

UCHAR PriorityClass;

} PROCESS_PRIORITY_CLASS, *PPROCESS_PRIORITY_CLASS;

The Foreground member indicates the process should be considered a foreground process, which means

that on client machines the quantum of threads in this process are triple length (around ~90 msec by default

instead of the standard ~30 msec). See chapter 6 for more on thread quantums.

SystemBasePriority provides a more flexible means to set a base priority that does not have to be one of

the above values. The value provided is a KPRIORITY, which is just a LONG. The number translates directly

to a base priority. The high (31) bit can be set to specify the Foreground bit.

Chapter 5: Processes 102

Here is an example of setting the current base priority to 7:

KPRIORITY priority = 7;

NtSetInformationProcess(NtCurrentProcess(), ProcessBasePriority,

&priority, sizeof(priority));

Curiously enough, increasing a process base priority (beyond its current level) with ProcessBasePriority

requires the SeIncreaseBasePriorityPrivilege privilege to be in the target’s process token (by default

granted to administrators and not standard users), but using ProcessPriorityClass is allowed with all

priority classes except Realtime without any special privileges.

6.2.6: ProcessHandleCount (20, Query)

This information returns the number of handles in the process, and optionally the highest number of handles

to ever exist in the process. The full expected structure is the following:

typedef struct _PROCESS_HANDLE_INFORMATION {

ULONG HandleCount;

ULONG HandleCountHighWatermark;

} PROCESS_HANDLE_INFORMATION, *PPROCESS_HANDLE_INFORMATION;

You can supply a pointer to a single ULONG, in which case the result would be the current handle count only.

6.2.7: ProcessSessionInformation (24, Query)

This information class returns the session this process is attched to (ULONG).

6.2.8: ProcessImageFileName (27) and ProcessImageFileNameWin32 (43) (Query)

These information classes return the process executable image file name as a UNICODE_STRING. The caller

must allocate a string big enough to accommodate the path. ProcessImageFileName returns the string in NT

device form ((“\Device\HarddiskVolume…”), while ProcessImageFileNameWin32 returns it in Win32 form

(“C:\MyFolder\…”). Here is an example:

BYTE buffer[512];

NtQueryInformationProcess(hProcess, ProcessImageFileName,

buffer, sizeof(buffer), nullptr);

auto exePath = (UNICODE_STRING*)buffer;

printf("NT: %wZ\n", exePath);

NtQueryInformationProcess(hProcess, ProcessImageFileNameWin32,

buffer, sizeof(buffer), nullptr);

exePath = (UNICODE_STRING*)buffer;

printf("Win32: %wZ\n", exePath);

Chapter 5: Processes 103

6.2.9: ProcessImageInformation (37, Query)

This information class returns a fixed structure of type SECTION_IMAGE_INFORMATION that provides some of

the details part of the Portable Executable (PE):

typedef struct _SECTION_IMAGE_INFORMATION {

PVOID TransferAddress;

ULONG ZeroBits;

SIZE_T MaximumStackSize;

SIZE_T CommittedStackSize;

ULONG SubSystemType;

union {

struct {

USHORT SubSystemMinorVersion;

USHORT SubSystemMajorVersion;

};

ULONG SubSystemVersion;

};

union {

struct {

USHORT MajorOperatingSystemVersion;

USHORT MinorOperatingSystemVersion;

};

ULONG OperatingSystemVersion;

};

USHORT ImageCharacteristics;

USHORT DllCharacteristics;

USHORT Machine;

BOOLEAN ImageContainsCode;

union {

UCHAR ImageFlags;

struct {

UCHAR ComPlusNativeReady : 1;

UCHAR ComPlusILOnly : 1;

UCHAR ImageDynamicallyRelocated : 1;

UCHAR ImageMappedFlat : 1;

UCHAR BaseBelow4gb : 1;

UCHAR ComPlusPrefer32bit : 1;

UCHAR Reserved : 2;

};

};

ULONG LoaderFlags;

Chapter 5: Processes 104

ULONG ImageFileSize;

ULONG CheckSum;

} SECTION_IMAGE_INFORMATION, *PSECTION_IMAGE_INFORMATION;

The various members correspond to various parts of a PE header. Look online for a full description.

The term “COMPlus” used in the above structure means “.NET”. COM+ has a different meaning

today, but the initial name for .NET was “COM+”.

6.2.10: ProcessHandleInformation (51, Query)

This information class returns a snapshot of the handles in the given process with the following structures:

typedef struct _PROCESS_HANDLE_TABLE_ENTRY_INFO {

HANDLE HandleValue;

ULONG_PTR HandleCount;

ULONG_PTR PointerCount;

ULONG GrantedAccess;

ULONG ObjectTypeIndex;

ULONG HandleAttributes;

ULONG Reserved;

} PROCESS_HANDLE_TABLE_ENTRY_INFO, *PPROCESS_HANDLE_TABLE_ENTRY_INFO;

// private

typedef struct _PROCESS_HANDLE_SNAPSHOT_INFORMATION {

ULONG_PTR NumberOfHandles;

ULONG_PTR Reserved;

PROCESS_HANDLE_TABLE_ENTRY_INFO Handles[1];

} PROCESS_HANDLE_SNAPSHOT_INFORMATION, *PPROCESS_HANDLE_SNAPSHOT_INFORMATION;

The information is similar to the system-wide handles returned by NtQuerySystemInformation we’ve seen

in chapter 4. Most notable is the missing object address.

6.2.11: ProcessHandleTable (58, Query)

This information class is supported in Windows 8.1 and later and returns an array of handle values only in

the given process. Each value is a ULONG. The number of handles returned should be retrieved by the returned

size. Divide it by sizeof(ULONG) to get the number of returned handles.

6.2.12: ProcessCommandLineInformation (60, Query)

This information class returns the full command line used to invoke the given process as a UNICODE_STRING.

Here is an example:

Chapter 5: Processes 105

BYTE buffer[2048]; // arbitrary

NtQueryInformationProcess(hProcess, ProcessCommandLineInformation,

buffer, sizeof(buffer), nullptr);

auto cmdLine = (UNICODE_STRING*)buffer;

The longest possible command line can have 32767 characters (the longest string UNICODE_STRING

can describe).

6.3: The Process Environment Block (PEB)

The PEB is a user-mode data structure each user-mode process has. One reason to have a PEB is to minimize

user to kernel transitions when information about the process is required by the process itself. Another reason

is that some of the information is not very “interesting” from the kernel’s perspective if that information

cannot be abused to hurt the kernel.

Gaining access to the PEB of the current process is done with the convenience function NtCurrentPeb.

“Convenience” means it’s not an actual native API, but rather a macro locating the PEB using the current

Thread Environment Block (TEB):

#define NtCurrentPeb() (NtCurrentTeb()->ProcessEnvironmentBlock)

The current TEB (NtCurrentTeb) is available by accessing the GS register (x64) or FS register (x86) (Similarly,

it’s taken from certain registers on ARM/ARM64). Both NtCurrentPeb and NtCurrentTeb are defined in

WinNt.h

Getting access to the PEB of another process requires calling NtQueryInformationProcesswith ProcessBa-

sicInformation. Of course, the retrieved PEB pointer is only valid in the target process. Getting to that data

requires calling ReadProcessMemory / WriteProcessMemory (Windows API), or NtReadVirtualMemory /

NtWriteVirtualMemory (native API). The latter functions are described in chapter 8.

The PEB is a large structure - displaying it here would take too many pages. I recommend you look at the

structure in the phnt headers (it’s also available with the public Microsoft symbols) while various members

are described.

Not all members of the PEB are described as some are no longer used, and the list of members is quite long

as it is.

• InheritedAddressSpace is TRUE if the process is cloned (RtlCloneUserProcess) and FALSE other-

wise.

Chapter 5: Processes 106

• ReadImageFileExecOptions seems to be always zero.

• BeingDebugged is TRUE if the process is running under a debugger. Note that changing this value to

FALSE does not change that fact. This can be used to “trick” code to conclude that the process is not

being debugged, when in fact it still is. The IsDebuggerPresentWindows API examines this member

to report if the process is being debugged. The “correct” way of checkingwithout relying on the PEB is by

calling the Windows API CheckRemoteDebuggerPresent, which calls NtQueryInformationProcess

with ProcessDebugPort, returning a valid handle to a Debug object if the process is being debugged.

• ImageUsesLargePages is set if the PE image is mapped using large pages.

• IsProtectedProcess is set if the process is protected (e.g. Csrss.exe, Smss.exe).

• IsImageDynamicallyRelocated is set if the PE image can be loaded into any address (usually TRUE).

• SkipPatchingUser32Forwarders is set for “safe” CD/DVD content; seems to be a legacy setting.

• IsPackagedProcess is set if process has been created based on an AppX package.

• IsAppContainer is set if the process runs inside an AppContainer.

• IsProtectedProcessLight is set if the process is PPL protected (compared to classic protection).

• IsLongPathAwareProcess is set if the process supports paths longer than MAX_PATH (260) characters.

• ImageBaseAddress is the base address the executable image is mapped to.

• Ldr is a pointer to PEB_LDR_DATA structure:

typedef struct _PEB_LDR_DATA {

ULONG Length;

BOOLEAN Initialized;

HANDLE SsHandle;

LIST_ENTRY InLoadOrderModuleList;

LIST_ENTRY InMemoryOrderModuleList;

LIST_ENTRY InInitializationOrderModuleList;

PVOID EntryInProgress;

BOOLEAN ShutdownInProgress;

HANDLE ShutdownThreadId;

} PEB_LDR_DATA, *PPEB_LDR_DATA;

The main ingredient is a set of three linked list that store information about the loaded modules in the process

in three different ways:

• InLoadOrderModuleList stores the list in module load order.

• InMemoryOrderModuleList stored the list in the same order as the load order after all modules have

been verified.

• InInitializationOrderModuleList stores the list in order of initialization. Naturally, this excludes

the executable module, since it has no initialization like a DLL does (no DllMain function).

Each module entry is of type LDR_DATA_TABLE_ENTRY, containing quite a few details about a module:

Chapter 5: Processes 107

typedef struct _LDR_DATA_TABLE_ENTRY {

LIST_ENTRY InLoadOrderLinks;

LIST_ENTRY InMemoryOrderLinks;

union {

LIST_ENTRY InInitializationOrderLinks;

LIST_ENTRY InProgressLinks;

};

PVOID DllBase;

PLDR_INIT_ROUTINE EntryPoint;

ULONG SizeOfImage;

UNICODE_STRING FullDllName;

UNICODE_STRING BaseDllName;

union {

UCHAR FlagGroup[4];

ULONG Flags;

struct {

ULONG PackagedBinary : 1;

ULONG MarkedForRemoval : 1;

ULONG ImageDll : 1;

ULONG LoadNotificationsSent : 1;

ULONG TelemetryEntryProcessed : 1;

ULONG ProcessStaticImport : 1;

ULONG InLegacyLists : 1;

ULONG InIndexes : 1;

ULONG ShimDll : 1;

ULONG InExceptionTable : 1;

ULONG ReservedFlags1 : 2;

ULONG LoadInProgress : 1;

ULONG LoadConfigProcessed : 1;

ULONG EntryProcessed : 1;

ULONG ProtectDelayLoad : 1;

ULONG ReservedFlags3 : 2;

ULONG DontCallForThreads : 1;

ULONG ProcessAttachCalled : 1;

ULONG ProcessAttachFailed : 1;

ULONG CorDeferredValidate : 1;

ULONG CorImage : 1;

ULONG DontRelocate : 1;

ULONG CorILOnly : 1;

ULONG ChpeImage : 1;

ULONG ChpeEmulatorImage : 1;

ULONG ReservedFlags5 : 1;

Chapter 5: Processes 108

ULONG Redirected : 1;

ULONG ReservedFlags6 : 2;

ULONG CompatDatabaseProcessed : 1;

};

};

USHORT ObsoleteLoadCount;

USHORT TlsIndex;

LIST_ENTRY HashLinks;

ULONG TimeDateStamp;

struct _ACTIVATION_CONTEXT *EntryPointActivationContext;

PVOID Lock; // SRW Lock

PLDR_DDAG_NODE DdagNode;

LIST_ENTRY NodeModuleLink;

struct _LDRP_LOAD_CONTEXT *LoadContext;

PVOID ParentDllBase;

PVOID SwitchBackContext;

RTL_BALANCED_NODE BaseAddressIndexNode;

RTL_BALANCED_NODE MappingInfoIndexNode;

ULONG_PTR OriginalBase;

LARGE_INTEGER LoadTime;

ULONG BaseNameHashValue;

LDR_DLL_LOAD_REASON LoadReason;

ULONG ImplicitPathOptions;

ULONG ReferenceCount; // since WIN10

ULONG DependentLoadFlags;

UCHAR SigningLevel; // since REDSTONE2

ULONG CheckSum; // since 22H1

PVOID ActivePatchImageBase;

LDR_HOT_PATCH_STATE HotPatchState;

} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

Here is an example of enumerating the three lists using a common function:

void ListModules(LIST_ENTRY* head, int linkOffset) {

for (auto next = head->Flink; next != head; next = next->Flink) {

auto data = (PLDR_DATA_TABLE_ENTRY)((PBYTE)next - linkOffset);

printf("0x%p: %wZ \n", data->DllBase, &data->BaseDllName);

}

}

int main(int argc, const char* argv[]) {

auto peb = NtCurrentPeb();

Chapter 5: Processes 109

printf("Load Order\n");

ListModules(&peb->Ldr->InLoadOrderModuleList,

offsetof(LDR_DATA_TABLE_ENTRY, InLoadOrderLinks));

printf("\nMemory Order\n");

ListModules(&peb->Ldr->InMemoryOrderModuleList,

offsetof(LDR_DATA_TABLE_ENTRY, InMemoryOrderLinks));

printf("\nInitialization Order\n");

ListModules(&peb->Ldr->InInitializationOrderModuleList,

offsetof(LDR_DATA_TABLE_ENTRY, InInitializationOrderLinks));

return 0;

}

The trick is to pass the offset of the corresponding LIST_ENTRY embedded in the LDR_DATA_TABLE_ENTRY

structure, so that the correct pointer is obtained. This code does the traversal on the current process, yielding

output such as the following (Debug build):

Load Order

0x00007FF7696F0000: ModList.exe

0x00007FFC832D0000: ntdll.dll

0x00007FFC82590000: KERNEL32.DLL

0x00007FFC81030000: KERNELBASE.dll

0x00007FFC69000000: VCRUNTIME140D.dll

0x00007FFBD9C20000: ucrtbased.dll

Memory Order

0x00007FF7696F0000: ModList.exe

0x00007FFC832D0000: ntdll.dll

0x00007FFC82590000: KERNEL32.DLL

0x00007FFC81030000: KERNELBASE.dll

0x00007FFC69000000: VCRUNTIME140D.dll

0x00007FFBD9C20000: ucrtbased.dll

Initialization Order

0x00007FFC832D0000: ntdll.dll

0x00007FFC81030000: KERNELBASE.dll

0x00007FFC82590000: KERNEL32.DLL

0x00007FFBD9C20000: ucrtbased.dll

0x00007FFC69000000: VCRUNTIME140D.dll

Doing the same traversal in another process is trickier, since we would have to read memory that belongs to

Chapter 5: Processes 110

another process. This is left as an exercise to the interested reader. We’ll see full code for that in chapter 8.

The Windows API provides the EnumProcessModules API to traverse the modules loaded in any process

with a powerful-enough handle, which it does by reading the relevant details from the process’ PEB. This

function only returns the base addresses of the modules, which forces the caller to call more APIs such as

GetModuleBaseName and GetModuleInformation to get more details, but the returned details are not as rich

as the full LDR_DATA_TABLE_ENTRY.

The full member of list of LDR_DATA_TABLE_ENTRY will not be described here in the interest of time.

Back to the PEB structure members:

• ProcessHeap is the default process heap handle, available with the macro RtlProcessHeap or the

Windows API GetProcessHeap. See chapter 8 for more in heaps.

• FastPebLock is a pointer to a critical section (RTL_CRITICAL_SECTION) that is used to synchronize

access to various PEB members. The native APIs RtlAcquirePebLock and RtlReleasePebLock can

be used to acquire and release it.

Next are several flags under stored in a union where CreateProcessFlags is available as the overarching

member:

• ProcessInJob is set if the process is part of any job.

• ProcessInitializing is set while the process is being initialized by the loader.

• ProcessUsingVEH is set if the process is using Vectored Exception Handlers.

• ProcessUsingVCH is set if the process is using Vectored Continuation Handlers.

See the SDK documentation for more on VEH and VCH.

• KernelCallbackTable is a pointer to an array of callbacks used byUser32.Dll that occur after a relevant

system call is invoked. You can try the following in WinDbg attached to a process that uses User32.Dll

(e.g. Notepad.exe):

0:014> dt nt!_peb @$peb

ntdll!_PEB

+0x000 InheritedAddressSpace : 0 ''

+0x001 ReadImageFileExecOptions : 0 ''

+0x002 BeingDebugged : 0x1 ''

...

+0x058 KernelCallbackTable : 0x00007ffc`82f4f070 Void

...

0:014> dqs 0x00007ffc`82f4f070 L30

Chapter 5: Processes 111

00007ffc`82f4f070 00007ffc`82ee2780 USER32!_fnCOPYDATA

00007ffc`82f4f078 00007ffc`82f47ea0 USER32!_fnCOPYGLOBALDATA

00007ffc`82f4f080 00007ffc`82ee0c00 USER32!_fnDWORD

00007ffc`82f4f088 00007ffc`82ee6a60 USER32!_fnNCDESTROY

00007ffc`82f4f090 00007ffc`82eedac0 USER32!_fnDWORDOPTINLPMSG

00007ffc`82f4f098 00007ffc`82f486d0 USER32!_fnINOUTDRAG

00007ffc`82f4f0a0 00007ffc`82ee7f90 USER32!_fnGETTEXTLENGTHS

00007ffc`82f4f0a8 00007ffc`82f48370 USER32!_fnINCNTOUTSTRING

00007ffc`82f4f0b0 00007ffc`82f48430 USER32!_fnINCNTOUTSTRINGNULL

00007ffc`82f4f0b8 00007ffc`82ee9700 USER32!_fnINLPCOMPAREITEMSTRUCT

00007ffc`82f4f0c0 00007ffc`82ee2be0 USER32!__fnINLPCREATESTRUCT

00007ffc`82f4f0c8 00007ffc`82f484f0 USER32!_fnINLPDELETEITEMSTRUCT

00007ffc`82f4f0d0 00007ffc`82eefe50 USER32!__fnINLPDRAWITEMSTRUCT

00007ffc`82f4f0d8 00007ffc`82f48550 USER32!_fnINLPHELPINFOSTRUCT

...

Each callback has a simple, generic, prototype:

NTSTATUS KernelToUserCallback(

PVOID InputBuffer,

ULONG InputLength);

• ApiSetMap is a pointer to the API Set mappings, pointing API Set names to their implementation on

the current system. Full discussion of API Sets is beyond the scope of this book, please refer to the book

“Windows Internals, part 1”. Here is the gist of it: API Sets allow separating sets of functions (think of

each set as an interface) from the actual implementation binary.

The following example lists that mapping (see the ApiSets sample):

#define API_SET_SCHEMA_ENTRY_FLAGS_SEALED 1

auto apiSetMap = NtCurrentPeb()->ApiSetMap;

auto apiSetMapAsNumber = ULONG_PTR(apiSetMap);

auto nsEntry = PAPI_SET_NAMESPACE_ENTRY(apiSetMap->EntryOffset +

apiSetMapAsNumber);

for (ULONG i = 0; i < apiSetMap->Count; i++) {

auto isSealed = (nsEntry->Flags & API_SET_SCHEMA_ENTRY_FLAGS_SEALED) != 0;

std::wstring name(PWCHAR(apiSetMapAsNumber + nsEntry->NameOffset),

nsEntry->NameLength / sizeof(WCHAR));

printf("%56ws.dll -> %s{", name.c_str(), (isSealed ? "s" : ""));

Chapter 5: Processes 112

auto valueEntry = PAPI_SET_VALUE_ENTRY(apiSetMapAsNumber +

nsEntry->ValueOffset);

for (ULONG j = 0; j < nsEntry->ValueCount; j++) {

//

// host name

//

name.assign(PWCHAR(apiSetMapAsNumber + valueEntry->ValueOffset),

valueEntry->ValueLength / sizeof(WCHAR));

printf("%ws", name.c_str());

if ((j + 1) != nsEntry->ValueCount)

printf(", ");

//

// If there's an alias

//

if (valueEntry->NameLength != 0) {

name.assign(PWCHAR(apiSetMapAsNumber + valueEntry->NameOffset),

valueEntry->NameLength / sizeof(WCHAR));

printf(" [%ws]", name.c_str());

}

valueEntry++;

}

printf("}\n");

nsEntry++;

}

• TlsBitmap is a pointer to RTL_BITMAP (see chapter 2 for more on bitmaps) that stores information about

indices used with Thread Local Storage (TLS). A process guarantees at least 64 TLS indices, stored

in the next member, TlsBitmapBits (an array of 2 32-bit values). If more than 64 TLS indices are

needed, the TlsExpansionBitmap member provides that service, with its own bitmap in the following

member (TlsExpansionBitmapBits), which is an array of 32 ULONG values, supporting 1024 (32 * 8)

bits (indices).

Detailed description of TLS is beyond the scope of this book, but it’s use is fully documented in the Windows

API. Look for the functions TlsAlloc, TlsFree, TlsSetValue, and TlsGetValue.

Chapter 5: Processes 113

• NtGlobalFlags stores the Image File Execution Options flags read from the Registry that apply

to this process based on the executable name. The key is HKLM\Software\Microsoft\Windows

NT\CurrentVersion\Image File Execution Options\exename. The value name is GlobalFlag.

The following members are related to heaps:

• HeapSegmentReserve and HeapSegmentCommit indicate the initial defaults for reserved memory (in

bytes) and committed bytes for a new heap if no override is specified.

• HeapDeCommitTotalFreeThreshold and HeapDeCommitFreeBlockThreshold are used as thresholds

for decommitting memory from heaps when blocks are freed.

The above defaults are read from the Registry key HKLM\System\CurrentControlSet\Control\Session Man-

ager.

• NumberOfHeaps stored the current number of heaps in the process.

• MaximumNumberOfHeaps is the maximum number of heaps the process can have.

• ProcessHeaps is a pointer to an array of heap pointers, their count is NumberOfHeaps. The

RtlGetProcessHeaps API returns this array of heaps.

See chapter 8 for more on heaps.

• GdiSharedHandleTable is the shared handle table for GDI objects for this session (not just this process).

• LoaderLock is a critical section taskedwith protecting certain loader operations from concurrent access.

This concludes the PEBmembers I will cover at this point. Newer versions of the book will likely cover more

members.

6.4: Suspending and Resuming Processes

The native API provides functions to suspend and resume a process:

NTSTATUS NtSuspendProcess(_In_ HANDLE ProcessHandle);

NTSTATUS NtResumeProcess(_In_ HANDLE ProcessHandle);

There is no direct counterpart to these APIs in the Windows API. Suspending a process means suspending

all the threads in the process, since threads are the ones actually executing.

The handle provided must have the PROCESS_SUSPEND_RESUME access mask for these functions to succeed.

6.5: Enumerating Processes (Take 2)

Chapter 4 showed how to enumerate processes with NtQuerySystemInformation with a few information

classes providing varying levels of detail. There is another way to enumerate processes, receiving open

handles to processes that can be accessed by the caller.

The API in question is NtGetNextProcess:

Chapter 5: Processes 114

NTSTATUS NtGetNextProcess(

_In_opt_ HANDLE ProcessHandle,

In ACCESS_MASK DesiredAccess,

In ULONG HandleAttributes,

In ULONG Flags,

Out PHANDLE NewProcessHandle);

The idea behind this function is to get the “next” process whose handle can be obtained with the requested

access mask. If the next process in line is not accessible by the caller with that access masked, it will be

skipped. This function is typically invoked in a loop until it fails, which means no more processes can be

retrieved with the requested access.

To begin iteration, the input ProcessHandle is set to NULL. The output handle (if successful) is stored in

NewProcessHandle. This handle should then passed as ProcessHandle in the next iteration. It’s important

not to forget to close each handle once you’re doing using it - the API opens handles, and the client’s job to

close them at some point, usually after using a returned handle.

ObjectAttributes can be zero or a set of flags defined for the OBJECT_ATTRIBUTES structure discussed in

chapter 2; a value of zero is typical.

The only flag currently supported in Flags has a value of 1, and if specified, traverses the processes in reverse

order.

Here is an example that iterates through processes with a specific access mask (see the ProcList sample for

full code):

int main() {

HANDLE hProcess = nullptr;

for (;;) {

HANDLE hNewProcess;

auto status = NtGetNextProcess(hProcess,

PROCESS_QUERY_LIMITED_INFORMATION, 0, 0, &hNewProcess);

//

// close previous handle

//

if(hProcess)

NtClose(hProcess);

if (!NT_SUCCESS(status))

break;

PROCESS_EXTENDED_BASIC_INFORMATION ebi;

if (NT_SUCCESS(NtQueryInformationProcess(hNewProcess,

ProcessBasicInformation, &ebi, sizeof(ebi), nullptr))) {

auto& bi = ebi.BasicInfo;

Chapter 5: Processes 115

printf("PID: %6u PPID: %6u Pri: %2u PEB: 0x%p %s\n",

HandleToULong(bi.UniqueProcessId),

HandleToULong(bi.InheritedFromUniqueProcessId),

bi.BasePriority, bi.PebBaseAddress,

ProcessFlagsToString(ebi).c_str());

}

hProcess = hNewProcess;

}

return 0;

}

ProcessFlagsToString is a simple function returning a textual description of the flags provided in

PROCESS_BASIC_INFORMATION:

std::string ProcessFlagsToString(PROCESS_EXTENDED_BASIC_INFORMATION const& ebi) {

std::string flags;

if (ebi.IsProtectedProcess)

flags += "Protected, ";

if (ebi.IsFrozen)

flags += "Frozen, ";

if (ebi.IsSecureProcess)

flags += "Secure, ";

if (ebi.IsCrossSessionCreate)

flags += "Cross Session, ";

if (ebi.IsBackground)

flags += "Background, ";

if (ebi.IsSubsystemProcess)

flags += "WSL, ";

if (ebi.IsStronglyNamed)

flags += "Strong Name, ";

if (ebi.IsProcessDeleting)

flags += "Deleting, ";

if (ebi.IsWow64Process)

flags += "Wow64, ";

if (!flags.empty())

return flags.substr(0, flags.length() - 2);

return "";

}

Chapter 5: Processes 116

6.6: Summary

This chapter dealt with several native APIs related to processes. In the next chapter, we’ll take a look at native

APIs related to threads.

Chapter 6: Threads

Threads are the entities scheduled by theWindows kernel to execute code on processors. This chapter explores

the native APIs related to threads.

In this chapter:

• Creating Threads

• Thread Information

• The Thread Environment Block (TEB)

• Asynchronous Procedure Calls (APC)

• Thread Pools

• More Thread APIs

7.1: Creating Threads

TheWindowsAPI provides the following functions to create a thread: CreateThread, CreateRemoteThread,

and CreateRemoteThreadEx. The native API provides two functions: RtlCreateUserThread and NtCre-

ateThreadEx. Let’s begin with the former (which eventually invokes the latter).

7.1.1: RtlCreateUserThread

This is the simpler of the two:

NTSTATUS RtlCreateUserThread(

In HANDLE Process,

_In_opt_ PSECURITY_DESCRIPTOR ThreadSecurityDescriptor,

In BOOLEAN CreateSuspended,

_In_opt_ ULONG ZeroBits,

_In_opt_ SIZE_T MaximumStackSize,

_In_opt_ SIZE_T CommittedStackSize,

In PUSER_THREAD_START_ROUTINE StartAddress,

_In_opt_ PVOID Parameter,

_Out_opt_ PHANDLE Thread,

_Out_opt_ PCLIENT_ID ClientId);

Chapter 6: Threads 118

This API mimics very closely the CreateRemoteThread Windows API. Here are the parameters:

• Process is a handle to the process where the thread should be created in. The handle must have the

PROCESS_CREATE_THREAD access mask bit. If the handle is set to NtCurrentProcess(), the thread is

created in the caller’s process. Note that NULL is not a valid value for this parameter.

• ThreadSecurityDescriptor is an optional security descriptor to apply to the newly created thread.

• CreateSuspended is a Boolean flag that if set, indicates the thread should be created in suspended

state. In that case, NtResumeThread should be called when appropriate to spring the thread into action.

• ZeroBits is typically set to zero. This gives the kernel full freedom as where to allocate the thread’s

stack.

• MaximumStackSize and CommittedStack are the maximum reserved and the initial commit stack size

in bytes, respectively, rounded up to a page boundary if needed. If zero is specified, the default is taken

from the PE header. Noe that the Windows APIs accept the initial commit or the maximum reserved,

but not both.

• StartAddress is the thread’s start address, that has essentially the same prototype as expected by the

Windows API functions:

typedef NTSTATUS (__stdcall *PUSER_THREAD_START_ROUTINE)(_In_ PVOID ThreadParameter);

• Parameter is the value passed to the thread function.

• Thread is an optional handle pointer where the resulting handle should land upon a successful call.

You should always retrieve it, so the handle can (at the very least) be closed.

• ClientId is an optional CLIENT_ID pointer, where the new thread’s unique ID, and the process ID it’s

in are returned.

The following example creates a thread in the current process:

NTSTATUS __stdcall DoWork(PVOID param) {

//...

}

void SomeFunction() {

HANDLE hThread;

status = RtlCreateUserThread(NtCurrentProcess(), nullptr,

FALSE, // not suspended

0, 128 << 10, // maximum size: 128 KB

16 << 10, // initial size: 16 KB

DoWork, nullptr, // function and argument

&hThread, nullptr);

//...

NtClose(hThread);

}

Chapter 6: Threads 119

7.1.2: NtCreateThreadEx

NtCreateThreadEx provides more flexibility than RtlCreateUserThread:

NTSTATUS NtCreateThreadEx(

Out PHANDLE ThreadHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In HANDLE ProcessHandle,

In PVOID StartRoutine, // PUSER_THREAD_START_ROUTINE

_In_opt_ PVOID Argument,

In ULONG CreateFlags, // THREAD_CREATE_FLAGS_*

In SIZE_T ZeroBits,

In SIZE_T StackSize,

In SIZE_T MaximumStackSize,

_In_opt_ PPS_ATTRIBUTE_LIST AttributeList);

ThreadHandle is the returned thread handle on successful invocation. DesiredAccess specifies the desired

access mask for the returned handle, the typical value being THREAD_ALL_ACCESS (this is always the case

with the Windows APIs). ObjectAttributes is an optional pointer to the standard OBJECT_ATTRIBUTES,

typically passed as NULL.

ProcessHandle, StartRoutine, Argument, and ZeroBits serve the same purpose as in

RtlCreateUserThread. StackSize is the initial committed stack size, and MaximumStackSize is the

maximum reserved stack size.

CreateFlags is a set of optional flags that can be specified:

• THREAD_CREATE_FLAGS_SUSPENDED (1) - if set, creates the thread in a suspended state.

• THREAD_CREATE_FLAGS_SKIP_ATTACH (2) - if set, does not call DllMain for DLLs in the process with

THREAD_DLL_ATTACH or THREAD_DLL_DETACH reasons.

• THREAD_CREATE_FLAGS_HIDE_FROM_DEBUGGER (4) - if set, debuggers will not show this thread.

• THREAD_CREATE_FLAGS_LOADER_WORKER (0x10) - set if the thread is a loader worker thread.

• THREAD_CREATE_FLAGS_SKIP_LOADER_INIT (0x20) - if set, skips loader initialization entirely.

• THREAD_CREATE_FLAGS_BYPASS_PROCESS_FREEZE (0x40) - if set, thread is not suspended when process

is frozen, such as with PsSuspendProcess or a UWP process is suspended.

Note that phnt has different defines for some of the above constants.

Finally, AttributeList is an optional attribute list to apply to the created thread. You can find more possible

attributes by examining the documentation of the UpdateProcThreadAttribute Windows API, although

the native uses a different way of building attribute lists.

Here are the associated structures:

Chapter 6: Threads 120

typedef struct _PS_ATTRIBUTE {

ULONG_PTR Attribute;

SIZE_T Size;

union {

ULONG_PTR Value;

PVOID ValuePtr;

};

PSIZE_T ReturnLength;

} PS_ATTRIBUTE, *PPS_ATTRIBUTE;

typedef struct _PS_ATTRIBUTE_LIST {

SIZE_T TotalLength;

PS_ATTRIBUTE Attributes[1];

} PS_ATTRIBUTE_LIST, *PPS_ATTRIBUTE_LIST;

An attributes list structure has room for just one attribute, but it can dynamically allocated based on the

actual number needed, or event statically by introducing a union.

The following example uses a group affinity attribute to set a specific group affinity for a thread:

GROUP_AFFINITY affinity{}; // zero out the Reserved members

affinity.Group = 1; // group 1

affinity.Mask = 0; // all processors in the group

PS_ATTRIBUTE_LIST attributes;

attributes.TotalLength = sizeof(attributes);

auto& attribute = attributes.Attributes[0];

attribute.Attribute = PS_ATTRIBUTE_GROUP_AFFINITY;

attribute.Size = sizeof(affinity);

attribute.ValuePtr = &affinity;

attribute.ReturnLength = 0;

status = NtCreateThreadEx(..., &attributes);

The following example uses two attributes, showing a way to statically allocate the required structures:

Chapter 6: Threads 121

union {

PS_ATTRIBUTE_LIST List;

//

// force big enough stack allocation

//

BYTE Buffer[FIELD_OFFSET(PS_ATTRIBUTE_LIST, Attributes)

+ 2 * sizeof(PS_ATTRIBUTE)];

} attributes;

GROUP_AFFINITY affinity{};

affinity.Group = 0;

affinity.Mask = 0;

{

//

// first attribute

//

auto& attribute = attributes.List.Attributes[0];

attribute.Attribute = PS_ATTRIBUTE_GROUP_AFFINITY;

attribute.Size = sizeof(affinity);

attribute.ValuePtr = &affinity;

attribute.ReturnLength = 0;

}

PROCESSOR_NUMBER ideal{};

ideal.Group = 0;

ideal.Number = 5; // set CPU 5 as the ideal CPU

{

//

// second attribute

//

auto& attribute = attributes.List.Attributes[1];

attribute.Attribute = PS_ATTRIBUTE_IDEAL_PROCESSOR;

attribute.Size = sizeof(ideal);

attribute.ValuePtr = &ideal;

attribute.ReturnLength = 0;

}

attributes.List.TotalLength = sizeof(attributes.Buffer);

status = NtCreateThreadEx(..., &attributes.List);

Chapter 6: Threads 122

7.2: Thread Information

Just like with processes (and other object types), two main functions exist for getting and setting thread

information:

NTSTATUS NtQueryInformationThread(

In HANDLE ThreadHandle,

In THREADINFOCLASS ThreadInformationClass,

_Out_writes_bytes_(ThreadInformationLength) PVOID ThreadInformation,

In ULONG ThreadInformationLength,

_Out_opt_ PULONG ReturnLength);

NTSTATUS NtSetInformationThread(

In HANDLE ThreadHandle,

In THREADINFOCLASS ThreadInformationClass,

_In_reads_bytes_(ThreadInformationLength) PVOID ThreadInformation,

In ULONG ThreadInformationLength);

The THREADINFOCLASS is an enumeration used to specify the type of information to set or query. In this

section, we’ll take a look at some of these information classes. Unless otherwise specified, the thread handle

used must have the THREAD_QUERY_LIMITED_INFORMATION or THREAD_QUERY_INFORMATION access mask for

querying and THREAD_SET_LIMITED_INFORMATION or THREAD_SET_INFORMATION for setting.

7.2.1: ThreadBasicInformation (0, Query)

This value provides some basic details of a thread:

typedef struct _THREAD_BASIC_INFORMATION {

NTSTATUS ExitStatus;

PTEB TebBaseAddress;

CLIENT_ID ClientId;

ULONG_PTR AffinityMask;

KPRIORITY Priority;

LONG BasePriority;

} THREAD_BASIC_INFORMATION, *PTHREAD_BASIC_INFORMATION;

Here is a description of the members:

• ExitStatus is the exit code of the thread (if terminated). Otherwise, the value STATUS_PENDING (0x103)

is returned. The Windows API defines this as STILL_ACTIVE.

• TebBaseAddress is the address of the Thread Environment Block (TEB). See the next section for more

on the TEB.

Chapter 6: Threads 123

• ClientId is the process and thread IDs.

• AffinityMask is the mask of processors that can be used by the thread, where “1” bits indicate valid

processors. Normally, it’s set to the full range of processors available in the current processor group.

• Priority is the thread’s current priority (0 to 31).

• BasePriority is the base priority of the thread, which can be lower than Priority temporarily if

because of priority boosting.

7.2.2: ThreadTimes (1, Query)

This information class returns the thread creation and exit times, kernel-mode and user-mode execution

times. The structure used, KERNEL_USER_TIMES, is the same one used in NtQueryInformationProcesswith

ProcessTimes in chapter 5. The Windows API GetThreadTimes provides the same information.

7.2.3: Thread CPU Priorities

Several information classes are related to thread CPU priorities:

• ThreadPriority (2) sets the current thread priority. If the priority is in the real-time range (16-31), the

SeIncreaseBasePriorityPrivilege is required.

• ThreadBasePriority (3) sets the base priority of the thread, on top of which a boost can be applied

by the kernel and kernel drivers. Csrss.exe processes and processes running with the Realtime priority

class can change to any priority without restriction.

• ThreadPriorityBoost (14) allows settings or querying whether priority boosts should apply to the

thread (ULONG used with 0 to disable, 1 to enable). By default, boosts are enabled. Note, however, that

boots are never applied in the Realtime range (16-31).

• ThreadActualBasePriority (25) allows setting the current thread priority similarly to Thread-

BasePriority, but also changes the current priority to have the same value. Querying is supported as

well.

Priority boots (if enabled) occur for the following reasons (not an exhaustive list):

• Thread released after a wait is satisfied on an event or semaphore gets a +1 boost by the kernel. Device

drivers can specify their own boost when they call KeSetEvent or KeReleaseSemaphore.

• GUI threads that receive a message get a +2 boost.

• Threads in the foreground process (one of its windows are in focus) get a +2 boost as well. Boosts are

cumulative, so a GUI thread in such a process may get a +4 boost.

• A starved thread (being in the Ready state for more than 4 seconds) might get a boost to priority 15 for

a single quantum.

Except for the last boost that drops to the thread’s base priority after one quantum of running, the other

boosts cause a decay of 1 for the thread’s priority after each quantum the thread executed, until the priority

reaches the thread’s base priority. For more information about thread priorities and scheduling, see chapter

4 in the “Windows Internals part 1” book.

Chapter 6: Threads 124

7.2.4: ThreadSystemThreadInformation (40, Query)

This information class returns a SYSTEM_THREAD_INFORMATION, the same structure we met in chapter 4.

7.2.5: ThreadNameInformation (38, Query, Set)

This information class allows setting or getting a description for a thread (available in Windows 10 and later).

The name is just a description that serves no “real” purpose, but is used to easily identify threads of interest

in the debugger. Visual Studio’s debugger supports setting and querying this value.

The expected structure is just a wrapper around a UNICODE_STRING:

typedef struct _THREAD_NAME_INFORMATION {

UNICODE_STRING ThreadName;

} THREAD_NAME_INFORMATION, *PTHREAD_NAME_INFORMATION;

This functionality is available with the Windows API functions SetThreadDescription and

GetThreadDescription.

7.2.6: ThreadIoPriority (22, Query, Set)

This information class queries or sets the I/O priority for the thread. The value provided or queried is from

the IO_PRIORITY_HINT enumeration:

typedef enum _IO_PRIORITY_HINT {

IoPriorityVeryLow = 0, // Defragging, content indexing and other background I/O

IoPriorityLow, // Prefetching for applications.

IoPriorityNormal, // Normal I/O (default)

IoPriorityHigh, // Used by filesystems for checkpoint I/O

IoPriorityCritical, // Used by memory manager. Not available for applications

MaxIoPriorityTypes

} IO_PRIORITY_HINT;

For a query operation, this is exactly what is returned. For a set operation, an extended structure can be

specified:

typedef struct _IO_PRIORITY_HINT_INFORMATION_EX {

IO_PRIORITY_HINT PriorityHint;

BOOLEAN BoostOutstanding;

} _IO_PRIORITY_HINT_INFORMATION_EX;

If specified, BoostOutstanding indicates if existing I/O operations started from this thread should be boosted

immediately (if higher than current).

Chapter 6: Threads 125

7.2.7: ThreadSuspendCount (35, Query)

This information class returns the suspend count of a thread. Zero means the thread is not suspended, while

any positive value indicates the thread is suspended. NtSuspendThread and NtResumeThread can be used

to suspend/resume a thread. If a thread is suspended with calls to NtSuspendThread, the same number of

calls to NtResumeThread must be made to resume the thread. Here are the APIs:

NTSTATUS NtSuspendThread(

In HANDLE ThreadHandle,

_Out_opt_ PULONG PreviousSuspendCount);

NTSTATUS NtResumeThread(

In HANDLE ThreadHandle,

_Out_opt_ PULONG PreviousSuspendCount);

The THREAD_SUSPEND_RESUME access mask is required for the handle used to suspend a thread.

7.3: Synchronization

Threads sometimes need to coordinate work by waiting on various kernel dispatcher (“waitable”) objects,

which maintain a state of signaled or non-signaled. A thread can wait on one or more objects using the

following basic APIs:

NTSTATUS NtWaitForSingleObject(

In HANDLE Handle,

In BOOLEAN Alertable,

_In_opt_ PLARGE_INTEGER Timeout);

NTSTATUS NtWaitForMultipleObjects(

In ULONG Count,

_In_reads_(Count) HANDLE Handles[],

In WAIT_TYPE WaitType,

In BOOLEAN Alertable,

_In_opt_ PLARGE_INTEGER Timeout);

The Windows API (rough) equivalents are WaitForSingleObject(Ex) and

WaitForMultipleObjects(Ex).

Chapter 6: Threads 126

Example dispatcher object types are: process, thread, mutex, event, semaphore, job, file. We’ll look at the

APIs available for working with various object types in chapter 7.

Both functions require a Timeout parameter to indicate how long the wait should last at most. Specifying

NULL means forever (as long as it takes). Negative values indicate relative time (in the usual 100 nsec units),

while positive values indicate absolute time with the same units measured from January 1, 1601 at midnight

UT.

The handles provided point to the object(s) to wait on. NtWaitForSingleObject waits for a single object,

while NtWaitForMultipleObjects can wait on at most 64 objects. The WaitType indicates whether all

objects must become signaled for the wait to succeed (WaitAll), or just one (WaitAny).

The Aletrable flag indicates if the wait should be alterable. If TRUE, then if APCs are queued to the thread

while waiting, they execute, and the wait is satisfied. See the section Asynchronous Procedure Calls later in

this chapter for more on APCs.

The common return values for both single and multiple waits are the following:

• STATUS_TIMEOUT - the timeout has elapsed, but the object(s) have not become signaled. This value

cannot be returned if the the timeout is NULL (infinite wait).

• STATUS_SUCCESS - the object waited upon has become signaled before the timeout elapsed. This applies

to a single object wait and a multiple object wait with WaitAll.

• STATUS_USER_APC - an alertable wait is satisfied because APC(s) executed.

For single waits, STATUS_ABANDONED may be returned if the wait was satisfied because a mutex was

abandoned. An abandoned mutex is one that was not released by a thread before that thread terminated.

The kernel forcefully released the mutex (making it signaled), but the next thread to successfully acquire

the mutex receives a STATUS_ABANDONED to indicate the previous owner thread of that mutex terminated

prematurely.

For a multiple wait with WaitAny, a return value in the range STATUS_WAIT_0 (0) to STATUS_WAIT_63 (63)

indicates the index of the object which became signaled. In the rare case where an abandomed mutex is one

of the object becoming signaled, STATUS_ABANDONED (0x80) to STATUS_ABANDONED + 63 is returned.

See chapter 7 for more on dispatcher objects.

7.4: The Thread Environment Block (TEB)

Every user-mode thread has a user-mode TEB structure, that stores some interesting information for the

thread. Just like the PEB, the TEB is pretty big and will not be reprinted here. Examine ntpebteb.h file from

phnt. In this section, I’ll describe of the structure’s members.

Inside Wow64 processes, there are two TEBs for a thread: a 64-bit and a 32-bit one. There are two

variants of TEB - TEB32 and TEB64. The differences are around sizes of pointers and some 32/64 bit

size changes.

Chapter 6: Threads 127

The first member of TEB named NtTib, and is of type TIB. It’s small enough to repeat here:

typedef struct _EXCEPTION_REGISTRATION_RECORD {

struct _EXCEPTION_REGISTRATION_RECORD *Next;

PEXCEPTION_ROUTINE Handler;

} EXCEPTION_REGISTRATION_RECORD;

typedef struct _NT_TIB {

struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;

PVOID StackBase;

PVOID StackLimit;

PVOID SubSystemTib;

union {

PVOID FiberData;

DWORD Version;

};

PVOID ArbitraryUserPointer;

struct _NT_TIB *Self;

} NT_TIB;

ExceptionList is an exception list created by this thread (implemented on x86 only). StackBase and

StackLimit are the current used stack addresses for this thread. SubSystemTib does not seem to be used.

FiberData contains something if the thread has been converted to fiber. In most cases, the Versionmember

is the “used” one, which seems to store the value 0x1e00 (latest version of the support for OS2 Windows

had). ArbitraryUserPointer seems like a location to store some thread-specific data, and it is, but not by

developers. Some scenarios use this pointer, so don’t use it yourself. There is Thread Local Storage for that.

Finally, Self points to the beginning of NT_TIB which is also the beginning of the TEB.

Moving to other members of the TEB:

• EnvironmentPointer seems to always have the value NULL.

• ClientId is a CLIENT_ID structure, storing the unique process and thread IDs.

• ActiveRpcHandle doesn’t seem to be used, always having the value NULL.

• ProcessEnvironmentBlock points to the PEB (discussed in chapter 5).

• LastErrorValue is the last value returned from a Windows API call, usually read by calling

GetLastError. the Windows API SetLastError can be used to set it.

• CountOfOwnedCriticalSections is typically zero. It’s used in Debug build of Windows to keep track

of the number of critical sections owned by the thread.

• CsrClientThread is NULL in all processes except Csrss.exe processes, where it may point to a CSR_-

THREAD structure, maintained by csrss.exe for threds that registered with Csrss.exe. This structure is

defined like so:

Chapter 6: Threads 128

typedef struct _CSR_THREAD {

LARGE_INTEGER CreateTime;

LIST_ENTRY Link;

LIST_ENTRY HashLinks;

CLIENT_ID ClientId;

struct _CSR_PROCESS *Process;

HANDLE ThreadHandle;

ULONG Flags;

LONG ReferenceCount;

ULONG ImpersonateCount;

} CSR_THREAD;

It points to a CSR_PROCESS shown below, along with CSR_NT_SESSION pointed to by the CSR_PROCESS:

typedef struct _CSR_PROCESS {

CLIENT_ID ClientId;

LIST_ENTRY ListLink;

LIST_ENTRY ThreadList;

PCSR_NT_SESSION NtSession;

HANDLE ClientPort;

PCH ClientViewBase;

PCH ClientViewBounds;

HANDLE ProcessHandle;

ULONG SequenceNumber;

ULONG Flags;

ULONG DebugFlags;

LONG ReferenceCount;

ULONG ProcessGroupId;

ULONG ProcessGroupSequence;

ULONG LastMessageSequence;

ULONG NumOutstandingMessages;

ULONG ShutdownLevel;

ULONG ShutdownFlags;

LUID Luid;

PVOID ServerDllPerProcessData[ANYSIZE_ARRAY];

} CSR_PROCESS;

typedef struct _CSR_NT_SESSION {

LIST_ENTRY SessionLink;

ULONG SessionId;

LONG ReferenceCount;

STRING RootDirectory;

Chapter 6: Threads 129

} CSR_NT_SESSION;

These data structures can be obtained by loading Csrss.exe into a WinDbg instance and using the

standard dt command.

Back to more TEB fields:

• CurrentLocale is the current locale used by the thread. For example, 0x409 is “en-US”, equivalent to

MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US).

• ExceptionCode stores the last exception code that occurred on this thread.

• LastStatusValue stores the last status value returned from a system call on this thread.

• SubProcessTag is non-zero for threads that handle a service. The service tag information is maintained

by the Service ControlManager (SCM, running in services.exe). The exported I_QueryTagInformation

function from AdvApi32.dll can be used to obtain the mapping to a service name. Here is its definition

with supporting structures and enums:

typedef enum _TAG_INFO_LEVEL {

eTagInfoLevelNameFromTag = 1, // TAG_INFO_NAME_FROM_TAG

eTagInfoLevelNamesReferencingModule, // TAG_INFO_NAMES_REFERENCING_MODULE

eTagInfoLevelNameTagMapping, // TAG_INFO_NAME_TAG_MAPPING

eTagInfoLevelMax

} TAG_INFO_LEVEL;

typedef enum _TAG_TYPE {

eTagTypeService = 1,

eTagTypeMax

} TAG_TYPE;

typedef struct _TAG_INFO_NAME_FROM_TAG_IN_PARAMS {

DWORD dwPid;

DWORD dwTag;

} TAG_INFO_NAME_FROM_TAG_IN_PARAMS, *PTAG_INFO_NAME_FROM_TAG_IN_PARAMS;

typedef struct _TAG_INFO_NAME_FROM_TAG_OUT_PARAMS {

DWORD eTagType;

LPWSTR pszName;

} TAG_INFO_NAME_FROM_TAG_OUT_PARAMS, *PTAG_INFO_NAME_FROM_TAG_OUT_PARAMS;

DWORD I_QueryTagInformation(

_In_opt_ LPCWSTR pszMachineName,

In TAG_INFO_LEVEL eInfoLevel,

Inout PVOID pTagInfo);

Chapter 6: Threads 130

You could use code like the following to get a service name based on a SubProcessTag:

std::wstring GetServiceNameByTag(DWORD pid, uint32_t tag) {

static auto QueryTagInformation = (PQUERY_TAG_INFORMATION)GetProcAddress(

GetModuleHandle(L"advapi32"), "I_QueryTagInformation");

TAG_INFO_NAME_FROM_TAG info = { 0 };

info.InParams.dwPid = pid;

info.InParams.dwTag = tag;

auto err = QueryTagInformation(nullptr, eTagInfoLevelNameFromTag, &info);

if (err)

return L"";

return info.OutParams.pszName;

}

Reading the tag itself can be done by getting the TEB address and then reading from the process memory. For

example:

uint32_t GetSubProcessTag(HANDLE hThread) {

THREAD_BASIC_INFORMATION tbi;

auto status = NtQueryInformationThread(hThread,

ThreadBasicInformation, &tbi, sizeof(tbi), nullptr);

if (!NT_SUCCESS(status))

return 0;

if (tbi.TebBaseAddress == 0)

return 0;

auto pid = GetProcessIdOfThread(hThread);

auto hProcess = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION | PROCESS_VM_READ,

FALSE, pid);

if (!hProcess)

return 0;

uint32_t tag = 0;

BOOL isWow = FALSE;

//

// assume a 64-bit OS

//

IsWow64Process(hProcess, &isWow);

if (isWow) {

auto teb = (TEB32*)tbi.TebBaseAddress;

Chapter 6: Threads 131

ReadProcessMemory(process->GetHandle(),

(BYTE*)teb + offsetof(TEB32, SubProcessTag),

&tag, sizeof(ULONG), nullptr);

}

else {

auto teb = (TEB*)tbi.TebBaseAddress;

ReadProcessMemory(process->GetHandle(),

(BYTE*)teb + offsetof(TEB, SubProcessTag),

&tag, sizeof(tag), nullptr);

}

return tag;

}

• TlsSlots is the array of Thread Local Storage used for this thread. The Windows APIs TlsSetValue

and TlsGetValue use this array to store/query TLS values.

• ReservedForOle stores a pointer to a data structure used to manage the Component Object Model

(COM) state for this thread. If the thread has not called CoInitialize(Ex), then this pointer is NULL.

The structure type is SOleThreadData:

typedef enum {

OLE_LOCALTID = 0x01, // TID is in current process

OLE_UUIDINITIALIZED = 0x02,

OLE_INTHREADDETACH = 0x04,

OLE_CHANNELTHREADINITIALZED = 0x08,

OLE_WOWTHREAD = 0x10,

OLE_THREADUNINITIALIZING = 0x20, // thread in CoUninitialize

OLE_DISABLE_OLE1DDE = 0x40, // thread can't use a DDE

OLE_APARTMENTTHREADED = 0x80, // STA thread

OLE_MULTITHREADED = 0x100, // MTA thread

OLE_IMPERSONATING = 0x200, // impersonating

OLE_DISABLE_EVENTLOGGER = 0x400,

OLE_INNEUTRALAPT = 0x800, // thread in NTA

OLE_DISPATCHTHREAD = 0x1000,

OLE_HOSTTHREAD = 0x2000, // host STA

OLE_ALLOWCOINIT = 0x4000,

OLE_PENDINGUNINIT = 0x8000,

OLE_FIRSTMTAINIT = 0x10000,

OLE_FIRSTNTAINIT = 0x20000,

OLE_APTINITIALIZING = 0x40000,

OLE_UIMSGSINMODALLOOP = 0x80000, // Thread has messages in modal loop

OLE_MARSHALING_ERROR_OBJECT = 0x100000,

OLE_WINRT_INITIALIZE = 0x200000,

Chapter 6: Threads 132

OLE_APPLICATION_STA = 0x400000, // Application STA (ASTA)

OLE_IN_SHUTDOWN_CALLBACKS = 0x800000,

OLE_POINTER_INPUT_BLOCKED = 0x1000000,

OLE_IN_ACTIVATION_FILTER = 0x2000000,

OLE_ASTATOASTAEXEMPT_QUIRK = 0x4000000,

OLE_ASTATOASTAEXEMPT_PROXY = 0x8000000,

OLE_ASTATOASTAEXEMPT_INDOUBT = 0x10000000,

OLE_DETECTED_USER_INITIALIZED = 0x20000000,

OLE_BRIDGE_STA = 0x40000000,

OLE_NAINITIALIZING = 0x80000000,

} OleTlsFlags;

typedef struct tagSOleTlsData {

PVOID pvThreadBase;

CSmAllocator* pSmAllocator;

DWORD dwApartmentID;

OleTlsFlags dwFlags;

LONG TlsMapIndex;

void *ppTlsSlot;

DWORD cComInits;

DWORD cOleInits;

DWORD cCalls;

ServerCall *pServerCall;

ThreadCallObjectCache *pCallObjectCache;

ContextStackNode* pContextStack;

CObjServer* pObjServer;

DWORD dwTIDCaller;

PVOID pCurrentCtxForNefariousReaders;

CObjectContext *pCurrentContext; // Current context

CObjectContext *pEmptyCtx;

ULONGLONG ContextId; // Uniquely identifies the current context

CComApartment* pNativeApt; // Native apartment

IUnknown* pCallContext; // call context

CCtxCall* pCtxCall;

CPolicySet* pPS;

PVOID pvPendingCallsFront;

PVOID pvPendingCallsBack;

Chapter 6: Threads 133

CAptCallCtrl* pCallCtrl;

CSrvCallState* pTopSCS;

HWND hwndSTA; // STA window

LONG cORPCNestingLevel;

DWORD cDebugData;

UUID LogicalThreadId; // logical thread id

HANDLE hThread; // used for cancellation

HANDLE hRevert; // Token before first impersonation

IUnknown pAsyncRelease;

HWND hwndDdeServer;

HWND hwndDdeClient;

ULONG cServeDdeObjects;

PVOID pSTALSvrsFront;

HWND hwndClip; // Clipboard window

IDataObject* pDataObjClip; // Current Clipboard DataObject

DWORD dwClipSeqNum;

DWORD fIsClipWrapper;

IUnknown* punkState;

DWORD cCallCancellation;

DWORD cAsyncSends;

CAsyncCall* pAsyncCallList;

CSurrogatedObjectList* pSurrogateList;

PRWLOCKTLSEntry pRWLockTlsEntry;

CallEntryBuffer CallEntry;

InitializeSpyNode* pFirstSpyReg;

InitializeSpyNode* pFirstFreeSpyReg;

CVerifierTlsData* pVerifierData;

DWORD dwMaxSpy;

BYTE cCustomMarshallerRecursion;

PVOID pDragCursors;

IUnknown* punkError;

ULONG cbErrorData;

OutgoingCallData outgoingCallData;

IncomingCallData incomingCallData;

OutgoingActivationData outgoingActivationData;

Chapter 6: Threads 134

ULONG cReentrancyFromUserAPC;

ModernSTAWaitContext* pModernSTAWaitContext;

DWORD dwCrossThreadFlags;

DWORD dwNestedRemRelease;

ULONG cIncomingTouchedASTACalls;

PushLogicalThreadId* pTopPushedLogicalThreadId;

ULONG iXslockOwnerTableHint;

OLETLS_PREVENT_RUNDOWN_MITIGATION currentPreventRundownMitigation;

BOOL fOweForcedBulkUpdateForCurrentMitigation;

IUnknown* pClipboardBroker;

DWORD dwActivationType;

ULONG cTouchedAstasInActiveCall;

OXID* pTouchedAstasInActiveCall;

UnmarshalForQueryInterface* pTopmostUnmarshalForQueryInterface;

CoGetStandardMarshalInProgress* pTopmostCoGetStandardMarshalInProgress;

WireContainerThis* requestContainerPassthroughData;

ULONG requestContainerPassthroughDataSize;

BOOL freeRequestContainerPassthroughData;

WireContainerThat* responseContainerPassthroughData;

ULONG responseContainerPassthroughDataSize;

ComTlsFlags comTlsFlags;

ThreadLockOrderVerifier<ComLockOrder> lockOrderVerifier;

} SOleTlsData;

You can find this definition (and other referenced by it) by loading ComBase.Dll into WinDbg and

using the dt command.

7.5: Asynchronous Procedure Calls (APC)

An Asynchronous Procedure Call (APC) allows attaching a callback to a thread, so that only that thread can

run that callback. To actually execute the callback(s), the thread must be in an alertable wait (sometimes

called “alertable state”).

The native APIs to wait in an alertable state are NtWaitForSingleObject and NtWaitForMultipleObjects

discussed in the section Synchronization, where Alertable is TRUE. Additionally, NtDelayExecution offers

an alertable wait while sleeping:

Chapter 6: Threads 135

NTSTATUS NtDelayExecution(

In BOOLEAN Alertable, // alertable?

_In_opt_ PLARGE_INTEGER DelayInterval);

Queuing an APC to a thread can be done with NtQueueApcThread:

typedef VOID (*PPS_APC_ROUTINE)(

_In_opt_ PVOID ApcArgument1,

_In_opt_ PVOID ApcArgument2,

_In_opt_ PVOID ApcArgument3);

NTSTATUS NtQueueApcThread(

In HANDLE ThreadHandle,

In PPS_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcArgument1,

_In_opt_ PVOID ApcArgument2,

_In_opt_ PVOID ApcArgument3);

The ThreadHandlemust have the THREAD_SET_CONTEXT access mask for this to work. The target thread can

be in a different process than the caller, but a 32-bit process cannot queue an APC to a thread that belongs

to a 64-bit process. Regardless, the ApcRoutine must be valid in the target process. The APC routine itself

accepts three arbitrary arguments specified by the caller.

What happens if the target thread never enters an alertable wait? The APCs will never execute. At some

point, if more APCs are queued to the thread, queuing will fail. This means that normally the queuer needs

to somehow “know” that the target thread goes into an alertable wait from time to time so the APCs can

execute.

What happens if a thread waits in an alertable state, but no APCs ever arrive? If the wait is non-infinite, then

it will eventually end when the timeout elapses. If the wait is infinite, the thread will wait forever. However,

the native API provides ways to release the thread from an alertable wait regardless of APCs:

NTSTATUS NtAlertThread(_In_ HANDLE ThreadHandle);

NTSTATUS NtAlertThreadByThreadId(_In_ HANDLE ThreadId);

NTSTATUS NtAlertResumeThread(

In HANDLE ThreadHandle,

_Out_opt_ PULONG PreviousSuspendCount);

If the thread is in a alertable waiting state, it will be alerted (woken up), and continues execution. The return

value from the wait function (or NtDelayExecution) is STATUS_ALERTED (0x101), rather than STATUS_-

USER_APC (0xc0). The last variant (NtAlertResumeThread) also resumes the thread before alerting it. This

could be useful if the target thread is known to be suspended.

Finally, NtTestAlert tests if the current thread has the “alerted” flag set. If so, STATUS_ALERTED is returned,

and pending APCs execute.

Chapter 6: Threads 136

NTSTATUS NtTestAlert();

Note that to get the NtAlert* APIs to work, the target thread must be waiting in an alertable with

a native API (NtWait... or NtDelayExecution), rather than one of the rough equivalents from

Windows APIs (this is one reason the equivalence is not exact).

7.6: Thread Pools

Creating threads explicitly with NtCreateThread and similar is fine in many cases. However, there are cases

where short amount of work is needed, and the overhead of creating and managing a new thread is overkill.

This is where thread pooling comes in. With a thread pool, requests are submitted, and handled by threads

from the pool. This provides the following benefits:

• No need to explicitly create and manage threads.

• Execution is usually faster, as some threads in the pool are idle, waiting for work. Once work is received,

a thread wakes up, executes the work, and goes back to waiting. This is faster than creating a new

thread.

• Even with high load on the thread pool, the number of threads created can be limited. Toomany threads

cannot be utilized at the same time as there are limited processors on the system.

• The thread pool also supports running code as a result of timer expiring, or objects becoming signaled.

This is more efficient than creating threads for these purposes.

The native API functions related to thread pooling begin with Tp. The documented Windows APIs are

thin wrappers around the native APIs. The parameters are virtually identical, except the native API returns

NTSTATUS, and any result is provided as an indirect first argument, while the Windows API returns the result

directly (or a Boolean if there is no special result). For example, here are two equivalent APIs:

NTSTATUS TpAllocWork(// native API

Out PTP_WORK *WorkReturn,

In PTP_WORK_CALLBACK Callback,

_Inout_opt_ PVOID Context,

_In_opt_ PTP_CALLBACK_ENVIRON CallbackEnviron);

PTP_WORK CreateThreadpoolWork(// Windows API

In PTP_WORK_CALLBACK pfnwk,

_Inout_opt_ PVOID pv,

_In_opt_ PTP_CALLBACK_ENVIRON pcbe);

Table 6-1 lists the many of the Windows thread pool APIs and their native API equivalents. Refer to the

Windows SDK documentation for the description of these APIs.

Chapter 6: Threads 137

Check out the phnt project for some more APIs.

Table 6-1: Thread pool APIs

TrySubmitThreadPoolCallback TpSimpleTryPost

CreateThreadpoolWork TpAllocWork

CloseThreadpoolWork TpReleaseWork

SubmitThreadpoolWork TpPostWork

CreateThreadpool TpAllocPool

CloseThreadpool TpReleasePool

SetThreadpoolThreadMaximum TpSetPoolMaxThreads

SetThreadpoolThreadMinimum TpSetPoolMinThreads

SetThreadpoolStackInformation TpSetPoolStackInformation

QueryThreadpoolStackInformation TpQueryPoolStackInformation

CreateThreadpoolCleanupGroup TpAllocCleanupGroup

CloseThreadpoolCleanupGroup TpReleaseCleanupGroup

SetThreadpoolCallbackCleanupGroup TpSetCallbackCleanupGroup

CloseThreadpoolCleanupGroupMembers TpReleaseCleanupGroupMembers

CreateThreadpoolTimer TpAllocTimer

SetThreadpoolTimer TpSetTimer

SetThreadpoolTimerEx TpSetTimerEx

IsThreadpoolTimerSet TpIsTimerSet

CreateThreadpoolWait TpAllocWait

CreateThreadpoolIo TpAllocIoCompletion

Windows API Native API

7.7: More Thread APIs

In this section, we’ll take a look at a few more thread-related native APIs.

A thread’s context represents its execution state in terms of the CPU’s registers. The structure used is called

CONTEXT and is platform-specific. It is described in the Microsoft documentation. Reading or writing the

context can be accomplish with the following APIs:

Chapter 6: Threads 138

NTSTATUS NtGetContextThread(

In HANDLE ThreadHandle, // requires THREAD_GET_CONTEXT

Inout PCONTEXT ThreadContext);

NTSTATUS NtSetContextThread(

In HANDLE ThreadHandle, // requires THREAD_SET_CONTEXT

In PCONTEXT ThreadContext);

To safely set the context (or read it in some predictable manner), the thread should be suspended first by

calling NtSuspendThread:

NTSTATUS NtSuspendThread(

In HANDLE ThreadHandle,

_Out_opt_ PULONG PreviousSuspendCount);

Each call to NtSuspendThread must be matched eventually with NtResumeThread:

NTSTATUS NtResumeThread(

In HANDLE ThreadHandle,

_Out_opt_ PULONG PreviousSuspendCount);

A suspend count is maintained for each thread, optionally returned by the above APIs. The maximum

suspend count is 127.

Sometimes a handle to a thread needs to be obtained. This is where NtOpenThread can help:

NTSTATUS NtOpenThread(

Out PHANDLE ThreadHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PCLIENT_ID ClientId);

The similarities to NtOpenProcess should be evident. The ClientId should contain the thread ID in

UniqueThread, and zero for UniqueProcess.

Terminating a thread is possible with NtTerminateThread (only use in extreme cases):

NTSTATUS NtTerminateThread(

_In_opt_ HANDLE ThreadHandle, // requires THREAD_TERMINATE

In NTSTATUS ExitStatus);

Thread enumeration in a specific process is supported by the following API:

Chapter 6: Threads 139

NTSTATUS NtGetNextThread(

In HANDLE ProcessHandle, // requires PROCESS_QUERY_INFORMATION

_In_opt_ HANDLE ThreadHandle,

In ACCESS_MASK DesiredAccess,

In ULONG HandleAttributes,

In ULONG Flags, // must be zero

Out PHANDLE NewThreadHandle);

This is similar to NtGetNextProcesswe encountered in chapter 5. The enumeration starts with ThreadHan-

dle set to NULL, and ends when the returned status is unsuccessful. Don’t forget to close each handle you

receive to prevent a handle leak.

7.8: Summary

This chapter looked at thread-related native APIs. In the next chapter, we’ll deal with kernel objects and

handles.

Chapter 7: Objects and Handles

Much of the functionality in Windows is provided through kernel objects. Accessing kernel objects from

user-mode is always performed indirectly through handles. This chapter deals with several common types

of objects, as well as more generally working with objects and handles.

In this chapter:

• Objects

• Enumerating Objects

• Object Manager Namespace

• Handles

• Enumerating Handles

• Specific Object Types

8.1: Objects

The Windows kernel supports a set of object types, out of which objects can be created. Each object belongs

to a type (in itself an object). The Windows API provides many functions to create objects or open handles to

existing objects. Each object type has its own set of open and/or create functions, as well as specific functions

for manipulating existing objects.

The objects themselves are data structures residing in kernel space, which is one reason user-mode cannot

access objects directly, even if an object’s address is known.

8.1.1: Object Types

The set of object types supported on a particular version of Windows can be viewed with a tool like Object

Explorer (figure 7-1).

Chapter 7: Objects and Handles 141

Figure 7-1: Object Explorer showing object types

For each object types, Object Explorer shows the total number of objects and handles, the peak number of

objects and handles, and a few more details discussed shortly.

Getting the information seen in Object Explorer is a matter of calling NtQueryObject:

typedef enum _OBJECT_INFORMATION_CLASS {

ObjectBasicInformation, // OBJECT_BASIC_INFORMATION

ObjectNameInformation, // OBJECT_NAME_INFORMATION

ObjectTypeInformation, // OBJECT_TYPE_INFORMATION

ObjectTypesInformation, // OBJECT_TYPES_INFORMATION

ObjectHandleFlagInformation, // OBJECT_HANDLE_FLAG_INFORMATION

ObjectSessionInformation,

ObjectSessionObjectInformation,

MaxObjectInfoClass

} OBJECT_INFORMATION_CLASS;

NTSTATUS NtQueryObject(

_In_opt_ HANDLE Handle,

In OBJECT_INFORMATION_CLASS ObjectInformationClass,

_Out_writes_bytes_opt_(ObjectInformationLength) PVOID ObjectInformation,

In ULONG ObjectInformationLength,

Chapter 7: Objects and Handles 142

_Out_opt_ PULONG ReturnLength);

Normally, calling NtQueryObject requires a valid handle, with one exception. Getting object types

information is done by specifying a NULL handle with ObjectTypesInformation information class. The

returned structure are as follows:

typedef struct _OBJECT_TYPE_INFORMATION {

UNICODE_STRING TypeName;

ULONG TotalNumberOfObjects;

ULONG TotalNumberOfHandles;

ULONG TotalPagedPoolUsage;

ULONG TotalNonPagedPoolUsage;

ULONG TotalNamePoolUsage;

ULONG TotalHandleTableUsage;

ULONG HighWaterNumberOfObjects;

ULONG HighWaterNumberOfHandles;

ULONG HighWaterPagedPoolUsage;

ULONG HighWaterNonPagedPoolUsage;

ULONG HighWaterNamePoolUsage;

ULONG HighWaterHandleTableUsage;

ULONG InvalidAttributes;

GENERIC_MAPPING GenericMapping;

ULONG ValidAccessMask;

BOOLEAN SecurityRequired;

BOOLEAN MaintainHandleCount;

UCHAR TypeIndex;

CHAR ReservedByte;

ULONG PoolType;

ULONG DefaultPagedPoolCharge;

ULONG DefaultNonPagedPoolCharge;

} OBJECT_TYPE_INFORMATION, *POBJECT_TYPE_INFORMATION;

typedef struct _OBJECT_TYPES_INFORMATION {

ULONG NumberOfTypes;

// OBJECT_TYPE_INFORMATION follows

} OBJECT_TYPES_INFORMATION, *POBJECT_TYPES_INFORMATION;

Each object type has a different size because of the type name (TypeName member), so moving to the next

object type is somewhat tricky, as it always starts on a pointer-aligned address. The first type starts on such

an aligned address as well. The following code shows how to iterate over the types, displaying some key

information (error handling omitted):

Chapter 7: Objects and Handles 143

auto size = 1 << 16;

auto buffer = std::make_unique<BYTE[]>(size);

NtQueryObject(nullptr, ObjectTypesInformation, buffer.get(), size, nullptr);

auto types = (OBJECT_TYPES_INFORMATION*)buffer.get();

//

// first type starts at offset of pointer-size bytes

//

auto type = (OBJECT_TYPE_INFORMATION*)((PBYTE)types + sizeof(PVOID));

for (ULONG i = 0; i < types->NumberOfTypes; i++) {

printf("%-33wZ (%2d) O: %7u H: %7u PO: %7u PH: %7u\n",

&type->TypeName, type->TypeIndex,

type->TotalNumberOfObjects, type->TotalNumberOfHandles,

type->HighWaterNumberOfObjects, type->HighWaterNumberOfHandles);

//

// move to next type object

//

auto temp = (PBYTE)type + sizeof(OBJECT_TYPE_INFORMATION) +

type->TypeName.MaximumLength;

//

// round up to the next pointer-size address

//

type = (OBJECT_TYPE_INFORMATION*)(((ULONG_PTR)temp +

sizeof(PVOID) - 1) / sizeof(PVOID) * sizeof(PVOID));

}

printf("Total Types: %u\n", types->NumberOfTypes);

The full code is in the ObjectTypes project.

Here is an example output on a recent Windows 10 machine:

Chapter 7: Objects and Handles 144

Type (2) O: 69 H: 0 PO: 69 PH: 1

Directory (3) O: 219 H: 1670 PO: 222 PH: 1680

SymbolicLink (4) O: 789 H: 502 PO: 813 PH: 532

Token (5) O: 21626 H: 11868 PO: 27878 PH: 12435

Job (6) O: 656 H: 584 PO: 5971 PH: 595

Process (7) O: 1693 H: 12957 PO: 8845 PH: 30693

Thread (8) O: 19402 H: 24711 PO: 22820 PH: 25008

...

CrossVmEvent (68) O: 0 H: 0 PO: 0 PH: 0

CrossVmMutant (69) O: 0 H: 0 PO: 0 PH: 0

VRegConfigurationContext (70) O: 23 H: 0 PO: 358 PH: 0

Total Types: 69

Each object type provides the following details in OBJECT_TYPE_INFORMATION:

• TypeName is the name of the type.

• TotalNumberOfObjects is the current number of objects of this type.

• TotalNumberOfHandles is the current number of handles open to objects of this type.

• HighWaterNumberOfObjects and HighWaterNumberOfHandles are the peak number of objects and

handles, respectively, since the system started.

• InvalidAttributes indicates the invalid attributes (OBJ_xxx) that cannot be applied to handles to

objects of this type.

• GenericMapping stores the mapping of generic access to specific access. GENERIC_MAPPING is a

documented structure defined like so (inWinNt.h):

typedef struct _GENERIC_MAPPING {

ACCESS_MASK GenericRead;

ACCESS_MASK GenericWrite;

ACCESS_MASK GenericExecute;

ACCESS_MASK GenericAll;

} GENERIC_MAPPING;

For each object type, the meaning of GENERIC_READ, GENERIC_WRITE, GENERIC_EXECUTE, and GENERIC_-

ALL is different - this mapping provides the details. For example, Process objects map GENERIC_READ to

PROCESS_QUERY_INFORMATION | PROCESS_VM_READ | READ_CONTROL.

• ValidAccessMask indicates the valid access mask bits for handles to objects of this type (for example,

for Process object type, this is PROCESS_ALL_ACCESS).

• SecurityRequired indicates if objects of this type must have a security descriptor if they are created

with default security. Normally, objects that can be named have this set to TRUE.

• MaintainHandleCount is set if the number of handles in each process for this object type is maintained

by the kernel.

Chapter 7: Objects and Handles 145

• TypeIndex is the internal type index for this type.

• PoolType indicates the pool type used to allocate objects of this type. This is one of PagedPool

(1), NonPagedPool (0), NonPagedPoolNx (0x200, non-paged pool with no Execute permissions), or

PagedPoolSession (0x21). For example, Process objects are allocated from NonPagedPoolNx, which

means these objects are always maintained in RAM.

• DefaultPagedPoolCharge and DefaultNonPagedPoolCharge are the default allocation charges to the

creator process, if the objects of this type are allocated from paged pool or non-paged pool, respectively.

All other members are always zero.

8.2: Enumerating Objects

Can we get a list of all objects in the system? Looking at NtQuerySystemInformation, we see a

promising SystemObjectInformation value. However, by default the kernel does not keep track of

object creation in some list. Calling NtQuerySystemInformation with SystemObjectInformation returns

STATUS_UNSUCCESSFUL.

To enable object tracking, a global flag must be set. The easiest way to set it is by running the Gflags utility

from theWindows SDK, and check “Maintain a list of objects for each type” (figure 7-2). This changes a value

in the Registry, and the system must be restarted for this flag to take effect. Once restarted, enumerating

objects can work.

Chapter 7: Objects and Handles 146

Figure 7-2: GFlags utility

Why isn’t this option enabled by default? Because of some overhead - this was especially important to avoid

in the (distant) past, when hardware wasn’t as powerful as it is now, and memory sizes were smaller. It’s

difficult to estimate the cost of this overhead, but it exists. More CPU time must be spent when objects are

created, and more memory is needed as well to maintain this extra information.

Setting “Maintain a list of objects for each type” causes the value 0x4000 to be added to theGlobalFlag

value in the Registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager. This value

is read when the system boots.

Chapter 7: Objects and Handles 147

The enumeration starts by allocating a large enough buffer. The API will not return the necessary buffer size

if you pass zero. This is because calculating the number of bytes required requires going over all objects,

which is inefficient. Instead, the API tries to fill the provided buffer with as many objects as possible, and

if the buffer is not big enough, the call fails with a STATUS_INFO_LENGTH_MISMATCH status. It’s your job to

allocate more memory and try again. Here is one way to go about it:

ULONG size = 1 << 22;

auto buffer = std::make_unique<BYTE[]>(size);

NTSTATUS status;

while ((status = NtQuerySystemInformation(SystemObjectInformation,

buffer.get(), size, nullptr)) == STATUS_INFO_LENGTH_MISMATCH) {

size *= 2;

buffer = std::make_unique<BYTE[]>(size);

}

if (!NT_SUCCESS(status)) {

printf("Object tracking is not turned on.\n");

return status;

}

The code starts with a 4MB (1 << 22) allocation, and doubles it every time the length is not enough. Expect

at least 12MB of memory to be allocated for this call to succeed.

The above code also takes care of the case where the call fails for a different reason, which would mean the

global flag is not set. Of course, the code ignores allocation failures for simplicity.

Now the enumeration can begin. The returned information is in two layers: the first is a SYSTEM_OB-

JECTTYPE_INFORMATION structure, providing information about a type, very similar (but not identical) to

OBJECT_TYPE_INFORMATION. Then, the list of objects for this type follows as SYSTEM_OBJECT_INFORMATION

structures. This is non-trivial, because the structures don’t have fixed sizes, as there are names (for types,

and possibly for objects).

SYSTEM_OBJECTTYPE_INFORMATION is defined like so:

typedef struct _SYSTEM_OBJECTTYPE_INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfObjects;

ULONG NumberOfHandles;

ULONG TypeIndex;

ULONG InvalidAttributes;

GENERIC_MAPPING GenericMapping;

ULONG ValidAccessMask;

ULONG PoolType;

BOOLEAN SecurityRequired;

BOOLEAN WaitableObject;

UNICODE_STRING TypeName;

} SYSTEM_OBJECTTYPE_INFORMATION, *PSYSTEM_OBJECTTYPE_INFORMATION;

Chapter 7: Objects and Handles 148

The differences from OBJECT_TYPE_INFORMATION are as follows:

• The next type object is pointed NextEntryOffset bytes from this one.

• The WaitableObject flag is added, indicating whether objects of this type are waitable (dispatcher

objects).

• There are some details that are missing compared to OBJECT_TYPE_INFORMATION.

For each object, we get a SYSTEM_OBJECT_INFORMATION:

typedef struct _SYSTEM_OBJECT_INFORMATION {

ULONG NextEntryOffset;

PVOID Object;

HANDLE CreatorUniqueProcess;

USHORT CreatorBackTraceIndex;

USHORT Flags;

LONG PointerCount;

LONG HandleCount;

ULONG PagedPoolCharge;

ULONG NonPagedPoolCharge;

HANDLE ExclusiveProcessId;

PVOID SecurityDescriptor;

UNICODE_STRING NameInfo;

} SYSTEM_OBJECT_INFORMATION, *PSYSTEM_OBJECT_INFORMATION;

Here is a description of its members:

• NextEntryOffset stores the number of bytes to move forward from the beginning of the result buffer

to get to the next object.

• Object is the object’s address in kernel space.

• CreatorUniqueProcess is the process ID of the creator of this object.

• CreatorBackTraceIndex seems to be always zero.

• Flags is the flags set in the object’s header. The possible flags are shown below:

typedef enum {

OBF_NEW_OBJECT = 0x01,

OBF_KERNEL_OBJECT = 0x02,

OBF_KERNEL_ONLY_ACCESS = 0x04,

OBF_EXCLUSIVE_OBJECT = 0x08,

OBF_PERMANENT_OBJECT = 0x10,

OBF_DEFAULT_SECURITY_QUOTA = 0x20,

OBF_SINGLE_HANDLE_ENTRY = 0x40,

OBF_DELETED_INLINE = 0x80

} OBJECT_HEADER_FLAGS;

Chapter 7: Objects and Handles 149

• PointerCount is the reference count of the object mixed with an inverted usage count (Windows 8.1

and later). This value should not be relied upon because of that usage count. See the “Windows Internals

7th edition, Part 2” book for more details.

• HandleCount is the number of handles open to this object (could be zero if it’s being used by kernel

code only).

• PagedPoolCharge and NonPagedPoolCharge are the memory allocation charges for this object. These

are the same as the ones reported for their type.

• ExclusiveProcessId is usually zero, but is the process ID that owns the object if it’s exclusive. An

exclusive object cannot be used by any other process. This kind of power is available to kernel-mode

code only.

• SecurityDescriptor is the security descriptor (if any) that is attached to the object.

• NameInfo is the name of the object (if any).

Given the above definitions, here is a full iteration over all types and all objects within each type:

auto type = (SYSTEM_OBJECTTYPE_INFORMATION*)buffer.get();

for(;;) {

//

// do something with type

//

printf("%wZ O: %u H: %u\n",

&type->TypeName, type->NumberOfObjects, type->NumberOfHandles);

//

// get the first object

//

auto obj = (SYSTEM_OBJECT_INFORMATION*)

((PBYTE)type + sizeof(*type) + type->TypeName.MaximumLength);

for (;;) {

//

// do something with the object

//

printf("0x%p (%wZ) P: 0x%X H: %u PID: %u EPID: %u\n",

obj->Object, &obj->NameInfo, obj->PointerCount, obj->HandleCount,

HandleToULong(obj->CreatorUniqueProcess),

HandleToULong(obj->ExclusiveProcessId));

//

// if no more objects, break

//

if (obj->NextEntryOffset == 0)

break;

Chapter 7: Objects and Handles 150

//

// move to next object

//

obj = (SYSTEM_OBJECT_INFORMATION*)(buffer.get() + obj->NextEntryOffset);

}

//

// if no more types, break

//

if (type->NextEntryOffset == 0)

break;

//

// move to next type

//

type = (SYSTEM_OBJECTTYPE_INFORMATION*)(buffer.get() + type->NextEntryOffset);

}

Note that the type “ObjectType” and its objects are not provided by the enumeration as separate

objects, because the type objects themselves are these objects.

The full code can be found in the AllObjects project.

8.3: Object Manager Namespace

Named objects are kept in a tree-like hierarchy by the kernel’s Object Manager. This hierarchy can be viewed

with tools likeWinObj (from Sysinternals) and my own Object Explorer. Figure 7-3 showsWinObj (it’s best

to run it elevated to view the full directory object structure).

Chapter 7: Objects and Handles 151

Figure 7-3: WinObj from Sysinternals

The “directories” shown inWinObj have nothing to do with the file system; rather, these are Directory kernel

objects, which are containers for other kernel objects (including other directories). The following briefly

describes some of the more “known” Directory objects:

• \BaseNamedObjects contains session 0 named objects.

• \Device contains device objects, representing physical or virtual devices.

• \Driver contains driver objects, one for each kernel driver loaded into the system.

• \Global?? (also called \??) contains symbolic links that are legal values to pass to the CreateFile

Windows API (with a prefix of \\.\). The native API counterparts (NtCreateFile and NtOpenFile)

are not limited to this directory.

• \KnownDlls and \KnownDlls32 contain Section objects that map to “known DLLs” listed in the Registry

key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs early in Windows boot

(by Smss.exe).

• \ObjectType contains all type objects.

• \Callback contains Callback kernel objects.

• \Sessions\n\BaseNamedObjects contains named kernel objects that were created by processes in session

n (where n is a session number).

Querying the contents of a directory object requires opening a handle to the directory in question:

Chapter 7: Objects and Handles 152

NTSTATUS NtOpenDirectoryObject(

Out PHANDLE DirectoryHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

The ObjectAttributes is where the directory name is specified with the usual InitializeObjectAt-

tributes. The following code opens a handle to the root directory:

HANDLE hDirectory;

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\");

OBJECT_ATTRIBUTES attr;

InitializeObjectAttributes(&attr, &name, 0, nullptr, nullptr);

status = NtOpenDirectoryObject(&hDirectory, DIRECTORY_QUERY, &attr);

if(!NT_SUCCESS(status)) {

// do something with hDirectory

NtClose(hDirectory);

}

The AccessMask parameter indicates the requested access to the directory. These can be a combination of

the following access flags:

#define DIRECTORY_QUERY 0x0001

#define DIRECTORY_TRAVERSE 0x0002

#define DIRECTORY_CREATE_OBJECT 0x0004

#define DIRECTORY_CREATE_SUBDIRECTORY 0x0008

#define DIRECTORY_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | 0xf)

With a directory handle in hand, the contents of the directory can be obtained with NtQueryDirectoryOb-

ject:

typedef struct _OBJECT_DIRECTORY_INFORMATION {

UNICODE_STRING Name;

UNICODE_STRING TypeName;

} OBJECT_DIRECTORY_INFORMATION, *POBJECT_DIRECTORY_INFORMATION;

NTSTATUS NtQueryDirectoryObject(

In HANDLE DirectoryHandle,

_Out_writes_bytes_opt_(Length) PVOID Buffer,

In ULONG Length,

In BOOLEAN ReturnSingleEntry,

In BOOLEAN RestartScan,

Chapter 7: Objects and Handles 153

Inout PULONG Context,

_Out_opt_ PULONG ReturnLength);

Using this function is non-intuitive. Here is description of the parameters:

• DirectoryHandle is the input handle to the directory of interest.

• Buffer is a caller-allocated buffer to receive the results, and Length is its size in bytes.

• ReturnSingleEntry indicates if a single entry is requested. If FALSE, as many entries as would fit in

the buffer are returned.

• RestartScan indicates if the retrieval should start from the beginning. Typically, you would set it to

TRUE for the first call (if retrieving multiple results), and FALSE on subsequent calls if the provided

buffer is insufficient in size.

• Context is the index of the item requested, and the last one actually retrieved. Normally, you would

set it to zero on the first call, but keep using it for subsequent calls (if the buffer is too small).

• ReturnedLength is the usual optional return value indicating the number of bytes actually used (or

needed, if even a single entry was too big for the buffer).

To simplify the use of NtQueryDirectoryObject, one could pass a big buffer, where it’s unlikely a second

call would be required. But there is no good way to tell what size would be large enough, as it heavily depends

on the directory in question and the system on which the code runs; so, it’s best to be prepared for multiple

calls.

The returned buffer is an array of OBJECT_DIRECTORY_INFORMATION objects, providing the object’s name

and its type name. Fortunately, simple array access works, because even though the name and type of the

object are provided, the strings themselves are stored after the array itself so that no special calculation is

needed.

Assuming hDirectory is a valid directory handle, the following example shows how to correctly get all

objects in that directory with a (possibly) limited buffer:

ULONG index = 0;

bool first = true;

ULONG size = 1 << 12; // example size (4KB)

auto buffer = std::make_unique<BYTE[]>(size);

auto data = (POBJECT_DIRECTORY_INFORMATION)buffer.get();

int start = 0;

for(;;) {

status = NtQueryDirectoryObject(hDirectory, buffer.get(), size,

FALSE, first, &index, nullptr);

if (!NT_SUCCESS(status))

break;

first = false;

//

Chapter 7: Objects and Handles 154

// loop number of entries from the last call

//

for (ULONG i = 0; i < index - start; i++) {

//

// do something with data[i].Name and data[i].TypeName

//

}

start = index;

if (status != STATUS_MORE_ENTRIES)

break;

}

8.3.1: Symbolic Links

The SymbolicLink object type is a kernel object that points to another kernel object (similar in spirit to a

shell shortcut). Given a symbolic link object name, its target can be retrieved by opening a handle to it

(NtOpenSymbolicLinkObject) and then querying for the target (NtQuerySymbolicLinkObject):

NTSTATUS NtOpenSymbolicLinkObject(

Out PHANDLE LinkHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

NTSTATUS NtQuerySymbolicLinkObject(

In HANDLE LinkHandle,

Inout PUNICODE_STRING LinkTarget,

_Out_opt_ PULONG ReturnedLength);

The parameters should be self-explanatory at this point. Here is an example of getting a symbolic link target

given a C_string symbolic link object name:

std::wstring GetSymbolicLinkTarget(PCWSTR symolicLinkName) {

UNICODE_STRING linkName;

RtlInitUnicodeString(&linkName, symolicLinkName);

OBJECT_ATTRIBUTES attr;

InitializeObjectAttributes(&attr, &linkName, 0, nullptr, nullptr);

//

// open a handle to the symbolic link

//

HANDLE hLink;

Chapter 7: Objects and Handles 155

auto status = NtOpenSymbolicLinkObject(&hLink, GENERIC_READ, &attr);

if (!NT_SUCCESS(status))

return L"";

WCHAR buffer[512]{}; // big enough buffer in practice

UNICODE_STRING target;

RtlInitUnicodeString(&target, buffer);

target.MaximumLength = sizeof(buffer);

//

// query for the target

//

status = NtQuerySymbolicLinkObject(hLink, &target, nullptr);

NtClose(hLink);

return buffer;

}

You can also create a symbolic link, if you have enough permissions:

NTSTATUS NtCreateSymbolicLinkObject(

Out PHANDLE LinkHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

In PUNICODE_STRING LinkTarget);

8.3.2: The ObjDir Sample

The ObjDir sample puts most of what we’ve seen in this section, by querying the contents of a specified

directory on the command line, showing the objects names, type names, and symbolic link targets (for

symbolic link objects only, of course).

The main function obtains a directory, and calls a helper function to get the results. If successful, it displays

them:

Chapter 7: Objects and Handles 156

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: ObjDir <directory>\n");

return 0;

}

NTSTATUS status;

auto objects = EnumDirectoryObjects(argv[1], status);

if (objects.empty() && !NT_SUCCESS(status)) {

printf("Error: 0x%X\n", status);

}

else {

printf("Directory: %ws\n", argv[1]);

printf("%-20s %-50s Link Target\n", "Type", "Name");

printf("%-20s %-50s -----------\n", "----", "----");

for (auto& obj : objects) {

printf("%-20ws %-50ws %ws\n",

obj.TypeName.c_str(), obj.Name.c_str(),

obj.LinkTarget.c_str());

}

}

return 0;

}

The returned vector is of type ObjectInfo:

struct ObjectInfo {

std::wstring Name;

std::wstring TypeName;

std::wstring LinkTarget;

};

The workhorse is EnumDirectoryObjects:

Chapter 7: Objects and Handles 157

std::vector<ObjectInfo> EnumDirectoryObjects(PCWSTR directory, NTSTATUS& status) {

HANDLE hDirectory;

UNICODE_STRING name;

RtlInitUnicodeString(&name, directory);

OBJECT_ATTRIBUTES attr;

InitializeObjectAttributes(&attr, &name, 0, nullptr, nullptr);

status = NtOpenDirectoryObject(&hDirectory, DIRECTORY_QUERY, &attr);

if (!NT_SUCCESS(status))

return {};

ULONG index = 0;

bool first = true;

ULONG size = 1 << 12;

auto buffer = std::make_unique<BYTE[]>(size);

auto data = (POBJECT_DIRECTORY_INFORMATION)buffer.get();

int start = 0;

std::vector<ObjectInfo> objects;

for(;;) {

status = NtQueryDirectoryObject(hDirectory, buffer.get(), size, FALSE,

first, &index, nullptr);

if (!NT_SUCCESS(status))

break;

first = false;

for (ULONG i = 0; i < index - start; i++) {

ObjectInfo info;

//

// turn UNICODE_STRING into std::wstring

//

info.Name.assign(data[i].Name.Buffer,

data[i].Name.Length / sizeof(WCHAR));

info.TypeName.assign(data[i].TypeName.Buffer,

data[i].TypeName.Length / sizeof(WCHAR));

if (info.TypeName == L"SymbolicLink")

info.LinkTarget = GetSymbolicLinkTarget(directory, info.Name);

objects.push_back(std::move(info));

}

start = index;

if (status != STATUS_MORE_ENTRIES)

break;

}

Chapter 7: Objects and Handles 158

NtClose(hDirectory);

return objects;

}

The code is identical to the example shown earlier, except the results are accumulated in a

vector<ObjectInfo>, and the status is returned as a second argument. The last piece is

GetSymbolicLinkTarget, which is called only if the current object’s type name is “SymbolicLink”:

std::wstring

GetSymbolicLinkTarget(std::wstring const& directory, std::wstring const& name) {

auto fullName = directory == L"\\" ? (L"\\" + name) : (directory + L"\\" + name);

UNICODE_STRING linkName;

RtlInitUnicodeString(&linkName, fullName.c_str());

OBJECT_ATTRIBUTES attr;

InitializeObjectAttributes(&attr, &linkName, 0, nullptr, nullptr);

HANDLE hLink;

auto status = NtOpenSymbolicLinkObject(&hLink, GENERIC_READ, &attr);

if (!NT_SUCCESS(status))

return L"";

WCHAR buffer[512]{};

UNICODE_STRING target;

RtlInitUnicodeString(&target, buffer);

target.MaximumLength = sizeof(buffer);

status = NtQuerySymbolicLinkObject(hLink, &target, nullptr);

NtClose(hLink);

return buffer;

}

The only difference from the earlier example is that the directory and object names are provided, and the

function is forced to concatenate them together, taking care of not duplicating a backslash for the root

directory.

Here are a few examples when running ObjDir (some formatting applied to better fit a page):

Chapter 7: Objects and Handles 159

c:\>objdir \

Directory: \

Type Name Link Target

---- ---- -----------

Event DSYSDBG.Debug.Trace.Memory.530

Mutant PendingRenameMutex

Directory ObjectTypes

FilterConnectionPort storqosfltport

FilterConnectionPort MicrosoftMalwareProtectionRemoteIoPortWD

SymbolicLink SystemRoot \Device\BootDevice\Wi\

ndows

...

Section LsaPerformance

ALPC Port SmApiPort

FilterConnectionPort CLDMSGPORT

FilterConnectionPort DtdSel03

FilterConnectionPort MicrosoftMalwareProtectionPortWD

SymbolicLink OSDataRoot \Device\OSDataDevice

Event SAM_SERVICE_STARTED

Directory Driver

Directory DriverStores

c:\>objdir \KernelObjects

Directory: \KernelObjects

Type Name Link Target

---- ---- -----------

SymbolicLink MemoryErrors

Event LowNonPagedPoolCondition

Session Session1

Event SuperfetchScenarioNotify

Event SuperfetchParametersChanged

SymbolicLink PhysicalMemoryChange

SymbolicLink HighCommitCondition

Mutant BcdSyncMutant

SymbolicLink HighMemoryCondition

Event HighNonPagedPoolCondition

Partition MemoryPartition0

KeyedEvent CritSecOutOfMemoryEvent

Event SystemErrorPortReady

SymbolicLink MaximumCommitCondition

SymbolicLink LowCommitCondition

Event HighPagedPoolCondition

Chapter 7: Objects and Handles 160

SymbolicLink LowMemoryCondition

Session Session0

Event LowPagedPoolCondition

Event PrefetchTracesReady

Youmay notice in the above output that some symbolic links have no target. These are called dynamic

symbolic links, and their target is set by a kernel callback. All the above non-target links actually

point to Event objects (e.g. “HighMemoryCondition”).

Some directories are inaccessible without elevated permissions (for example, “\ObjectTypes”). Run

ObjDir elevated to get that extra access.

8.4: Handles

Accessing kernel objects from user-mode must be done through handles. A handle is an index into a handle

table, maintained on a per-process basis. In this section, we’ll look at native APIs related to handles in general,

applicable to any (or many) object types.

Once a handle is no longer needed, it should be closed with NtClose that we have used many times before:

NTSTATUS NtClose(_In_ _Post_ptr_invalid_ HANDLE Handle);

8.4.1: Handle Duplication

It is sometimes useful to get another handle to the same object based on an existing handle. For example, a

handle in a different process cannot be used by the calling process to access the same object unless the handle

resides in the caller’s process handle table. Handle duplication provides a solution.

The function name is NtDuplicateObject, which is the one invoked by theWindows API DuplicateHandle

function:

NTSTATUS NtDuplicateObject(

In HANDLE SourceProcessHandle,

In HANDLE SourceHandle,

_In_opt_ HANDLE TargetProcessHandle,

_Out_opt_ PHANDLE TargetHandle,

In ACCESS_MASK DesiredAccess,

In ULONG HandleAttributes,

In ULONG Options);

Chapter 7: Objects and Handles 161

The API name (NtDuplicateObject) is misleading - no object is duplicated, only a handle is duplicated. The

Windows API name is accurate.

A handle from a source process is duplicated into the process handle of a target process. Both source and

target processes may be the same one, which is sometimes useful if a different access mask is needed.

SourceHandleProcess and TargetHandleProcessmust have PROCESS_DUP_HANDLE access mask available

(NtCurrentProcess() always has that). SourceHandle is the handle to duplicate, and the result is returned

in TargetHandle (if successful).

DesiredAccess can be zero if Options includes the flag DUPLICATE_SAME_ACCESS; otherwise, it specifies

the required access mask (if that can be obtained). If the access mask requested is a subset of the original

access mask, this always succeed.

HandleAttributes can include the following optional flags:

• OBJ_INHERIT (2) - duplicated handle is marked as inheritable.

• OBJ_PROTECT_CLOSE (1) - duplicated handle cannot be closed until this flag is removed.

Options can be zero or a combination of the following:

• DUPLICATE_SAME_ACCESS (2) - as mentioned, uses the access mask of the source handle

• DUPLICATE_CLOSE_SOURCE (1) - the source handle is closed after duplication (essentially “moving” the

handle from the source to the target process). If this flag is used, the source process handle and the

target handle pointer can be NULL, which causes the source handle to be closed without any duplication

actually occurring.

The target process gets the duplicated handle, but if the target process is not the caller process, it doesn’t

“know” that a new handle has been created in its handle table. This means that the duplicating process must

somehow tell the target process about the new handle value (presumabely, these two processes would like

to share access to the object). In such a case there must be some form of Interprocess Communication (IPC)

mechanism in place between the caller process and the target process.

8.4.2: Querying Information

A general way to get information about an object (through a handle) and the handle entry itself is

NtQueryObject, repeated here for convenience:

typedef enum _OBJECT_INFORMATION_CLASS {

ObjectBasicInformation, // OBJECT_BASIC_INFORMATION

ObjectNameInformation, // OBJECT_NAME_INFORMATION

ObjectTypeInformation, // OBJECT_TYPE_INFORMATION

ObjectTypesInformation, // OBJECT_TYPES_INFORMATION

ObjectHandleFlagInformation, // OBJECT_HANDLE_FLAG_INFORMATION

ObjectSessionInformation,

ObjectSessionObjectInformation,

Chapter 7: Objects and Handles 162

MaxObjectInfoClass

} OBJECT_INFORMATION_CLASS;

NTSTATUS NtQueryObject(

_In_opt_ HANDLE Handle,

In OBJECT_INFORMATION_CLASS ObjectInformationClass,

_Out_writes_bytes_opt_(ObjectInformationLength) PVOID ObjectInformation,

In ULONG ObjectInformationLength,

_Out_opt_ PULONG ReturnLength);

8.4.2.1: Basic Information

ObjectBasicInformation returns an OBJECT_BASIC_INFORMATION:

typedef struct _OBJECT_BASIC_INFORMATION {

ULONG Attributes;

ACCESS_MASK GrantedAccess;

ULONG HandleCount;

ULONG PointerCount;

ULONG PagedPoolCharge;

ULONG NonPagedPoolCharge;

ULONG Reserved[3];

ULONG NameInfoSize;

ULONG TypeInfoSize;

ULONG SecurityDescriptorSize;

LARGE_INTEGER CreationTime;

} OBJECT_BASIC_INFORMATION, *POBJECT_BASIC_INFORMATION;

Some of the members provide information on the handle entry maintained in the process handle table, and

some details are for the object “pointed to” by the handle. Here is a description of the members:

• Attributes includes the handle and object attributes. It could be zero, or a combination of the

following flags:

– OBJ_PROTECT_CLOSE (1) - handle is not closable (unless this flag is removed).
– OBJ_INHERIT (2) - handle is inheritable (applies if handle inheritance is used when creating a new

process).
– OBJ_AUDIT_OBJECT_CLOSE (4) - an audit event long entry is added to the security event log when

the handle is closed.
– OBJ_PERMANENT (0x10) - object is permanent and cannot be destroyed from user mode.
– OBJ_EXCLUSIVE (0x20) - object is exclusive and cannot be opened from another process.

• GrantedAccess is the handle’s “power” over the object.

Chapter 7: Objects and Handles 163

• HandleCount is the number of open handles to the object.

• PointerCount is supposed to be the total reference count (including handle count) for the object.

However, starting with Windows 8.1, the pointer count includes an inverse usage count for the handle

(see the “Windows Internals” book (part 2) for the gory details. The bottom line is that this value is

mostly useless.

• PagedPoolCharge and NonPagedPoolQuota are the paged and non-paged memory (respectively) used

by the object and quotad to the creating process.

• NameInfoSize is the size (in bytes) of the object’s name information (if any). This includes the size of

OBJECT_NAME_INFORMATION (see next subsection) and the size of the name itself.

• TypeInfoSize is the size (in bytes) of the object’s type information. This includes the size of OBJECT_-

TYPE_INFORMATION and the type name’s size.

• SecurityDescriptorSize is the size (in bytes) of the object’s Security Descriptor (if any).

• CreationTime looks promising, but is only applicable to Symbolic Link objects (indicating their

creation time).

NameInfoSize is returned as zero for objects that have no name, but also objects that are nowhere

in the Object Manager’s namespace (even though they have some form of name). Primary examples

are file and desktop objects.

We’ll see an example using this information in the next subsection.

8.4.2.2: Object Name

The object’s name (if any) can be retrieved using the ObjectNameInformation information class. This

returns an OBJECT_NAME_INFORMATION, which is a glorified UNICODE_STRING:

typedef struct _OBJECT_NAME_INFORMATION {

UNICODE_STRING Name;

} OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION;

The catch is that the buffer provided must be large enough to accomodate the name - the API will not allocate

it for you. One way to get that information is with ObjectBasicInformation from the previous subsection.

The following example displays an object’s name given a handle and a process ID:

std::wstring GetObjectName(HANDLE hObject, ULONG pid) {

static const WCHAR accessDeniedName[] = L"<access denied>";

//

// open handle to target process

//

HANDLE hProcess;

CLIENT_ID cid{ ULongToHandle(pid) };

Chapter 7: Objects and Handles 164

OBJECT_ATTRIBUTES procAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

auto status = NtOpenProcess(&hProcess, PROCESS_DUP_HANDLE, &procAttr, &cid);

if (!NT_SUCCESS(status))

return accessDeniedName;

HANDLE hDup = nullptr;

std::wstring name;

do {

//

// duplicate handle to our process so we can access object

//

status = NtDuplicateObject(hProcess, hObject, NtCurrentProcess(),

&hDup, 0, 0, 0);

if (!NT_SUCCESS(status)) {

name = accessDeniedName;

break;

}

//

// get basic information

//

OBJECT_BASIC_INFORMATION info;

status = NtQueryObject(hDup, ObjectBasicInformation,

&info, sizeof(info), nullptr);

if (!NT_SUCCESS(status)) {

name = accessDeniedName;

break;

}

if (info.NameInfoSize == 0) // no name

break;

//

// query the actual name

//

auto buffer = std::make_unique<BYTE[]>(info.NameInfoSize);

status = NtQueryObject(hDup, ObjectNameInformation, buffer.get(),

info.NameInfoSize, nullptr);

if (!NT_SUCCESS(status))

break;

auto uname = (UNICODE_STRING*)buffer.get();

Chapter 7: Objects and Handles 165

name.assign(uname->Buffer, uname->Length / sizeof(WCHAR));

} while (false);

if (hProcess)

NtClose(hProcess);

if (hDup)

NtClose(hDup);

return name;

}

The above code retrieves object names for accessible objects (you can run it elevated to gain more access),

which are within the object manager’s namespace. File objects, for example, are not reported as having a

name (NameInfoSize is set to zero).

How do we get names of such objects, like files and desktops, which have names, but are not in the

hierarchy maintained by the Object Manager’s namespace? We could just call NtQueryObject with

ObjectNameInformation, disregarding the fact that NameInfoSize is zero.

File objects, in particular, pose an unexpected problem: querying a file object’s name may hang the

NtQueryObject call. The reason has to do with internal synchronization-related operations deep within

the Executive’s I/O system (file names can change at any time, file systems have their own caches, etc.).

The best approach I have found for this case is to spawn a thread to get the file object name, and if after a

predefined time the name is unavailable (call is stuck), terminate the thread and move on. Here is some code

that does that:

std::wstring GetFileObjectName(HANDLE hFile) {

//

// context data to pass to thread

//

struct Data {

std::wstring Name;

HANDLE hFile;

} data;

data.hFile = hFile;

HANDLE hThread;

OBJECT_ATTRIBUTES threadAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

//

// create thread

//

auto status = RtlCreateUserThread(NtCurrentProcess(), nullptr, FALSE, 0, 0, 0,

[](auto p) -> NTSTATUS {

Chapter 7: Objects and Handles 166

auto data = (Data*)p;

//

// allocate a buffer that should be large enough

//

auto buffer = std::make_unique<BYTE[]>(MAX_PATH * 4);

auto status = NtQueryObject(data->hFile, ObjectNameInformation,

buffer.get(), MAX_PATH * 4, nullptr);

if (!NT_SUCCESS(status))

return 1;

//

// extract the name

//

auto uname = (UNICODE_STRING*)buffer.get();

data->Name.assign(uname->Buffer, uname->Length / sizeof(WCHAR));

return 0;

}, &data, &hThread, nullptr);

if (!NT_SUCCESS(status))

return L"";

LARGE_INTEGER timeout;

timeout.QuadPart = -10 * 10000; // 10 msec

//

// wait for the thread to terminate

//

if (STATUS_TIMEOUT == NtWaitForSingleObject(hThread, FALSE, &timeout)) {

//

// terminate forefully

//

NtTerminateThread(hThread, 1);

}

NtClose(hThread);

return data.Name;

}

To make this work we need to know the object type for which the name is required. Getting this information

get be done with ObjectTypeInformation, discussed next.

8.4.2.3: Object Type

Using the ObjectTypeInformation information class with a given handle returns OBJECT_TYPE_INFORMA-

TION, which we looked at earlier in this chapter. Refer to the section Object Types for the details.

Chapter 7: Objects and Handles 167

Write an application that display’s an object’s name given a handle value and a process ID. Make

sure you handle file objects correctly.

8.4.2.4: Handle Information

The ObjectHandleInformation returns a simple structure indicating the state of the “protect from close”

and “inherit” flags of the given handle:

typedef struct _OBJECT_HANDLE_FLAG_INFORMATION {

BOOLEAN Inherit;

BOOLEAN ProtectFromClose;

} OBJECT_HANDLE_FLAG_INFORMATION, *POBJECT_HANDLE_FLAG_INFORMATION;

As we’ve seen, these details are also available with ObjectBasicInformation as part of the Attributes

member.

The last two members of OBJECT_INFORMATION_CLASS (ObjectSessionInformation and ObjectSes-

sionObjectInformation) are for setting information only.

8.4.3: Setting Information

A complementary function to NtQueryObject exists:

NTSTATUS NtSetInformationObject(

In HANDLE Handle,

In OBJECT_INFORMATION_CLASS ObjectInformationClass,

_In_reads_bytes_(ObjectInformationLength) PVOID ObjectInformation,

In ULONG ObjectInformationLength);

A subset of OBJECT_INFORMATION_CLASS values are valid for setting information.

ObjectHandleFlagInformation can be used to change the state of the “protect from close” and “inherit”

flags using the OBJECT_HANDLE_FLAG_INFORMATION structure (equivalent to the Windows API SetHandle-

Information).

ObjectSessionInformation only applied to Directory objects. It can be used to associate a Directory object

to the caller’s session. No buffer is needed in this case. However, it does require the TCB privilege, normally

not given to any user. Services, however, are able to request it if so desired.

ObjectSessionObjectInformation does the same thing as “ObjectSessionInformation‘, but it only works

for Directory objects not currently associated with any session. The upside is that no special privilege is

needed.

Chapter 7: Objects and Handles 168

8.5: Enumerating Handles

Tools such as Process Explorer know how to show a list of handles in any process. This is done by enumerating

the handles, available with the native API. There are two variants for handle enumeration: the first is to

enumerate all handles in the system. The second, enumerate handles in a specific process of interest.

To enumerate all handles in the system, a call to NtQuerySystemInformation is required with SystemEx-

tendedHandleInformation. You’ll find SystemHandleInformation as well, but this is deprectaed because

the results it returns may be truncated. For example, process IDs are returned as USHORT, which is not big

enough necessarily.

The returned value from SystemExtendedHandleInformation involves a to-level structure and then an

array of structures, one for each handle in the system:

typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX {

PVOID Object;

ULONG_PTR UniqueProcessId;

ULONG_PTR HandleValue;

ULONG GrantedAccess;

USHORT CreatorBackTraceIndex;

USHORT ObjectTypeIndex;

ULONG HandleAttributes;

ULONG Reserved;

} SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO_EX;

typedef struct _SYSTEM_HANDLE_INFORMATION_EX {

ULONG_PTR NumberOfHandles;

ULONG_PTR Reserved;

SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX Handles[1];

} SYSTEM_HANDLE_INFORMATION_EX, *PSYSTEM_HANDLE_INFORMATION_EX;

The members of SYSTEM_HANDLE_TABLE_ENTRY_INFO_EX should be familiar based on previous sections.

Note that the name of the object is not provided. Also, CreatorBackTraceIndex seems to be always zero.

Using this enumeration requires passing a buffer large enough to handle the returned data. As with previous

examples, it’s best to start with some size and double it every time it’s too small, or use the returned value

(but increase it a bit because new handles may be created before the second call). Here is an example:

Chapter 7: Objects and Handles 169

ULONG size = 0;

std::unique_ptr<BYTE[]> buffer;

auto status = STATUS_SUCCESS;

do {

if(size)

buffer = std::make_unique<BYTE[]>(size);

status = NtQuerySystemInformation(SystemExtendedHandleInformation,

buffer.get(), size, &size);

if (status == STATUS_INFO_LENGTH_MISMATCH) {

size += 1 << 12;

continue;

}

} while (!NT_SUCCESS(status));

if (!NT_SUCCESS(status)) {

printf("Error: 0x%X\n", status);

return 1;

}

auto handles = (SYSTEM_HANDLE_INFORMATION_EX*)buffer.get();

for (ULONG i = 0; i < handles->NumberOfHandles; i++) {

// do something with handles->Handles[i];

}

8.5.1: Process Handle Enumeration

Enumerating handles in a specific process can be done in one of two ways. One way is to use the previous

system-wide handle enumeration and simply filter to the required process. The second option is to get handles

of a the process of interest by calling NtQueryInformationProcess with ProcessHandleInformation‘ (51).

This returns the follwing structures:

typedef struct _PROCESS_HANDLE_TABLE_ENTRY_INFO {

HANDLE HandleValue;

ULONG_PTR HandleCount;

ULONG_PTR PointerCount;

ULONG GrantedAccess;

ULONG ObjectTypeIndex;

ULONG HandleAttributes;

ULONG Reserved;

} PROCESS_HANDLE_TABLE_ENTRY_INFO, *PPROCESS_HANDLE_TABLE_ENTRY_INFO;

typedef struct _PROCESS_HANDLE_SNAPSHOT_INFORMATION {

Chapter 7: Objects and Handles 170

ULONG_PTR NumberOfHandles;

ULONG_PTR Reserved;

PROCESS_HANDLE_TABLE_ENTRY_INFO Handles[1];

} PROCESS_HANDLE_SNAPSHOT_INFORMATION, *PPROCESS_HANDLE_SNAPSHOT_INFORMATION;

Although it seems good enough, there are a couple of issues when using the process-specific call:

• A process handle is required with PROCESS_QUERY_INFORMATION, which is not always possible to get.

For example, protected processes can never be opened with this access mask.

• The PROCESS_HANDLE_TABLE_ENTRY_INFO structure is missing the object’s address in kernel space.

Although technically useless to user-mode directly, it may still be needed by the caller.

If these two issues are not a problem, then this method can certainly be used.

Tools like Process Explorer use the NtQuerySystemInformation call so they can enumerate handles

for all processes - no need to obtain a handle to any process.

The Handles sample project shows how to perform a system-wide handle enumeration. It also shows object

names. Feel free to add support for process filtering, show object types, filter based on object types or names,

etc.

8.6: Specific Object Types

The native API has functions for creating, opening, and manipulating various kinds of kernel objects. In this

section, we’ll look at the most common object types that are useful for user-mode code.

8.6.1: Mutex

Mutex objects are used for thread synchronization. A mutex is either free (signaled), or owned by a thread

(non-signaled). The wait functions discussed in chapter 6 apply to mutexes (as they do to all dispatcher

objects). Creating a named mutex is achieved with the following:

NTSTATUS NtCreateMutant(

Out PHANDLE MutantHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In BOOLEAN InitialOwner);

The desired access for mutex creation is typically MUTEX_ALL_ACCESS. If the mutex is not named (using

ObjectAttributes), a new mutex is created. If a name is provided, and the mutex with that name exists -

the function fails with STATUS_OBJECT_NAME_COLLISION. The name (if specified) must be either a full name

Chapter 7: Objects and Handles 171

(such as “\KernelObjects\MyMutex” or be a relative name, if a Directory handle is provided in the object

attributes. If an unnamed mutex is to be created, and no special attributes are required - ObjectAttributes

can be NULL.

Finally, InitialOwner indicates whether the created mutex should be initially owned by the calling thread

or not.

The term “mutant” used by the native API is the original name for mutexes. The kernel object type is still

called “Mutant” for compatibility reasons. For all practical purposes, these are one and the same.

The following example shows how to create a named mutex in the Directory “KernelObjects” (requires

running elevated):

HANDLE hMutex;

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\KernelObjects\\MySuperMutex");

OBJECT_ATTRIBUTES mutexAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

auto status = NtCreateMutant(&hMutex, MUTEX_ALL_ACCESS, &mutexAttr, FALSE);

Opening a handle to an existing mutex is done with NtOpenMutant:

NTSTATUS NtOpenMutant(

Out PHANDLE MutantHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

ObjectAttributes must store a name for the mutex, otherwise the call fails. The call may also fail for

security reasons - access may not be granted to the caller.

The following example opens a handle to the named mutex created above to allow waiting only:

HANDLE hMutex;

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\KernelObjects\\MySuperMutex");

OBJECT_ATTRIBUTES mutexAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

auto status = NtOpenMutant(&hMutex, SYNCHRONIZATION, &mutexAttr);

Once a mutex is successfully acquired, the owner thread must eventually release it:

Chapter 7: Objects and Handles 172

NTSTATUS NtReleaseMutant(

In HANDLE MutantHandle,

_Out_opt_ PLONG PreviousCount);

When a mutex is created unowned, it’s internal count is once. If it’s created owened, its count is zero. Each

acuisition drops the count by one, and each release increments the count by one.

A mutex may be acquired recusrively more than once by the same thread. The number of waits must match

the number of NtRelaseMutant calls to actually free the mutex. The optional PreviousCount returns the

previous count of ownership. NtReleaseMutant fails if the caller thread is not the owner of the mutex.

Finally, a mutex state can be queried with NtQueryMutant:

typedef enum _MUTANT_INFORMATION_CLASS {

MutantBasicInformation,

MutantOwnerInformation

} MUTANT_INFORMATION_CLASS;

typedef struct _MUTANT_BASIC_INFORMATION {

LONG CurrentCount;

BOOLEAN OwnedByCaller;

BOOLEAN AbandonedState;

} MUTANT_BASIC_INFORMATION, *PMUTANT_BASIC_INFORMATION;

typedef struct _MUTANT_OWNER_INFORMATION {

CLIENT_ID ClientId;

} MUTANT_OWNER_INFORMATION, *PMUTANT_OWNER_INFORMATION;

NTSTATUS NtQueryMutant(

In HANDLE MutantHandle,

In MUTANT_INFORMATION_CLASS MutantInformationClass,

_Out_writes_bytes_(MutantInformationLength) PVOID MutantInformation,

In ULONG MutantInformationLength,

_Out_opt_ PULONG ReturnLength);

The members are mostly self-explanatory. AbandonedState indicates if the mutex is abandoned - a thread

owned this mutex and terminated without releasing it. Since only the mutex owner can release a mutex, the

kernel steps in and releases the mutex forcefully upon the thread’s termination and changes the mutex state

to abandoned - it’s the same as free in the sense that the next thread to acquire it will do so, but the abandoned

state is an indication of that abnormal situation that may hint some bug in the application. Once the mutex

is owned again, its abandoned state is removed (the wait function returns STATUS_ABANDONED rather than

STATUS_SUCCESS)

Remember that querying the state of dispatcher objects (like mutexes) is not a safe operation, in

the sense that its state may change immediately after the call by another thread; it’s still useful for

debugging purposes.

Chapter 7: Objects and Handles 173

8.6.2: Sempahore

Sempahore objects maintain a maximum and a current count, initailized at creation time. A semaphore is

signaledwhile its current count is above zero. Once it drops to zero, it becomes non-signaled. Every successful

wait decrements its current count. Creating and opening a semaphore object are similar to a mutex:

NTSTATUS NtCreateSemaphore(

Out PHANDLE SemaphoreHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In LONG InitialCount,

In LONG MaximumCount);

NTSTATUS NtOpenSemaphore(

Out PHANDLE SemaphoreHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

The purpose of a typical semaphore is to limit the size of something given that multiple threads work with

that “something” (e.g. a queue).

Acquiring one of the semaphore’s counts is done by calling a waiting function. Releasing a semaphore is

done with NtReleaseSemaphore.

NTSTATUS NtReleaseSemaphore(

In HANDLE SemaphoreHandle,

In LONG ReleaseCount,

_Out_opt_ PLONG PreviousCount);

A thread may release more than one “count” at a time (ReleaseCount). The optional PreviousCount returns

the previous count of the semaphore before the current operation.

Just like a mutex, a semaphore’s state may be queried (mostly for debugging purposes):

Chapter 7: Objects and Handles 174

typedef enum _SEMAPHORE_INFORMATION_CLASS {

SemaphoreBasicInformation

} SEMAPHORE_INFORMATION_CLASS;

typedef struct _SEMAPHORE_BASIC_INFORMATION {

LONG CurrentCount;

LONG MaximumCount;

} SEMAPHORE_BASIC_INFORMATION, *PSEMAPHORE_BASIC_INFORMATION;

NTSTATUS NtQuerySemaphore(

In HANDLE SemaphoreHandle,

In SEMAPHORE_INFORMATION_CLASS SemaphoreInformationClass,

_Out_writes_bytes_(SemaphoreInformationLength) PVOID SemaphoreInformation,

In ULONG SemaphoreInformationLength,

_Out_opt_ PULONG ReturnLength);

8.6.3: Event

Event objects are simple flags, that may be in the signaled state (set, TRUE) or non-signaled (reset, FALSE).

However, there are two types of events:

• Notification (Manual reset in Windows API terminology)

• Synchronization (Auto reset in Windows API terminology)

A notification event releases any number of threads when set, while a synchronization event releases just one

thread when set and goes back to the non-signaled (reset) state immediately; it must be set again to release

another thread.

If, at the time of setting a synchronization event, no thread is waiting on it, it will remain signaled

until a thread waits, which would release it immediately and go to the non-signaled state.

Creating and opening an event is similar to mutexes and semaphores:

Chapter 7: Objects and Handles 175

typedef enum _EVENT_TYPE {

NotificationEvent,

SynchronizationEvent

} EVENT_TYPE;

NTSTATUS NtCreateEvent(

Out PHANDLE EventHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In EVENT_TYPE EventType,

In BOOLEAN InitialState);

NTSTATUS NtOpenEvent(

Out PHANDLE EventHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

Setting and resetting an event is done with the following:

NTSTATUS NtSetEvent(

In HANDLE EventHandle,

_Out_opt_ PLONG PreviousState);

NTSTATUS NtClearEvent(_In_ HANDLE EventHandle);

NTSTATUS NtResetEvent(

In HANDLE EventHandle,

_Out_opt_ PLONG PreviousState);

NtClearEvent and NtResetEvent do the same thing, but the latter returns the previous state of the event

(can be zero or one).

Another API is available for setting an event:

NTSTATUS NtSetEventBoostPriority(_In_ HANDLE EventHandle);

This function works only on synchronization events and increases a released thread to the priority of the

current thread (if it’s higher). The standard behavior of NtSetEvent is to provide a boost of +1 to released

threads.

Yet another option is NtPulseEvent, having the same parameters as NtSetEvent. It sets and immediately

resets the event. It has potential issues, though (search online), and thus is not recommended.

Finally, an event’s information can be queried:

Chapter 7: Objects and Handles 176

typedef enum _EVENT_INFORMATION_CLASS {

EventBasicInformation

} EVENT_INFORMATION_CLASS;

typedef struct _EVENT_BASIC_INFORMATION {

EVENT_TYPE EventType;

LONG EventState;

} EVENT_BASIC_INFORMATION, *PEVENT_BASIC_INFORMATION;

NTSTATUS NtQueryEvent(

In HANDLE EventHandle,

In EVENT_INFORMATION_CLASS EventInformationClass,

_Out_writes_bytes_(EventInformationLength) PVOID EventInformation,

In ULONG EventInformationLength,

_Out_opt_ PULONG ReturnLength);

8.7: Other Object Types

Many other object types are supported by the native API shown in table 7-1 with common functions.

Table 7-1: Other object types

Timer NtCreateTimer, NtOpenTimer, NtSetTimer(Ex), NtCancelTimer

TpWorkerFactory NtCreateWorkerFactory, NtWorkerFactoryWorkerReady

Profile NtCreateProfile, NtStartProfile, NtStopProfile

KeyedEvent NtCreateKeyedEvent, NtOpenKeyedEvent, NtWaitForKeyedEvent

Transaction NtCreateTransaction, NtOpenTransaction, NtCommitTransaction

Job NtCreateJobObject, NtOpenJobObject, NtSetInformationJobObject

Object Type Example APIs

These object types and others will be covered in a future edition of the book.

8.8: Summary

Kernel objects wrap the core functionality in Windows including processes, threads, jobs, mutexes and many

others. This chapter showed how to work in general with objects and handles, and focused on some useful

object types, more of which we’ll meet in future chapters.

Chapter 8: Memory (Part 1)

Memory is obviously crucial to any computer system. TheWindows executive Memory Manager component

is responsible for managing the various data structures required to allow the CPU to correctly translate virtual

addresses to physical ones (RAM) by managing a set of page tables. Memory (from the CPU and Memory

Manager’s perspective) is always managed in chunks called pages.

In this chapter:

• Introduction

• The Virtual Functions

• Querying Memory

• Reading and Writing

• Other Virtual APIs

• Heaps

• Heap Information

9.1: Introduction

Table 8-1 shows the page sizes for each architecture supported by Windows. The default page size is 4 KB.

Table 8-1: Page Sizes

x86 4 KB 2 MB N/A Not supported on Windows 11+

x64 4 KB 2 MB 1 GB

ARM 4 KB 4 MB N/A Not supported on Windows 11+

ARM64 4 KB 2 MB 1 GB

Architecture Normal (Small) Large Huge Remarks

In a simplified manner, the term Virtual Memory means the following:

• There is some mapping from a virtual address to a physical address that is transparently followed by

the processor. Code accesses memory using virtual addresses only.

• The page may not be in physical memory at all, in which case the CPU raises a page fault exception,

handled by the Memory Manager. If the page happens to be in a file (such as a page file), the Memory

Manager will allocate a free physical page, read the data in, fix the page tables and tell the processor to

try again. This is completely transparent to the calling code.

Chapter 8: Memory (Part 1) 178

9.1.1: Page States

Every page in a virtual address space of a process or the kernel can be in the following states:

• Free - there is nothing there, no mapping. Accessing such a page causes an Access Violation exception.

• Committed - the opposite of free. A page that is definitely accessible, even though it may reside in a

file at various times. It may still be inaccessible because of page protection conflicts.

• Reserved - same as free from an access perspective - there is nothing there. However, the page has been

reserved for some future use, and will not be considered for new allocations.

9.1.2: Memory APIs

There are several layers of memory APIs in user-mode. At the lowest layer are the so called Virtual functions.

These are the most powerful, as they are closest to the Memory Manager. They provide all the power of the

Memory Manager, such as committing and reserving memory, changing protection, using large pages, etc.

Their downside is that they always work in chunks of pages. For example, if you allocate 100 bytes with one

of these functions, you will get 4 KB (size of a page); if 5 KB are allocated, 8 KB will be returned.

The API layers are depicted in figure 8-1.

Figure 8-1: Memory API Layers

Chapter 8: Memory (Part 1) 179

On top of the Virtual API is the Heap API. The purpose of this API is to manage small or non-page sized

chunks efficiently. They call into the Virtual APIs when needed. Finally, the highest level of APIs are part of

the C/C++ runtime - functions such as malloc, free, operator new, and similar. Their implementation is

compiler-dependent, but Microsoft’s compiler currently uses the heap API (working with the default process

heap).

9.2: The Virtual Functions

The Windows API variants include VirtualAlloc(Ex), VirtualFree, VirtualProtect, and others. In this

section, we’ll look at the underlying native APIs, starting with the basic allocation function, NtAllocate-

VirtualMemory:

NTSTATUS NtAllocateVirtualMemory(

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

In ULONG_PTR ZeroBits,

Inout PSIZE_T RegionSize,

In ULONG AllocationType,

In ULONG Protect);

This function is actually documented in the WDK, and most of its parameters correspond to similar ones in

the Windows API VirtualAllocEx. Here is a brief description:

• ProcessHandle is the process where the allocation should be made. The typical case is NtCur-

rentProcess, but it’s possible to make an allocate in a different process if the handle has the

PROCESS_VM_OPERATION access mask.

• BaseAddress provides the address to use. For new allocations, *BaseAddress is typically set to NULL,

indicating to the Memory Manager there is no preferred address. If the region in question is reserved,

then *BaseAddress can specify an address within this region for (say) committing memory. On a

successful return of this function, *BaseAddresd* indicates the address actually used, which may be

rounded down to the nearest page boundary from its input value, or if NULL was specified on input -

returns the actual address selected by the Memory Manager.

• ZeroBits is typically zero, but can be used to affect the final address selected. See the description in

chapter 6.

• *RegionSize is the size of the region affected, in bytes. It may be rounded up (depending on

‘BaseAddress) so as to align on page boundary.

• AllocationType is a set of flags (some mutually exclusive) indicating the operation to perform. The

most common ones are:

– MEM_COMMIT - commit the region.
– MEM_RESERVE - reserve the region.
– MEM_COMMIT | MEM_RESERVED - reserve and commit at the same time. Used for new allocations.

Chapter 8: Memory (Part 1) 180

• Protect is the protection for the allocated pages, e.g. PAGE_READWRITE, PAGE_READONLY, PAGE_EXE-

CUTE_READWRITE, etc.

See the documentation of VirtualAlloc in the Windows SDK for more details on these parameters.

The inverse function to NtAllocateVirtualMemory is NtFreeVirtualMemory:

NTSTATUS NtFreeVirtualMemory(

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

Inout PSIZE_T RegionSize,

In ULONG FreeType);

The first 3 parameters are the same as in NtAllocateVirtualMemory. However, *BaseAddress cannot be

NULL - it must specify a valid address to de-commit or release (opposite of reserve). The address and region

size will be rounded down and up, respectively, so the range is page aligned. Finally, the most common flags

follow:

• MEM_DECOMMIT - de-commits the pages, making them reserved.

• MEM_RELEASE - releases the pages, making them free. The region size must be zero, and *BaseAddress

must be the base address returned in the initial NtAllocateVirtualMemory allocation.

You can find more in the SDK documentation of VirtualFree.

An extended allocation function is available in Windows 10 version 1803 and later:

NTSTATUS NtAllocateVirtualMemoryEx (

In HANDLE ProcessHandle,

Inout PVOID* BaseAddress,

Inout PSIZE_T RegionSize,

In ULONG AllocationType,

In ULONG PageProtection,

_Inout_updates_opt_(ExtParamCount) PMEM_EXTENDED_PARAMETER ExtendedParameters,

In ULONG ExtParameCount);

NtAllocateVirtualMemoryEx is an extended function that allows specifying a variable set of extended

parameters, declared inWinNt.h:

Chapter 8: Memory (Part 1) 181

typedef enum MEM_EXTENDED_PARAMETER_TYPE {

MemExtendedParameterInvalidType = 0,

MemExtendedParameterAddressRequirements,

MemExtendedParameterNumaNode,

MemExtendedParameterPartitionHandle,

MemExtendedParameterUserPhysicalHandle,

MemExtendedParameterAttributeFlags,

MemExtendedParameterImageMachine,

MemExtendedParameterMax

} MEM_EXTENDED_PARAMETER_TYPE, *PMEM_EXTENDED_PARAMETER_TYPE;

#define MEM_EXTENDED_PARAMETER_TYPE_BITS 8

typedef struct DECLSPEC_ALIGN(8) MEM_EXTENDED_PARAMETER {

struct {

DWORD64 Type : MEM_EXTENDED_PARAMETER_TYPE_BITS;

DWORD64 Reserved : 64 - MEM_EXTENDED_PARAMETER_TYPE_BITS;

};

union {

DWORD64 ULong64;

PVOID Pointer;

SIZE_T Size;

HANDLE Handle;

DWORD ULong;

};

} MEM_EXTENDED_PARAMETER, *PMEM_EXTENDED_PARAMETER;

The Windows API VirtualAlloc2 calls NtAllocateVirtualMemoryEx.

Each value in MEM_EXTENDED_PARAMETER_TYPE represents one type of customization, some of which are

documented as part of CreateFileMapping2. CreateFileMapping2 only supports MemSectionExtend-

edParameterUserPhysicalFlags and MemSectionExtendedParameterNumaNode values. Here are the

currently available parameter types:

• MemExtendedParameterAddressRequirements

This type requires providing a pointer to the following structure:

Chapter 8: Memory (Part 1) 182

typedef struct _MEM_ADDRESS_REQUIREMENTS {

PVOID LowestStartingAddress;

PVOID HighestEndingAddress;

SIZE_T Alignment;

} MEM_ADDRESS_REQUIREMENTS, *PMEM_ADDRESS_REQUIREMENTS;

This allows specifying the minimum and maximum addresses to use for the memory allocation, as well as

the minimum alignment.

• MemExtendedParameterNumaNode - specifies the desired Numa node (in the ULong member).

• MemExtendedParameterPartitionHandle - specifies the desired memory partition handle (memory

partitions are beyond the scope of this chapter).

• MemExtendedParameterUserPhysicalHandle - specifies a handle to another section object to copy

information from related to Address Windowing Extensions (AWE), which always identify memory

mapped physically (beyond the scope of this chapter).

• MemExtendedParameterAttributeFlags - specifies a set of additional flags, most of which are defined

in WinNt.h, shown in table 8-2:

Table 8-2: Extended parameters types

GRAPHICS (1) Allocations/mappings will be used to work with a GPU

NONPAGED (2) Use 64KB pages that are always non-paged

ZERO_PAGES_OPTIONAL (4) Zero pages are not required when committing memory

NONPAGED_LARGE (8) Allocations/mappings will use large pages (2MB)

NONPAGED_HUGE (0x10) Allocations/mappings will use huge pages (1GB)

SOFT_FAULT_PAGES (0x20) Perform soft page faults now to reduce the likelihood later

EC_CODE (0x40) Memory used for Emulation (ARM64)

IMAGE_NO_HPAT (0x80) Used for hot-patching an image

Flag (MEM_EXTENDED_PARAMETER_) Description

9.3: Querying Memory

The NtQueryVirtualMemoryAPI provides information on a region of virtual address space in a given process:

Chapter 8: Memory (Part 1) 183

typedef enum _MEMORY_INFORMATION_CLASS {

MemoryBasicInformation, // MEMORY_BASIC_INFORMATION

MemoryWorkingSetInformation, // MEMORY_WORKING_SET_INFORMATION

MemoryMappedFilenameInformation, // UNICODE_STRING

MemoryRegionInformation, // MEMORY_REGION_INFORMATION

MemoryWorkingSetExInformation, // MEMORY_WORKING_SET_EX_INFORMATION

MemorySharedCommitInformation, // MEMORY_SHARED_COMMIT_INFORMATION

MemoryImageInformation, // MEMORY_IMAGE_INFORMATION

MemoryRegionInformationEx, // MEMORY_REGION_INFORMATION

MemoryPrivilegedBasicInformation, // MEMORY_BASIC_INFORMATION

MemoryEnclaveImageInformation, // MEMORY_ENCLAVE_IMAGE_INFORMATION

MemoryBasicInformationCapped, // ARM64 only

MemoryPhysicalContiguityInformation, // MEMORY_PHYSICAL_CONTIGUITY_INFORMATION

MemoryBadInformation, // MEMORY_BAD_IDENTITY_INFORMATION

MemoryBadInformationAllProcesses, // MEMORY_BAD_IDENTITY_INFORMATION

MaxMemoryInfoClass

} MEMORY_INFORMATION_CLASS;

NTSTATUS NtQueryVirtualMemory(

In HANDLE ProcessHandle,

_In_opt_ PVOID BaseAddress,

In MEMORY_INFORMATION_CLASS MemoryInformationClass,

_Out_writes_bytes_(MemoryInformationLength) PVOID MemoryInformation,

In SIZE_T MemoryInformationLength,

_Out_opt_ PSIZE_T ReturnLength);

As you can see, the function supports several information classes, described below.

9.3.1: MemoryBasicInformation (0)

The buffer is of type MEMORY_BASIC_INFORMATION, documented in the Windows SDK. In fact, using this

information class is equivalent to the Windows API VirtualQueryEx. It returns information about a region

of address space that has the same attributes in terms of page state, mapping type, and page protection. The

access mask needed for the process handle is PROCESS_QUERY_LIMITED_INFORMATION or PROCESS_QUERY_-

INFORMATION. Consult the documentation of VirtualQueryEx for the details.

At the time of this writing, the documentation states that PROCESS_QUERY_INFORMATION access mask

is needed, but this is incorrect.

This is the basic operation of the Sysinternals VMMap tool.

Chapter 8: Memory (Part 1) 184

The following example shows how to scan a given process address:

void QueryVM(HANDLE hProcess) {

MEMORY_BASIC_INFORMATION mbi;

BYTE* address = nullptr;

while (NT_SUCCESS(NtQueryVirtualMemory(hProcess, address,

MemoryBasicInformation, &mbi, sizeof(mbi), nullptr))) {

DisplayMemoryInfo(mbi);

address += mbi.RegionSize;

}

}

NtQueryVirtualMemory fails eventually when the address goes beyond the user-mode address space.

DisplayMemoryInfo is a local function showing details of a MEMORY_BASIC_INFORMATION structure:

void DisplayMemoryInfo(MEMORY_BASIC_INFORMATION const& mi) {

printf("%p %16zX %-10s %-8s %-15s %-15s\n",

mi.BaseAddress, mi.RegionSize,

StateToString(mi.State), TypeToString(mi.Type),

ProtectionToString(mi.Protect).c_str(),

ProtectionToString(mi.AllocationProtect).c_str());

}

The helper functions convert from numeric values to strings:

const char* StateToString(DWORD state) {

switch (state) {

case MEM_FREE: return "Free";

case MEM_COMMIT: return "Committed";

case MEM_RESERVE: return "Reserved";

}

return "";

}

const char* TypeToString(DWORD type) {

switch (type) {

case MEM_IMAGE: return "Image";

case MEM_MAPPED: return "Mapped";

case MEM_PRIVATE: return "Private";

}

return "";

Chapter 8: Memory (Part 1) 185

}

std::string ProtectionToString(DWORD protect) {

std::string text;

if (protect & PAGE_GUARD) {

text += "Guard/";

protect &= ~PAGE_GUARD;

}

if (protect & PAGE_WRITECOMBINE) {

text += "Write Combine/";

protect &= ~PAGE_WRITECOMBINE;

}

switch (protect) {

case 0: break;

case PAGE_NOACCESS: text += "No Access"; break;

case PAGE_READONLY: text += "RO"; break;

case PAGE_READWRITE: text += "RW"; break;

case PAGE_EXECUTE_READWRITE: text += "RWX"; break;

case PAGE_WRITECOPY: text += "Write Copy"; break;

case PAGE_EXECUTE: text += "Execute"; break;

case PAGE_EXECUTE_READ: text += "RX"; break;

case PAGE_EXECUTE_WRITECOPY: text += "Execute/Write Copy"; break;

default: text += "<other>";

}

return text;

}

Here is a (very) trimmed-down output looking at an Explorer.exe process on my system:

0000000000000000 380000 Free No Access

0000000000380000 10000 Committed Mapped RW RW

0000000000390000 3000 Committed Mapped RO RO

0000000000393000 D000 Free No Access

00000000003A0000 1F000 Committed Mapped RO RO

00000000003BF000 1000 Free No Access

00000000003C0000 4000 Committed Mapped RO RO

00000000003C4000 C000 Free No Access

00000000003D0000 3000 Committed Mapped RO RO

00000000003D3000 D000 Free No Access

00000000003E0000 2000 Committed Private RW RW

00000000003E2000 E000 Free No Access

Chapter 8: Memory (Part 1) 186

00000000003F0000 3000 Committed Mapped RO RO

00000000003F3000 D000 Free No Access

0000000000400000 2000 Committed Private RW RW

0000000000402000 1E000 Reserved Private RW

...

0000000000600000 6F000 Reserved Private RW

000000000066F000 3000 Committed Private Guard/RW RW

0000000000672000 E000 Committed Private RW RW

0000000000680000 11000 Committed Mapped RO RO

0000000000691000 F000 Free No Access

00000000006A0000 11000 Committed Mapped RO RO

...

00007FF8A392F000 14000 Committed Image RO Execute/Write Copy

00007FF8A3943000 1000 Committed Image RW Execute/Write Copy

00007FF8A3944000 5000 Committed Image RO Execute/Write Copy

00007FFFDB164000 5000 Committed Image RO Execute/Write Copy

00007FFFDB169000 1000 Committed Image RW Execute/Write Copy

00007FFFDB16A000 4000 Committed Image RO Execute/Write Copy

00007FFFDB16E000 1B742000 Free No Access

00007FFFF68B0000 1000 Committed Image RO Execute/Write Copy

00007FFFF68B1000 4000 Committed Image RX Execute/Write Copy

00007FFFF68B5000 2000 Committed Image RO Execute/Write Copy

00007FFFF68B7000 1000 Committed Image RW Execute/Write Copy

00007FFFF68B8000 3000 Committed Image RO Execute/Write Copy

00007FFFF68BB000 1A5000 Free No Access

00007FFFF6A60000 1000 Committed Image RO Execute/Write Copy

00007FFFF6A61000 5000 Committed Image RX Execute/Write Copy

00007FFFF6A66000 3000 Committed Image RO Execute/Write Copy

00007FFFF6A69000 1000 Committed Image RW Execute/Write Copy

00007FFFF6A6A000 4000 Committed Image RO Execute/Write Copy

00007FFFF6A6E000 9582000 Free No Access

The full code is in the QueryVM project.

9.3.2: MemoryWorkingSetInformation (1)

This information class is about a process Working Set - memory that can be accessed without generating a

page fault. The process handle must have the PROCESS_QUERY_INFORMATION access mask.

The data structures involved are shown below:

Chapter 8: Memory (Part 1) 187

typedef struct _MEMORY_WORKING_SET_BLOCK {

ULONG_PTR Protection : 5;

ULONG_PTR ShareCount : 3;

ULONG_PTR Shared : 1;

ULONG_PTR Node : 3;

#ifdef _WIN64

ULONG_PTR VirtualPage : 52;

#else

ULONG VirtualPage : 20;

#endif

} MEMORY_WORKING_SET_BLOCK, *PMEMORY_WORKING_SET_BLOCK;

typedef struct _MEMORY_WORKING_SET_INFORMATION {

ULONG_PTR NumberOfEntries;

MEMORY_WORKING_SET_BLOCK WorkingSetInfo[1];

} MEMORY_WORKING_SET_INFORMATION, *PMEMORY_WORKING_SET_INFORMATION;

The main structure is just a container for entries describing working set ranges in the given process. The

BaseAddress value has no effect. This also means the size of the provided data is not fixed, and may fail

with STATUS_INFO_LENGTH_MISMATCH, in which case the buffer should be enlarged and the call repeated.

The members of MEMORY_WORKING_SET_BLOCK are described below:

• Protection describes the region protection. The values are not the same as the standard protection

constants we’ve seen in the previous subsection.

• ShareCount holds the share count of this region (if shared); the maximum value is 7.

• Shared is set if this region can be shared with other processes.

• Node is the NUMA node where this physical memory page is located.

• VirtualPage is the virtual page number (shift 12 bits to the left to get to the actual address).

The functionality provided by this information class is the same as with the QueryWorkingSet Windows

API. Consult the SDK docs for more information on the data members.

The following example shows how to output all working set pages given a handle to a process:

Chapter 8: Memory (Part 1) 188

bool QueryWS(HANDLE hProcess) {

SIZE_T size = 1 << 17; // arbitrary

std::unique_ptr<BYTE[]> buffer;

NTSTATUS status;

do {

buffer = std::make_unique<BYTE[]>(size);

status = NtQueryVirtualMemory(hProcess, nullptr,

MemoryWorkingSetInformation, buffer.get(), size, nullptr);

if(NT_SUCCESS(status))

break;

size *= 2; // size too small

} while (status == STATUS_INFO_LENGTH_MISMATCH);

if (!NT_SUCCESS(status))

return false;

auto ws = (MEMORY_WORKING_SET_INFORMATION*)buffer.get();

for (ULONG_PTR i = 0; i < ws->NumberOfEntries; i++) {

//

// get single item

//

auto& info = ws->WorkingSetInfo[i];

//

// show some details

//

printf("%16zX Prot: %-17s Share: %d Shareable: %s Node: %d\n",

info.VirtualPage << 12, ProtectionToString(info.Protection),

(int)info.ShareCount, (int)info.Shared ? "Y" : "N", (int)info.Node);

}

return true;

}

The full code is in the QueryWS project.

9.3.3: MemoryMappedFilenameInformation (2)

This information class returns a UNICODE_STRING for a mapped file in a given committed memory region (if

any). Teh following example returns a std::wstring for a mapped file in a given address:

Chapter 8: Memory (Part 1) 189

std::wstring Details(HANDLE hProcess, void* address) {

BYTE buffer[1 << 10];

if (NT_SUCCESS(NtQueryVirtualMemory(hProcess, address,

MemoryMappedFilenameInformation, buffer, sizeof(buffer), nullptr))) {

auto us = (PUNICODE_STRING)buffer;

return std::wstring(us->Buffer, us->Length / sizeof(WCHAR));

}

return L"";

}

The process handle must have PROCESS_QUERY_LIMITED_INFORMATION or PROCESS_QUERY_INFORMATION

access mask. The address used cannot contain private memory, which means that the type of the page where

the address points to must be MEM_MAPPED or MEM_IMAGE. Querying a MEM_PRIVATE or non-committed pages

will fail, so best to save time and avoid such regions.

A complete example is in the QueryVM sample in the Details function.

9.3.4: MemoryRegionInformation (3) and MemoryRegionInformationEx (7)

These information classes provide additional details for a given allocation range. Both return a MEMORY_-

REGION_INFORMATION defined below:

typedef struct _MEMORY_REGION_INFORMATION {

PVOID AllocationBase;

ULONG AllocationProtect;

union {

ULONG RegionType;

struct {

ULONG Private : 1;

ULONG MappedDataFile : 1;

ULONG MappedImage : 1;

ULONG MappedPageFile : 1;

ULONG MappedPhysical : 1;

ULONG DirectMapped : 1;

ULONG SoftwareEnclave : 1;

ULONG PageSize64K : 1;

ULONG PlaceholderReservation : 1;

ULONG MappedWriteWatch : 1;

ULONG PageSizeLarge : 1;

ULONG PageSizeHuge : 1;

Chapter 8: Memory (Part 1) 190

ULONG Reserved : 19;

};

};

SIZE_T RegionSize;

SIZE_T CommitSize;

ULONG_PTR PartitionId;

ULONG_PTR NodePreference;

} MEMORY_REGION_INFORMATION, *PMEMORY_REGION_INFORMATION;

MemoryRegionInformation can be called with a structure that excludes the last two members; it’s best to

use the extended version.

Here is a description of the members:

• AllocationBase is the base of the initial allocation, which could be different from the provided

BaseAddress in the call if BaseAddress is the beginning of the allocation block.

• AllocationProtect is the protection given to the memory block in the initial allocation. Note that

the current protection could be different - in fact, it could be anything for each page of this allocation

region.

This also explains why MEMORY_BASIC_INFORMATION has AllocationProtect member (initial

protection for the entire region) and Protect - the current protection for this (possibly subset) of

the region.

The flags unified with RegionType are the following:

• Private is set if the memory region is private to the process (not shared.

• MappedDataFile is set if the region maps to a file as data (not as a PE image).

• MappedImage is set if the region is mapped to a PE image.

• MappedPageFile is set if this region is mapped to a page file.

• MappedPhysical is set if the region is mapped to non-paged memory (such as with large pages).

• DirectMapped is set if the region is mapped by a kernel driver to a device memory.

• SoftwareEnclave is set if the region is mapped to a memory enclave (such as Virtualization Based

Security (VBS) protected enclave).

• PageSize64K is set if the region is mapped with 64 KB page size (possible when working with section

objects).

• PlaceholderReservation is set if the region is reserved by the kernel.

• MappedWriteWatch is set if the memory is registered for write watch (see InitializeProcessFor-

WsWatch Windows API or NtSetInformationProcess with ProcessWorkingSetWatch).

• PageSizeLarge is set if the region is mapped using large pages.

• PageSizeHuge is set if the region is mapped with huge pages.

The remaining members are:

Chapter 8: Memory (Part 1) 191

• RegionSize is the size of the region in question.

• CommitSize is the size of the committed part of the region.

• PartitionId is the memory partition this region belongs to (normally zero).

• NodePreference is the NUMA node preference for this region. It’s (ULONG)-1 if there is no preference.

The process handle required must have either PROCESS_QUERY_LIMITED_INFORMATION or PROCESS_QUERY_-

INFORMATION access mask bits present.

The QueryVM sample has been extended to include region information as follows (Details function):

if (mbi.State == MEM_COMMIT) {

MEMORY_REGION_INFORMATION ri;

if (NT_SUCCESS(NtQueryVirtualMemory(hProcess, mbi.BaseAddress,

MemoryRegionInformationEx, &ri, sizeof(ri), nullptr))) {

details += MemoryRegionFlagsToString(ri.RegionType);

}

The helper MemoryRegionFlagsToString builds a string based on the set flags:

std::wstring MemoryRegionFlagsToString(ULONG flags) {

std::wstring result;

static PCWSTR text[] = {

L"Private", L"Data File", L"Image", L"Page File",

L"Physical", L"Direct", L"Enclave", L"64KB Page",

L"Placeholder Reserve", L"Write Watch",

L"Large Page", L"Huge Page",

};

for(int i = 0; i < _countof(text); i++)

if (flags & (1 << i)) {

result += text[i];

result += L", ";

}

if (!result.empty())

return result.substr(0, result.length() - 2);

return L"";

}

9.3.5: MemoryWorkingSetExInformation (4)

This information class is an extended version of MemoryWorkingSetInformation in terms of the details

returned, but its usage is different. Instead of providing working set information for the entire process, the

Chapter 8: Memory (Part 1) 192

caller selects the virtual addresses it’s interested in (could be just one) passed as part of the output buffer. The

buffers are updated with the attributes of the address(es) provided. Each item is of type MEMORY_WORKING_-

SET_EX_INFORMATION that contains a MEMORY_WORKING_SET_EX_BLOCK:

typedef struct _MEMORY_WORKING_SET_EX_BLOCK {

union {

struct {

ULONG_PTR Valid : 1;

ULONG_PTR ShareCount : 3;

ULONG_PTR Win32Protection : 11;

ULONG_PTR Shared : 1;

ULONG_PTR Node : 6;

ULONG_PTR Locked : 1;

ULONG_PTR LargePage : 1;

ULONG_PTR Priority : 3;

ULONG_PTR Reserved : 3;

ULONG_PTR SharedOriginal : 1;

ULONG_PTR Bad : 1;

#ifdef _WIN64

ULONG_PTR Win32GraphicsProtection : 4;

ULONG_PTR ReservedUlong : 28;

#endif

};

struct {

ULONG_PTR Valid : 1;

ULONG_PTR Reserved0 : 14;

ULONG_PTR Shared : 1;

ULONG_PTR Reserved1 : 5;

ULONG_PTR PageTable : 1;

ULONG_PTR Location : 2;

ULONG_PTR Priority : 3;

ULONG_PTR ModifiedList : 1;

ULONG_PTR Reserved2 : 2;

ULONG_PTR SharedOriginal : 1;

ULONG_PTR Bad : 1;

#ifdef _WIN64

ULONG_PTR ReservedUlong : 32;

#endif

} Invalid;

};

} MEMORY_WORKING_SET_EX_BLOCK, *PMEMORY_WORKING_SET_EX_BLOCK;

Chapter 8: Memory (Part 1) 193

typedef struct _MEMORY_WORKING_SET_EX_INFORMATION {

PVOID VirtualAddress;

union {

MEMORY_WORKING_SET_EX_BLOCK VirtualAttributes;

ULONG_PTR Long;

} u1;

} MEMORY_WORKING_SET_EX_INFORMATION, *PMEMORY_WORKING_SET_EX_INFORMATION;

VirtualAddress is the input address which must be set prior to the call. The adjacent VirtualAttributes

is the result. VirtualAttributes has two parts of a union:

• If the address is valid (committed and present in RAM), the first structure should be consulted (Valid

is 1).

• If the address is invalid, the second structure (Invalid) should be consulted. In this case, In-

valid.Valid is zero.

Some of the flags were present in MEMORY_WORKING_SET_BLOCK. Here is a description of those which were

not:

• Valid is set if the virtual address is valid, and clear otherwise.

• Win32Protection is the protection for this address, given in the standard protection constants (PAGE_-

READWRITE, PAGE_READONLY, etc.).

• Locked is set if the address is locked in physical memory.

• Priority is the page priority (0 to 7, 7 is the highest), which determines how likely this page is to

remain in RAM if RAM is needed. See the “Windows Internals” book in chapter 5 for more details.

• SharedOriginal is set if the page is backed by a prototype PTE.

• Bad is set if the page is physically defective, or if it’s part of an enclave.

• PageTable is set if this page stores a page table (not applicable to a user-mode address).

• Location is set to one of three values: 0 (invalid page), 1 (resident), 2 (page file).

• ModifiedList is set if the page is on the Modified page list maintained by the Memory Manager.

• Win32GraphicsProtection is set with Win32 protection flags if that memory is used by a graphics

card.

Using MemoryWorkingSetExInformation requires the caller’s token to have the SeProfileSingleProcessPriv-

ilege, normally given to administrators.

The QueryVM project includes code that displays most of this information if the caller has the required

privilege (see the Details function).

9.3.6: MemorySharedCommitInformation (5)

This information just returns the shared committed memory size in the given process (as SIZE_T), in pages

(4KB chunks). The following example shows the shared committed memory in KB:

Chapter 8: Memory (Part 1) 194

SIZE_T committed;

if (NT_SUCCESS(NtQueryVirtualMemory(hProcess, nullptr,

MemorySharedCommitInformation, &committed, sizeof(committed), nullptr))) {

printf("Shared commit: %llu KB\n", committed << 2);

}

This information class requires a PROCSS_QUERY_LIMITED_INFORMATION or PROCESS_QUERY_INFORMATION

access mask. The BaseAddress value is not used.

9.3.7: MemoryImageInformation (6)

This information class gives details about an image that is mapped to the provided address (if any). The

returned structure is the following:

typedef struct _MEMORY_IMAGE_INFORMATION {

PVOID ImageBase;

SIZE_T SizeOfImage;

union {

ULONG ImageFlags;

struct {

ULONG ImagePartialMap : 1;

ULONG ImageNotExecutable : 1;

ULONG ImageSigningLevel : 4;

ULONG Reserved : 26;

};

};

} MEMORY_IMAGE_INFORMATION, *PMEMORY_IMAGE_INFORMATION;

ImageBase is the virtual address the image is mapped to in the process. SizeOfImage is the size

of the image in bytes. ImagePartialMapis set if only part of the image is mapped within

this page.ImageNotExecutableis set if the mapping do not include execute permissions.

Finally,ImageSigningLevel‘ is one value from the following definitions found in <WinNt.h>:

#define SE_SIGNING_LEVEL_UNCHECKED 0x00000000

#define SE_SIGNING_LEVEL_UNSIGNED 0x00000001

#define SE_SIGNING_LEVEL_ENTERPRISE 0x00000002

#define SE_SIGNING_LEVEL_CUSTOM_1 0x00000003

#define SE_SIGNING_LEVEL_DEVELOPER SE_SIGNING_LEVEL_CUSTOM_1

#define SE_SIGNING_LEVEL_AUTHENTICODE 0x00000004

#define SE_SIGNING_LEVEL_CUSTOM_2 0x00000005

#define SE_SIGNING_LEVEL_STORE 0x00000006

#define SE_SIGNING_LEVEL_CUSTOM_3 0x00000007

Chapter 8: Memory (Part 1) 195

#define SE_SIGNING_LEVEL_ANTIMALWARE SE_SIGNING_LEVEL_CUSTOM_3

#define SE_SIGNING_LEVEL_MICROSOFT 0x00000008

#define SE_SIGNING_LEVEL_CUSTOM_4 0x00000009

#define SE_SIGNING_LEVEL_CUSTOM_5 0x0000000A

#define SE_SIGNING_LEVEL_DYNAMIC_CODEGEN 0x0000000B

#define SE_SIGNING_LEVEL_WINDOWS 0x0000000C

#define SE_SIGNING_LEVEL_CUSTOM_7 0x0000000D

#define SE_SIGNING_LEVEL_WINDOWS_TCB 0x0000000E

#define SE_SIGNING_LEVEL_CUSTOM_6 0x0000000F

9.3.8: MemoryPrivilegedBasicInformation (8)

This information class provides the same details as MemoryBasicInformation, but applies to “secure”

(Isolated User Mode - IUM) processes that are protected using Virtualization Based Security (VBS), such as

LsaIso.exe (if Credential Guard is running on the system). The secure kernel is the one providing the results,

at its complete discretion.

For normal processes, it behaves the same as MemoryBasicInformation.

9.3.9: MemoryEnclaveImageInformation (9)

This information class provides information on images stored in enclaves. It doesn’t seem to be accessible

from user-mode.

9.3.10: MemoryBasicInformationCapped (10)

This information class is the same as MemoryBasicInformation, but only supported on ARM64. It doesn’t

seem to be much different from MemoryBasicInformation, except the region size provided determines the

maximum address range even if rounding down occurrs.

9.3.11: MemoryPhysicalContiguityInformation (11)

This information class returns physical memory information for a range of addresses as a MEMORY_PHYSI-

CAL_CONTIGUITY_INFORMATION structure:

Chapter 8: Memory (Part 1) 196

typedef enum _MEMORY_PHYSICAL_CONTIGUITY_UNIT_STATE {

MemoryNotContiguous,

MemoryAlignedAndContiguous,

MemoryNotResident,

MemoryNotEligibleToMakeContiguous,

} MEMORY_PHYSICAL_CONTIGUITY_UNIT_STATE;

typedef struct _MEMORY_PHYSICAL_CONTIGUITY_UNIT_INFORMATION {

union {

ULONG AllInformation;

struct {

ULONG State : 2; // MEMORY_PHYSICAL_CONTIGUITY_UNIT_STATE

ULONG Reserved : 30;

};

};

} MEMORY_PHYSICAL_CONTIGUITY_UNIT_INFORMATION;

typedef struct _MEMORY_PHYSICAL_CONTIGUITY_INFORMATION {

PVOID VirtualAddress;

ULONG_PTR Size;

ULONG_PTR ContiguityUnitSize;

ULONG Flags;

PMEMORY_PHYSICAL_CONTIGUITY_UNIT_INFORMATION ContiguityUnitInformation;

} MEMORY_PHYSICAL_CONTIGUITY_INFORMATION, *PMEMORY_PHYSICAL_CONTIGUITY_INFORMATION;

The call requires the SeProfileSingleProcessPrivilege to be in the caller’s token.

On input, VirtualAddress must be set to the address being queried (must be aligned to ContiguityU-

nitSize - typically a page), Size must be set to the size of the range, which must be a multiple of

ContiguityUnitSize. On return, the State member is set to the appropriate value. Flags can be zero

or one (if one, the query is for valid pages only).

Unfortunately, I couldn’t get this to work - STATUS_INVALID_PARAMETER was always returned.

9.3.12: MemoryBadInformation (12) and MemoryBadInformationAllProcesses (12)

MemoryBadInformation returns a process’ bad pages list - pages that are either physically defective, or are

used for memory enclaves. BaseAddress must be set to NULL, and the returned buffer contains an array of

the following structure:

Chapter 8: Memory (Part 1) 197

typedef struct _MEMORY_BAD_IDENTITY_INFORMATION {

union {

PVOID VirtualAddress; // virtual memory

ULONG_PTR PageFrameIndex; // physical memory

};

union {

struct {

ULONG_PTR Poisoned : 1; // should not be accessed

ULONG_PTR Physical : 1;

};

ULONG_PTR AllInformation;

};

} MEMORY_BAD_IDENTITY_INFORMATION, *PMEMORY_BAD_IDENTITY_INFORMATION;

The Physical flag indicates whether PageFrameIndex should be used (if set), or VirtualAddress (if clear).

MemoryBadInformationAllProcesses provides similar information for all processes, but is not accessible

from user-mode.

9.4: Reading and Writing

Reading and writing memory in the current process does not require any special APIs - just use C-style

memory functions (e.g. memcpy, memset) and normal code to read and write.

Reading and writing in another process address space requires the following APIs:

NTSTATUS NtReadVirtualMemory(

In HANDLE ProcessHandle,

_In_opt_ PVOID BaseAddress,

_Out_writes_bytes_(BufferSize) PVOID Buffer,

In SIZE_T BufferSize,

_Out_opt_ PSIZE_T NumberOfBytesRead);

NTSTATUS NtWriteVirtualMemory(

In HANDLE ProcessHandle,

_In_opt_ PVOID BaseAddress,

_In_reads_bytes_(BufferSize) PVOID Buffer,

In SIZE_T BufferSize,

_Out_opt_ PSIZE_T NumberOfBytesWritten);

These functions are the ones being invoked by the Windows API functions ReadProcessMemory and

WriteProcessMemory. The parameters should be mostly self-explanatory; BaseAddress is the virtual

Chapter 8: Memory (Part 1) 198

address in the target process. ProcessHandle must have PROCESS_VM_READ access mask (for NtReadVir-

tualMemory), or PROCESS_VM_WRITE (for NtWriteVirtualMemory).

9.4.1: Injecting a DLL with Remote Thread

A “classic” example of writing to another process memory is injecting a DLL into a target process by creating

a thread in that process, and pointing it to a LoadLibrary function in that process. Here is an example of

how this could be done using the Windows API (error handling ommitted for brevity):

int main(int argc, const char* argv[]) {

if (argc < 3) {

printf("Usage: Injector <pid> <dllpath>\n");

return 0;

}

auto pid = atoi(argv[1]);

HANDLE hProcess = OpenProcess(PROCESS_VM_WRITE | PROCESS_VM_OPERATION |

PROCESS_CREATE_THREAD, FALSE, pid);

auto p = VirtualAllocEx(hProcess, nullptr, 1 << 12, MEM_COMMIT | MEM_RESERVE,

PAGE_READWRITE);

WriteProcessMemory(hProcess, p, argv[2], strlen(argv[2]) + 1, nullptr);

auto hThread = CreateRemoteThread(hProcess, nullptr, 0,

(LPTHREAD_START_ROUTINE)GetProcAddress(

GetModuleHandle(L"kernel32"), "LoadLibraryA"),

p, 0, nullptr);

// wait for the remote thread to exit

WaitForSingleObject(hThread, INFINITE);

// optionally, be nice: free the memory in the target process

VirtualFreeEx(hProcess, p, 0, MEM_RELEASE);

CloseHandle(hThread);

CloseHandle(hProcess);

return 0;

}

Let’s see how we can create a “native” version of this technique. First we’ll accept the process ID and DLL

path just like in the Windows API version, but we’ll switch to Unicode:

Chapter 8: Memory (Part 1) 199

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 3) {

printf("Usage: InjectDllRemoteThread <pid> <dllpath>\n");

return 0;

}

This is not mandatory, but we’ll use LoadLibraryW as the target function for the remote thread to execute,

and in that case simplifies the code.

The next step is to open a handle to the target process with the required access mask:

HANDLE hProcess;

CLIENT_ID cid{ ULongToHandle(wcstol(argv[1], nullptr, 0)) };

OBJECT_ATTRIBUTES procAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

auto status = NtOpenProcess(&hProcess,

PROCESS_VM_WRITE | PROCESS_VM_OPERATION | PROCESS_CREATE_THREAD,

&procAttr, &cid);

if(!NT_SUCCESS(status)) {

printf("Error opening process (status: 0x%X)\n", status);

return status;

}

Next, we need to allocate memory in the target process and write the full DLL path into that memory. First,

the allocation:

PVOID buffer = nullptr;

SIZE_T size = 1 << 12; // 4 KB should be enough

status = NtAllocateVirtualMemory(hProcess, &buffer, 0, &size,

MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

if (!NT_SUCCESS(status)) {

printf("Error allocating memory (status: 0x%X)\n", status);

return status;

}

Next, we copy the DLL path to be loaded into the allocated remote buffer:

status = NtWriteVirtualMemory(hProcess, buffer,

(PVOID)argv[2], sizeof(WCHAR) * (wcslen(argv[2]) + 1), nullptr);

if (!NT_SUCCESS(status)) {

printf("Error writing to process (status: 0x%X)\n", status);

return status;

}

Now we need to get the module handle for kernel32 from which we can locate LoadLibraryW:

Chapter 8: Memory (Part 1) 200

UNICODE_STRING kernel32Name;

RtlInitUnicodeString(&kernel32Name, L"kernel32");

PVOID hK32Dll;

status = LdrGetDllHandle(nullptr, nullptr, &kernel32Name, &hK32Dll);

if (!NT_SUCCESS(status)) {

printf("Error getting kernel32 module (status: 0x%X)\n", status);

return status;

}

LdrGetDllHandle is a rough equivalent to theWindows API GetModuleHandle function. Nowwe can locate

LoadLibraryW:

ANSI_STRING fname;

RtlInitAnsiString(&fname, "LoadLibraryW");

PVOID pLoadLibrary;

status = LdrGetProcedureAddress(hK32Dll, &fname, 0, &pLoadLibrary);

if (!NT_SUCCESS(status)) {

printf("Error locating LoadLibraryW (status: 0x%X)\n", status);

return status;

}

You may be wondering why are we not going “all native” and using LdrLoadDll (the equivalent of

LoadLibrary). The reason is that a thread function accepts one argument only, and that argument must

be the DLL path. Unfortunately, LdrLoadDll accepts the DLL path in its third parameter, which we have no

good way of providing:

NTSTATUS LdrLoadDll(

_In_opt_ PWSTR DllPath,

_In_opt_ PULONG DllCharacteristics,

In PUNICODE_STRING DllName, // DLL path

Out PVOID *DllHandle);

For now we’ll stick with LoadLibraryW which accepts a single parameter - the DLL path to load.

The final step is creating the actual thread to execute LoadLibraryW and pass the argument to be the allocated

buffer in the target process:

Chapter 8: Memory (Part 1) 201

HANDLE hThread;

status = RtlCreateUserThread(hProcess, nullptr, FALSE, 0, 0, 0,

(PUSER_THREAD_START_ROUTINE)pLoadLibrary, buffer,

&hThread, nullptr);

if (!NT_SUCCESS(status)) {

printf("Error creating thread (status: 0x%X)\n", status);

return status;

}

printf("Success!\n");

If this succeeds, then the thread is executing and will load the DLL based on its path. Of course that could

fail if the path is bad, for example. From the injector’s perspective all that’s left is to clean up:

NtWaitForSingleObject(hThread, FALSE, nullptr);

size = 0;

NtFreeVirtualMemory(hProcess, &buffer, &size, MEM_RELEASE);

NtClose(hThread);

NtClose(hProcess);

Here is the complete main function (InjectDllRemoteThread project) with error handling removed:

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 3) {

printf("Usage: InjectDllRemoteThread <pid> <dllpath>\n");

return 0;

}

HANDLE hProcess;

CLIENT_ID cid{ ULongToHandle(wcstol(argv[1], nullptr, 0)) };

OBJECT_ATTRIBUTES procAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(nullptr, 0);

auto status = NtOpenProcess(&hProcess,

PROCESS_VM_WRITE | PROCESS_VM_OPERATION | PROCESS_CREATE_THREAD,

&procAttr, &cid);

PVOID buffer = nullptr;

SIZE_T size = 1 << 12; // 4 KB should be more than enough

status = NtAllocateVirtualMemory(hProcess, &buffer, 0, &size,

MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

status = NtWriteVirtualMemory(hProcess, buffer,

(PVOID)argv[2], sizeof(WCHAR) * (wcslen(argv[2]) + 1), nullptr);

Chapter 8: Memory (Part 1) 202

UNICODE_STRING kernel32Name;

RtlInitUnicodeString(&kernel32Name, L"kernel32");

PVOID hK32Dll;

status = LdrGetDllHandle(nullptr, nullptr, &kernel32Name, &hK32Dll);

ANSI_STRING fname;

RtlInitAnsiString(&fname, "LoadLibraryW");

PVOID pLoadLibrary;

status = LdrGetProcedureAddress(hK32Dll, &fname, 0, &pLoadLibrary);

HANDLE hThread;

status = RtlCreateUserThread(hProcess, nullptr, FALSE, 0, 0, 0,

(PUSER_THREAD_START_ROUTINE)pLoadLibrary, buffer,

&hThread, nullptr);

printf("Success!\n");

NtWaitForSingleObject(hThread, FALSE, nullptr);

size = 0;

NtFreeVirtualMemory(hProcess, &buffer, &size, MEM_RELEASE);

NtClose(hThread);

NtClose(hProcess);

return 0;

}

9.5: Other Virtual APIs

In this section we’ll examine some more APIs from the “Virtual” family.

The initial page protection for newly allocated region is set at NtAllocateVirtualMemory time. If memory

protection needs to be changed, NtProtectVirtualMemory can be used:

NTSTATUS NtProtectVirtualMemory(

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

Inout PSIZE_T RegionSize,

In ULONG NewProtect,

Out PULONG OldProtect);

Chapter 8: Memory (Part 1) 203

Most of the parameters should be familiar by now. ProcessHandle can be NtCurrentProcess(), changing

protection in the caller’s process (always succeeds). If a different process is used, the handle must have

the PROCESS_VM_OPERATION access mask. NewProtect is the requested protection using the same constants

used with the Windows API which we met earlier (PAGE_READWRITE, PAGE_READONLY, etc.). The returned

OldProtect contains the previous protection of the first page in the region.

This function is invoked by the Windows API VirtualProtect(Ex) APIs.

Memory can be “locked” into physical memory, prevent it from being paged out until “unlocked”. The

following APIs can be used:

NTSTATUS NtLockVirtualMemory(

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

Inout PSIZE_T RegionSize,

In ULONG MapType);

NTSTATUS NtUnlockVirtualMemory(

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

Inout PSIZE_T RegionSize,

In ULONG MapType);

MapType can be one of two values: MAP_PROCESS (1) or MAP_SYSTEM (2). If MAP_SYSTEM is specified, then the

caller must have the SeLockMemoryPrivilege in its token. There doesn’t seem to be a difference in operation

between these two flags - but one must be specified.

The Windows API VirtualLock and VirtualUnlock use MAP_PROCESS.

Locking memory tells the memory manager to keep these pages in the process working set as long as there

are threads running (not waiting) in the process.

9.6: Heaps

The “Virtual” APIs always work in chunks of pages (4 KB), which is not what’s needed for most applications.

Heaps provide fine grained memory management, on top of the Virtual APIs. The Heap Manager is the entity

responsible for managing memory within heaps.

The Windows API has a bunch of functions related to heaps, such as HeapAlloc, HeapFree, and more. These

are thin layers on top of the native heap APIs.

Every process starts with one heap known as the Process Default Heap (created by NtDll as part of process

initialization). This heap can be retrieved with RtlProcessHeap:

Chapter 8: Memory (Part 1) 204

#define RtlProcessHeap() (NtCurrentPeb()->ProcessHeap)

More heaps can be created, which could be useful for several reasons, briefly discussed later.

The Heap Manager is also implemented within the kernel, and some of the functions we’ll look at next are

documented in the WDK.

9.6.1: Basic Heap Management

Allocation from a heap is accomplished with RtlAllocateHeap:

PVOID RtlAllocateHeap(

In PVOID HeapHandle,

_In_opt_ ULONG Flags,

In SIZE_T Size);

HeapHandle is a handle to a heap (RtlProcessHeap() is a valid value). Flags can be zero or a combination

of the following values:

• HEAP_NO_SERIALIZE (1) - the allocation should not be synchronized with possibly other threads

accessing the same heap.

• HEAP_ZERO_MEMORY (8) - the returned buffer is zero-initialized (without this flag, its contents are

unchanged).

• HEAP_GENERATE_EXCEPTION (4) - if the allocation fails, NULL is normally returned. With this flag

specified, a STATUS_NO_MEMORY exception is raised instead.

• HEAP_SETTABLE_USER_VALUE (0x100) - allows setting a user-defined value associated with the alloca-

tion (see next section for details).

A “missing” flag does not mean the opposite of the flag; it means that the heap defaults are used. For example,

if HEAP_NO_SERIALIZE is not specified, the allocation may still be unsynchronized if the heap was created

with that flag.

The default process heap is synchronized.

Size is the allocation size in bytes. The return value is the pointer to the allocated block, or NULL on failure

(unless HEAP_GENERATE_EXCEPTION is specified in Flags, in which case an exception is raised on failure).

Once the memory is no longer needed, RtlFreeHeap can be called to free the block:

Chapter 8: Memory (Part 1) 205

BOOLEAN RtlFreeHeap(

In PVOID HeapHandle,

_In_opt_ ULONG Flags,

_Frees_ptr_opt_ PVOID BaseAddress);

The only valid flag is HEAP_NO_SERIALIZE. BaseAddress must be an address previously returned from

RtlAllocateHeap.

If an allocated block needs to be resized, RtlReAllocateHeap can be used:

PVOID RtlReAllocateHeap(

In PVOID HeapHandle,

In ULONG Flags,

_Frees_ptr_opt_ PVOID BaseAddress,

In SIZE_T Size);

The new block can be larger or smaller than the existing block, specified with BaseAddress. If a larger block

is requested, and cannot be specified within the existing block, the data is copied to the new block. Even

with a smaller allocation, there is no guarantee the same block is returned, which means the return value is

the one pointing to the block (whether moved or not).

The Flags accepted are the same as for RtlAllocateHeap.

9.6.2: Creating Heaps

Heaps can be created in the process. Here are some possible reasons to do so and not just use the default

process heap:

• The default process heap is serialized, which reduces performance if there is no contention on the heap.

Creating a separate heap provides control over synchronization. In general, creating a heap provides

customization opportunities.

• A heap may become fragmented over time if different size blocks are requested a lot. One possible

solution is to create a heap that caters to fixed sized allocations if these are common in the application.

• Bugs accessing the heap (such as heap corruptions) are easier to find if these happen accessing a specific

heap.

• It’s sometimes easier to destroy a heap in one swoop rather than freeing all individual allocations.

Windows supports two types of heaps. The first, referred to as the NT Heap is the original heap

management implemented. Windows 8 introduced a new type of heap, Segment Heap, that provides a better

implementation in terms of block management and security. Still, normal processes by default use the NT

Heap because of compatibility concerns. UWP applications and certain system processes use the Segment

heap.

System process image names that use the segment heap include: Svchost.exe, Smss.exe, Csrss.exe,

Lsass.exe, Services.exe, RuntimeBroker.exe, dwm.exe, WinInit.exe, WinLogon.exe, MsMpEng.exe,

NisSrv.exe, SiHost.exe, and others.

Chapter 8: Memory (Part 1) 206

An executable can opt-in to use the segment heap by adding a value named FrontEndHeapDebugOptions to

the HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\exename key,

with a value of 8 to use the segment heap, or a value of 4 to disable the segment heap.

RtlHeapCreate is the heap creation function, documented in the WDK (with a kernel bias):

PVOID RtlCreateHeap(

In ULONG Flags,

_In_opt_ PVOID HeapBase,

_In_opt_ SIZE_T ReserveSize,

_In_opt_ SIZE_T CommitSize,

_In_opt_ PVOID Lock,

_In_opt_ PRTL_HEAP_PARAMETERS Parameters);

Flags can be zero or a combination of the following flags:

• HEAP_NO_SERIALIZE (1) - indicates the heap is not synchronized by default.

• HEAP_GENERATE_EXCEPTION (4) - the allocation function raise STATUS_NO_MEMORY instead of returning

NULL on failure.

• HEAP_GROWABLE (2) - indicates the heap can grow to any size, limited by the process address space and

available memory. This requires HeapBase to be set to NULL.

• HEAP_REALLOC_IN_PLACE_ONLY (0x10) - reallocations can only succeed if there is no need to allocate a

new block.

• HEAP_TAIL_CHECKING_ENABLED (0x20) - the heap functions perform an additional check that ensures

the process did not use more bytes than it was provided. This is done by filling a few extra bytes

beyond an allocation request with a known fill pattern, and validating it when freeing it or when its

size is queried. This is a debugging aid to find issues in the heap before corruptions occur.

• HEAP_FREE_CHECKING_ENABLED (0x40) - another debugging heap feature that aims to ensure free

operations are operating on correct addresses.

• HEAP_DISABLE_COALESCE_ON_FREE (0x80) - does not attempt to automatically coalesce free regions.

Such coalescing can be forced with RtlCompactHeap.

HEAP_TAIL_CHECKING_ENABLED, HEAP_FREE_CHECKING_ENABLED, and HEAP_DISABLE_COALESCE_ON_FREE

can also be specified as NT Global Flags, and if so, are applied automatically to newly created heaps whether

explicitly specified or not.

• HEAP_CREATE_ALIGN_16 (0x10000) - indicates memory blocks should be 16-bytes aligned.

• HEAP_CREATE_ENABLE_TRACING (0x20000) - enables heap tracing.

• HEAP_CREATE_ENABLE_EXECUTE (0x40000) - indicates allocations should have protection PAGE_EXE-

CUTE_READWRITE, meaning code can execute from the heap without causing an exception.

• HEAP_CREATE_SEGMENT_HEAP (0x100) - indicates a Segment heap should be created rather than an

NT heap. For a segment heap, HEAP_GROWABLE must be specified as well. In addition, HeapBase,

ReservedSize, CommitSize, and Lock must be zero/NULL.

Chapter 8: Memory (Part 1) 207

The various “debug” flags (e.g., HEAP_TAIL_CHECKING_ENABLED, HEAP_FREE_CHECKING_ENABLED)

cause allocation functions to be slower; only use for debugging purposes.

BaseAddress is either NULL (HEAP_GROWABLE must be specified as flag), in which case the heap manager

allocates a new region of memory to serve the heap, or if non-NULL, the address is used as the basis for the

new heap. That address must have been allocated previously by the process (e.g., with NtAllocateVir-

tualMemory).

If ReservedSize is non-zero, it indicates the initial amount of memory to reserve for the heap, rounded up

to pages. CommitSize indicates the initial committed size of the heap. The relationship of ReservedSize

and CommittedSize is described in table 8-3.

Table 8-3: ‘CommitSize‘ and ‘ReservedSize‘

Zero Zero 64 pages are initially reserved for the heap, one page committed

Zero non-Zero ReservedSize is set to CommitSize and rounds to nearest 64KB size

non-Zero Zero One page is initially committed on the heap

non-Zero non-Zero CommitSize is reduced to ReservedSize if it’s greater

ReservedSize CommitSize Result

Next, the Lock parameter is an optional pointer to an initialized CRITICAL_SECTION structure to serve as the

lock to use to synchronize heap access. If the HEAP_NO_SERIALIZE flag is specified, Lock must be NULL, as

the intent is to prevent heap serialization.

Finally, Parameters is an optional pointer to more customization options with this structure:

typedef NTSTATUS (NTAPI *PRTL_HEAP_COMMIT_ROUTINE)(

In PVOID Base,

Inout PVOID *CommitAddress,

Inout PSIZE_T CommitSize);

typedef struct _RTL_HEAP_PARAMETERS {

ULONG Length; // sizeof(RTL_HEAP_PARAMATERS)

SIZE_T SegmentReserve;

SIZE_T SegmentCommit;

SIZE_T DeCommitFreeBlockThreshold;

SIZE_T DeCommitTotalFreeThreshold;

SIZE_T MaximumAllocationSize;

SIZE_T VirtualMemoryThreshold;

SIZE_T InitialCommit;

SIZE_T InitialReserve;

PRTL_HEAP_COMMIT_ROUTINE CommitRoutine;

SIZE_T Reserved[2];

} RTL_HEAP_PARAMETERS, *PRTL_HEAP_PARAMETERS;

Chapter 8: Memory (Part 1) 208

Table 8-4 summarizes the role of the members of RTL_HEAP_PARAMETERS.

Table 8-4: ‘RTL_HEAP_PARAMETERS‘

Length must be set to the size of the structure

before use

Must be specified

SegmentReserve Reserved segment size when heap is

expanded

PEB->HeapSegmentReserve

SegmentCommit Commit segment size more committed

memory is needed

PEB->HeapSegmentCommit

DeCommitFreeBlockThreshold Block threshold to decommit when

memory is freed

PEB->HeapDeCommitFreeBlockThreshold

DeCommitTotalFreeThreshold Threshold to decommit all heap

memory

PEB->DeCommitTotalFreeThreshold

MaximumAllocationSize Maximum size allowed in a single

allocation

One page less than the size of the

process address space

VirtualMemoryThreshold Used to decide size of internally

created arrays

0x7f000

InitialCommit Same meaning as CommitSize

parameter, overrides it of none zero

Ignored

InitialReserve Same meaning as ReservedSize

parameter, overrides it of none zero

Ignored

CommitRoutine Custom routine to perform allocation Ignored

Reserved Reserved Must be cleared to zero

Member Description Value if zero specified

The CommitRoutine allows customizing allocation of blocks. This is only valid if the heap is not growable,

and BaseAddress is not NULL. In such a case, the routine is invoked by the Heap Manager with the following

arguments:

• Base is the base address of the heap (BaseAddress in RtlCreateHeap).

• CommitAddress is where the allocated address is to be stored.

• CommitSize is the requested size on input, which may be changed by the routine to the actual number

of bytes allocated.

The return value from RtlCreateHeap is a heap handle. It’s not a handle in the kernel object sense; rather,

it’s an opaque pointer to an undocumented structure. It could be one of two structures: HEAP for an NT heap

or SEGMENT_HEAP for a Segment heap. Although undocumented, these structures are available as part of the

public Microsoft symbols.

Here is the output from a WinDbg session attached to a user-mode process (any will do) that shows these

two structures (truncated for brevity):

Chapter 8: Memory (Part 1) 209

0:000> dt ntdll!_HEAP

+0x000 Segment : _HEAP_SEGMENT

+0x000 Entry : _HEAP_ENTRY

+0x010 SegmentSignature : Uint4B

+0x014 SegmentFlags : Uint4B

+0x018 SegmentListEntry : _LIST_ENTRY

+0x028 Heap : Ptr64 _HEAP

+0x030 BaseAddress : Ptr64 Void

+0x038 NumberOfPages : Uint4B

+0x040 FirstEntry : Ptr64 _HEAP_ENTRY

+0x048 LastValidEntry : Ptr64 _HEAP_ENTRY

+0x050 NumberOfUnCommittedPages : Uint4B

+0x054 NumberOfUnCommittedRanges : Uint4B

+0x058 SegmentAllocatorBackTraceIndex : Uint2B

+0x05a Reserved : Uint2B

+0x060 UCRSegmentList : _LIST_ENTRY

...

+0x238 Counters : _HEAP_COUNTERS

+0x2b0 TuningParameters : _HEAP_TUNING_PARAMETERS

0:000> dt ntdll!_SEGMENT_HEAP

+0x000 EnvHandle : RTL_HP_ENV_HANDLE

+0x010 Signature : Uint4B

+0x014 GlobalFlags : Uint4B

+0x018 Interceptor : Uint4B

+0x01c ProcessHeapListIndex : Uint2B

+0x01e AllocatedFromMetadata : Pos 0, 1 Bit

+0x020 CommitLimitData : _RTL_HEAP_MEMORY_LIMIT_DATA

+0x020 ReservedMustBeZero1 : Uint8B

+0x028 UserContext : Ptr64 Void

+0x030 ReservedMustBeZero2 : Uint8B

+0x038 Spare : Ptr64 Void

+0x040 LargeMetadataLock : Uint8B

+0x048 LargeAllocMetadata : _RTL_RB_TREE

+0x058 LargeReservedPages : Uint8B

+0x060 LargeCommittedPages : Uint8B

+0x068 Tag : Uint8B

+0x070 StackTraceInitVar : _RTL_RUN_ONCE

+0x080 MemStats : _HEAP_RUNTIME_MEMORY_STATS

+0x0d8 GlobalLockCount : Uint2B

+0x0dc GlobalLockOwner : Uint4B

+0x0e0 ContextExtendLock : Uint8B

Chapter 8: Memory (Part 1) 210

+0x0e8 AllocatedBase : Ptr64 UChar

+0x0f0 UncommittedBase : Ptr64 UChar

+0x0f8 ReservedLimit : Ptr64 UChar

+0x100 ReservedRegionEnd : Ptr64 UChar

+0x108 CallbacksEncoded : _RTL_HP_HEAP_VA_CALLBACKS_ENCODED

+0x140 SegContexts : [2] _HEAP_SEG_CONTEXT

+0x2c0 VsContext : _HEAP_VS_CONTEXT

+0x380 LfhContext : _HEAP_LFH_CONTEXT

This means you can cast a heap handle to one of these structures and examine its member if so desired.

How can you tell the type of heap given some heap you did not create? You can case to SEGMENT_HEAP and

examine the Signature member. If it’s 0xddeeddee - it’s a Segment heap. Here is an example assuming the

above structures have been converted to their C declaration:

void PrintHeapType(PVOID heap) {

auto segHeap = (SEGMENT_HEAP*)heap;

if(segHeap->Signature == 0xddeeddee)

printf("Segment Heap");

else {

auto ntHeap = (HEAP*)heap;

printf("NT Heap, Base Address: 0x%p", ntHeap->BaseAddress);

}

}

When using WinDbg, you can use the !heap command to get details for all heaps in the process or

a specific heap of interest.

Once a heap is no longer needed, it should be destroyed:

PVOID RtlDestroyHeap(_In_ _Post_invalid_ PVOID HeapHandle);

If any allocations remain on the heap, they are “released” as the heap is completely destroyed. The return

value is NULL on successful destruction, or HeapHandle otherwise.

The following example creates a new heap and performs an allocation against it, frees the allocation, and

then destroys the heap. Obviously, in a real scenario the created heap would be used for many allocations.

Chapter 8: Memory (Part 1) 211

auto heap = RtlCreateHeap(HEAP_GROWABLE | HEAP_NO_SERIALIZE,

nullptr, 0, 0, nullptr, nullptr);

auto buffer = RtlAllocateHeap(heap, HEAP_ZERO_MEMORY, 30); // 30 bytes

// use buffer...

RtlFreeHeap(heap, 0, buffer);

RtlDestroyHeap(heap);

9.6.3: Other Heap Functions

In this section, we’ll look at other heap functions.

9.6.3.1: Heap Allocation Size

A heap allocation can be queried for its size:

SIZE_T RtlSizeHeap(

In PVOID HeapHandle,

In ULONG Flags,

In PVOID BaseAddress);

The returned size in bytes is for the original allocation size specified, and does not include any padding bytes

or metadata bytes.

Sometimes for security purposes, it’s useful to zero out any freed blocks because normally the data is still

there until overwritten. This is the job of RtlZeroHeap:

9.6.3.2: Protection

NTSTATUS RtlZeroHeap(

In PVOID HeapHandle,

In ULONG Flags);

The memory of a heap is normally protected with PAGE_READWRITE or PAGE_EXECUTE_READWRITE (if HEAP_-

CREATE_ENABLE_EXECUTE is specified at heap creation time). It’s possible to change the protection to read-

only with RtlProtectHeap:

VOID RtlProtectHeap(

In PVOID HeapHandle,

In BOOLEAN MakeReadOnly);

It can be reverted later by specifying calling the function again with MakeReadOnly set to FALSE.

Chapter 8: Memory (Part 1) 212

9.6.3.3: Locking

It’s possible to lock access to the heap to the current thread, preventing other threads from accessing the heap.

This could be more performant than making multiple calls, each causing a lock/unlock internally. It’s also

necessary if heap walking is attempted, as any changes from other threads will corrupt the state of the walk.

The following allow locking and unlocking a heap:

BOOLEAN RtlLockHeap(_In_ PVOID HeapHandle);

BOOLEAN RtlUnlockHeap(_In_ PVOID HeapHandle);

These work recursively, which means that multiple Lock calls require the same number of Unlock calls to

actually unlock the heap for normal access.

9.6.3.4: User Data

It’s possible to attach a user-defined value with heap entries. The allocation itself must specify the HEAP_-

SETTABLE_USER_VALUE flag for this to work:

BOOLEAN RtlSetUserValueHeap(

In PVOID HeapHandle,

In ULONG Flags,

In PVOID BaseAddress,

In PVOID UserValue);

It’s also theoretically possible to set 2 bits of flags by calling RtlSetUserFlagsHeap, but this is too fragile as

it does not work with the Segment heap nor if the Low Fragmentation Heap (LFH) layer is active.

To retrieve the value back given a heap allocation, call RtlGetUserInfoHeap, which returns the user-defined

value and/or the flags:

BOOLEAN RtlGetUserInfoHeap(

In PVOID HeapHandle,

In ULONG Flags,

In PVOID BaseAddress,

_Out_opt_ PVOID *UserValue,

_Out_opt_ PULONG UserFlags);

Here is an example of setting the value 0x1234 as a user-defined value, and retrieving it back:

Chapter 8: Memory (Part 1) 213

auto buffer = RtlAllocateHeap(heap, HEAP_SETTABLE_USER_VALUE, 40);

auto ok = RtlSetUserValueHeap(heap, 0, buffer, (PVOID)0x1234);

ok = RtlSetUserFlagsHeap(heap, 0, buffer, 0, RTL_HEAP_SETTABLE_FLAG1);

// read back

PVOID value{ nullptr };

ok = RtlGetUserInfoHeap(heap, 0, buffer, &value, nullptr);

assert(value == (PVOID)0x1234);

9.6.3.5: More Allocations

It’s possible to make multiple allocations of the same size in a single call:

ULONG RtlMultipleAllocateHeap(

In PVOID HeapHandle,

In ULONG Flags,

In SIZE_T Size,

In ULONG Count,

Out PVOID* Array);

Size is the size in bytes for each allocation. Count is the number of allocations. Array is the returned array

of pointers. The return value is Count on success. If smaller, it indicates the number of successful allocations.

As you might expect, it’s possible to free multiple allocations as well:

ULONG RtlMultipleFreeHeap(

In PVOID HeapHandle,

In ULONG Flags,

In ULONG Count,

In PVOID *Array);

9.7: Heap Information

Several native APIs exist to get information about heaps. Let’s start with the getting all the heaps in the

calling process. There are two ways to go about it - either call RtlGetProcessHeaps to get an array of heap

handles, or enumerate heaps with a callback using RtlEnumProcessHeaps:

Chapter 8: Memory (Part 1) 214

ULONG RtlGetProcessHeaps(

In ULONG NumberOfHeaps,

Out PVOID *ProcessHeaps);

typedef NTSTATUS (NTAPI *PRTL_ENUM_HEAPS_ROUTINE)(

In PVOID HeapHandle,

In PVOID Parameter);

NTSTATUS RtlEnumProcessHeaps(

In PRTL_ENUM_HEAPS_ROUTINE EnumRoutine,

In PVOID Parameter);

RtlGetProcessHeaps accepts the number of heap handles to retrieve, and an array to place the results in.

It returns the actual number of heaps in the process. This means that if the return value is larger than

NumberOfHeaps, not all heap handles have been retrieved.

RtlEnumProcessHeaps invokes a callback (EnumRoutine) for each heap in the process, which makes it easier

perhaps, since no prior allocation is necessary nor “guessing” the number of heaps.

9.7.1: Heap Walking

Given a heap handle, it’s possible to “walk” the heap, meaning the various blocks the heap is composed of can

retrieved, mostly useful for debugging purposes. RtlWalkHeap is the function to use, with entries returned

as RTL_HEAP_WALK_ENTRY:

#define RTL_HEAP_BUSY (USHORT)0x0001

#define RTL_HEAP_SEGMENT (USHORT)0x0002

#define RTL_HEAP_SETTABLE_VALUE (USHORT)0x0010

#define RTL_HEAP_SETTABLE_FLAG1 (USHORT)0x0020

#define RTL_HEAP_SETTABLE_FLAG2 (USHORT)0x0040

#define RTL_HEAP_SETTABLE_FLAG3 (USHORT)0x0080

#define RTL_HEAP_SETTABLE_FLAGS (USHORT)0x00e0

#define RTL_HEAP_UNCOMMITTED_RANGE (USHORT)0x1000

#define RTL_HEAP_PROTECTED_ENTRY (USHORT)0x2000

#define RTL_HEAP_LARGE_ALLOC (USHORT)0x4000

#define RTL_HEAP_LFH_ALLOC (USHORT)0x8000

typedef struct _RTL_HEAP_WALK_ENTRY {

PVOID DataAddress;

SIZE_T DataSize;

UCHAR OverheadBytes;

UCHAR SegmentIndex;

USHORT Flags; // see flags above

union {

Chapter 8: Memory (Part 1) 215

struct {

SIZE_T Settable;

USHORT TagIndex;

USHORT AllocatorBackTraceIndex;

ULONG Reserved[2];

} Block;

struct {

ULONG CommittedSize;

ULONG UnCommittedSize;

PVOID FirstEntry;

PVOID LastEntry;

} Segment;

};

} RTL_HEAP_WALK_ENTRY, *PRTL_HEAP_WALK_ENTRY;

NTSTATUS RtlWalkHeap(

In PVOID HeapHandle,

Inout PRTL_HEAP_WALK_ENTRY Entry);

Heap walking begins with a RTL_HEAP_WALK_ENTRY structure where DataAddress is set to NULL. Subsequent

calls should use the last address returned to get the next item. Each returned item is either a block or a

segment, based on the flag RTL_HEAP_SEGMENT in the Flags member. A Segment is a management entity,

containing multiple blocks, each block representing a chunk of memory (not to be confused with the Segment

Heap).

A simple walk of the default process heap could be done as follows:

RTL_HEAP_WALK_ENTRY entry{};

while (NT_SUCCESS(RtlWalkHeap(RtlProcessHeap(), &entry))) {

printf("Addr: 0x%p Size: 0x%08X Flags: 0x%04X\n",

entry.DataAddress, entry.DataSize, (int)entry.Flags);

}

DataSize is the size of the block or segment. For a block, if busy (used, RTL_HEAP_BUSY), it’s the size of

the allocation handed to a client. The OverheadBytes is the extra bytes used to maintain this allocation.

SegmentIndex is a segment index in this heap, starting with zero.

For a Segment (RTL_HEAP_SEGMENT flag set), the Segment part of the union has the following members:

• CommittedSize is the number of committed bytes in the segment (always multiple of page size).

• UncommittedSize is the number of bytes not currently committed (always multiple of page size).

• FirstEntry is the first entry in the segment.

• LastEntry is the last valid entry in the segment.

Chapter 8: Memory (Part 1) 216

For a Block (no RTL_HEAP_SEGMENT flag), the following members are available in the Block union:

• Settable is the value attached to this block (if RTL_HEAP_SETTABLE_VALUE flag is set).

• TagIndex is the tag index of the block is tagged.

• AllocatorBackTraceIndex is used for debugging purposes (outside the scope of this chapter).

9.7.2: More Heap Information

Heap information can be retrieved with RtlQueryHeapInformation, and some heap details can be changed

with RtlSetHeapInformation:

NTSTATUS RtlQueryHeapInformation(

In PVOID HeapHandle,

In HEAP_INFORMATION_CLASS HeapInformationClass,

_Out_opt_ PVOID HeapInformation,

_In_opt_ SIZE_T HeapInformationLength,

_Out_opt_ PSIZE_T ReturnLength);

NTSTATUS RtlSetHeapInformation(

In PVOID HeapHandle,

In HEAP_INFORMATION_CLASS HeapInformationClass,

_In_opt_ PVOID HeapInformation,

_In_opt_ SIZE_T HeapInformationLength);

The patterns used by these functions is very similar to other query/set functions we’ve seen. This is the

information classes supported (some are defined in <WinNt.h>):

typedef enum _HEAP_INFORMATION_CLASS {

HeapCompatibilityInformation = 0,

HeapEnableTerminationOnCorruption = 1

HeapExtendedInformation = 2

HeapOptimizeResources = 3

HeapTaggingInformation = 4,

HeapStackDatabase = 5,

HeapMemoryLimit = 6,

HeapTag = 7,

HeapDetailedFailureInformation = (int)0x80000001,

HeapSetDebuggingInformation = (int)0x80000002

} HEAP_INFORMATION_CLASS;

Chapter 8: Memory (Part 1) 217

9.7.3: HeapCompatibilityInformation (0)

Querying with this information class returns ULONG describing some aspects of the heap in question. For a

segment heap, the value is always 2, which means the Low Fragmentation Heap (LFH) layer is active. For a

standard heap, this could be zero (LFH not applied) or 2 (LFH applied).

For set operations, LFH can be enabled for standard heaps only. This also requires the heap to be growable

and created without HEAP_NO_SERIALIZE. There is no need to enable the LFH as it’s enabled automatically

if the Heap Manager determines it’s beneficial. The following enumeration from phnt can be used:

typedef enum _HEAP_COMPATIBILITY_MODE {

HEAP_COMPATIBILITY_STANDARD = 0UL,

HEAP_COMPATIBILITY_LAL = 1UL, // N/A

HEAP_COMPATIBILITY_LFH = 2UL,

} HEAP_COMPATIBILITY_MODE;

9.7.4: HeapEnableTerminationOnCorruption (1)

This information class allows querying/setting the option that if a heap corruption is detected, the process

should terminate immediately rather than raise an exception which may be handled in some way, and is

unlikely to be fruitful.

The expected type is ULONG, with non-zero meaning termination on corruption is enabled. It’s currently

enabled by default for all heaps.

9.7.5: HeapExtendedInformation (2)

This information class returns more details about the heap in question or all heaps in a process using the

HEAP_EXTENDED_INFORMATION structure and friends:

typedef struct _PROCESS_HEAP_INFORMATION {

ULONG_PTR ReserveSize;

ULONG_PTR CommitSize;

ULONG NumberOfHeaps;

ULONG_PTR FirstHeapInformationOffset;

} PROCESS_HEAP_INFORMATION, *PPROCESS_HEAP_INFORMATION;

typedef struct _HEAP_INFORMATION {

ULONG_PTR Address;

ULONG Mode;

ULONG_PTR ReserveSize;

ULONG_PTR CommitSize;

ULONG_PTR FirstRegionInformationOffset;

ULONG_PTR NextHeapInformationOffset;

Chapter 8: Memory (Part 1) 218

} HEAP_INFORMATION, *PHEAP_INFORMATION;

typedef struct _HEAP_EXTENDED_INFORMATION {

HANDLE Process;

ULONG_PTR Heap;

ULONG Level;

PVOID CallbackRoutine;

PVOID CallbackContext;

union {

PROCESS_HEAP_INFORMATION ProcessHeapInformation;

HEAP_INFORMATION HeapInformation;

};

} HEAP_EXTENDED_INFORMATION, *PHEAP_EXTENDED_INFORMATION;

On input, the heap handle to RtlQueryHeapInformation is not used. Instead, the first five members

of HEAP_EXTENDED_INFORMATION determine what information is requested. One of the powers of this

information class is the ability to get heap details from another process, passed as a handle in the

Process member. This member can be NtCurrentProcess() if the calling process is the target. If it’s

a different process, the handle to that process has to be pretty powerful; it requires PROCESS_QUERY_IN-

FORMATION, PROCESS_CREATE_THREAD, PROCESS_VM_OPERATION, PROCESS_VM_READ, PROCESS_DUP_HANDLE,

and PROCESS_VM_WRITE. Sometimes, even this is not enough, and you may need PROCESS_SET_QUOTA and

PROCESS_SET_INFORMATION as well. This is because in the cross-process case, a thread is created in the target

process to get the information, and a Section object is shared with the target process.

I find that for this kind of query, PROCESS_ALL_ACCESS is easier to ask for, or use MAXIMUM_ALLOWED,

and see if that gives you access.

The Levelmember indicates the details required by the call. The most generic level is HEAP_INFORMATION_-

LEVEL_PROCESS (1), which fills the ProcessHeapInformation member. Here is an example (error handling

omitted):

#define HEAP_INFORMATION_LEVEL_PROCESS 1

void DisplayProcessHeapsTotals(HANDLE hProcess) {

HEAP_EXTENDED_INFORMATION info{};

info.Process = hProcess;

info.Level = HEAP_INFORMATION_LEVEL_PROCESS;

RtlQueryHeapInformation(nullptr, HeapExtendedInformation,

&info, sizeof(info), nullptr);

printf("Total heaps: %u Commit: 0x%zX Reserved: 0x%zX\n",

info.ProcessHeapInformation.NumberOfHeaps,

Chapter 8: Memory (Part 1) 219

info.ProcessHeapInformation.CommitSize,

info.ProcessHeapInformation.ReserveSize);

}

The phnt headers have constants like HeapExtendedInformation defined as macros instead of an

enum, because such enum exists from <WinNt.h> but does not include the full list. I’ve simplified

the code not to include a hard cast to HEAP_INFORMATION_CLASS, although I would have preferred

that cast to be part of the macros, or alternatively define a slightly different enum name. I’ll leave

that to the interested reader.

The next Level is HEAP_INFORMATION_LEVEL_HEAP (2). This can be used to get details for each heap in a

process, and also includes the total process heaps details shown above. If you need both, it’s best to make a

single call to get that instead of two separate calls. The returned result consists of a ProcessHeapInforma-

tion being filled up just like the previous case. However, NextHeapInformationOffset stores the offset to

the first heap details (with HEAP_INFORMATION_LEVEL_PROCESS it’s just zero).

Using that offset, the next items are all HEAP_INFORMATION structures, each describing a single heap, where

NextHeapInformationOffset points to the next heap information. The following code snippet uses a single

call to get the general details for the process and all heaps:

// hProcess is a handle to the process of interest

// assume no more than 128 heaps for simplicity

auto size = 128 * sizeof(HEAP_INFORMATION) + sizeof(HEAP_EXTENDED_INFORMATION);

auto buffer = std::make_unique<BYTE[]>(size);

auto info = (HEAP_EXTENDED_INFORMATION*)buffer.get();

info->Process = hProcess;

info->Level = HEAP_INFORMATION_LEVEL_HEAP;

RtlQueryHeapInformation(nullptr, HeapExtendedInformation,

info, size, nullptr);

//

// get to the first heap

//

auto hi = (HEAP_INFORMATION*)(buffer.get() +

info->ProcessHeapInformation.FirstHeapInformationOffset);

auto heaps = info->ProcessHeapInformation.NumberOfHeaps;

printf("Total heaps: %u Commit: 0x%zX Reserved: 0x%zX\n",

heaps, info->ProcessHeapInformation.CommitSize,

info->ProcessHeapInformation.ReserveSize);

for (ULONG i = 0; i < heaps; i++) {

// heap details

printf("Heap %2d: Addr: 0x%p Commit: 0x%08zX Reserve: 0x%08zX %s\n", i + 1,

(PVOID)hi->Address, hi->CommitSize, hi->ReserveSize,

Chapter 8: Memory (Part 1) 220

hi->Mode ? "(LFH)" : "");

// move to next heap

hi = (HEAP_INFORMATION*)(buffer.get() + hi->NextHeapInformationOffset);

}

Here is some example output from the previous code (full source part of the Heaps sample):

Total heaps: 16 Commit: 0x1DE20000 Reserved: 0x1F418000

Heap 1: Addr: 0x0000000000C50000 Commit: 0x1C287000 Reserve: 0x1CE01000 (LFH)

Heap 2: Addr: 0x0000000000810000 Commit: 0x00001000 Reserve: 0x00010000

Heap 3: Addr: 0x0000000001210000 Commit: 0x01A01000 Reserve: 0x01F9D000 (LFH)

Heap 4: Addr: 0x00000000011F0000 Commit: 0x00051000 Reserve: 0x001D1000 (LFH)

Heap 5: Addr: 0x000000000C030000 Commit: 0x0004A000 Reserve: 0x001D1000 (LFH)

Heap 6: Addr: 0x000000000CBA0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 7: Addr: 0x0000000016AB0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 8: Addr: 0x0000000016AD0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 9: Addr: 0x000000001CBD0000 Commit: 0x000D0000 Reserve: 0x001D1000 (LFH)

Heap 10: Addr: 0x000000001C7F0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 11: Addr: 0x000000001C810000 Commit: 0x00004000 Reserve: 0x00004000

Heap 12: Addr: 0x000000001A880000 Commit: 0x00004000 Reserve: 0x00004000

Heap 13: Addr: 0x000000001A8A0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 14: Addr: 0x00000000196A0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 15: Addr: 0x00000000196C0000 Commit: 0x00004000 Reserve: 0x00004000

Heap 16: Addr: 0x0000000014E00000 Commit: 0x00008000 Reserve: 0x000D3000 (LFH)

The Heap member of HEAP_EXTENDED_INFORMATION can be used to get details for a specific heap

rather than all heaps in the process (if zero). The value is the heap handle (in the context of the

target process).

The next level of details has to do with memory regions within a heap, which provide another structure like

so:

Chapter 8: Memory (Part 1) 221

#define HEAP_INFORMATION_LEVEL_REGION 3

typedef struct _HEAP_REGION_INFORMATION {

ULONG_PTR Address;

SIZE_T ReserveSize;

SIZE_T CommitSize;

ULONG_PTR FirstRangeInformationOffset;

ULONG_PTR NextRegionInformationOffset;

} HEAP_REGION_INFORMATION, * PHEAP_REGION_INFORMATION;

The HEAP_INFORMATION structure has a FirstRegionInformationOffset member pointing to the first

region descriptor for this heap, beginning from the original buffer. The following is an example of dumping

regions for a heap (full code in the Heaps sample):

void DisplayRegions(PBYTE buffer, HEAP_INFORMATION* hi) {

if (hi->FirstRegionInformationOffset == 0) // no region info

return;

auto region = (HEAP_REGION_INFORMATION*)(buffer +

hi->FirstRegionInformationOffset);

for (;;) {

printf(" Region Addr: 0x%p Commit: 0x%08zX Reserve: 0x08%zX\n",

(PVOID)region->Address, region->CommitSize, region->ReserveSize);

if (region->NextRegionInformationOffset == 0) // no more regions

break;

region = (HEAP_REGION_INFORMATION*)(buffer +

region->NextRegionInformationOffset);

}

}

The next level of detail is a range, described with another level value and structure:

#define HEAP_INFORMATION_LEVEL_RANGE 4

#define HEAP_RANGE_TYPE_COMMITTED 1

#define HEAP_RANGE_TYPE_RESERVED 2

typedef struct _HEAP_RANGE_INFORMATION {

ULONG_PTR Address;

SIZE_T Size;

ULONG Type;

ULONG Protection;

Chapter 8: Memory (Part 1) 222

ULONG_PTR FirstBlockInformationOffset;

ULONG_PTR NextRangeInformationOffset;

} HEAP_RANGE_INFORMATION, *PHEAP_RANGE_INFORMATION;

Here is an example enumerating ranges:

void DisplayRanges(PBYTE buffer, HEAP_REGION_INFORMATION* region) {

if (region->FirstRangeInformationOffset == 0)

return;

auto range = (HEAP_RANGE_INFORMATION*)(buffer + region->FirstRangeInformationOff\

set);

for (;;) {

printf(" Addr: 0x%p Size: 0x%08zX Type: %s Prot: %s\n",

(PVOID)range->Address, range->Size,

RangeTypeToString(range->Type),

ProtectionToString(range->Protection).c_str());

if (range->NextRangeInformationOffset == 0)

break;

range = (HEAP_RANGE_INFORMATION*)(buffer +

range->NextRangeInformationOffset);

}

}

RangeTypeToString returns “Committed” or “Reserved” based on the range type. ProtectionToString is

a function we’ve seen before that converts protection constants (e.g. PAGE_READWRITE) to a string.

The last information detail (within a range) is blocks. Here too we have another level value and an associated

structure:

#define HEAP_INFORMATION_LEVEL_BLOCK 5

#define HEAP_BLOCK_BUSY 1

#define HEAP_BLOCK_EXTRA_INFORMATION 2

#define HEAP_BLOCK_LARGE_BLOCK 4

#define HEAP_BLOCK_LFH_BLOCK 8

typedef struct _HEAP_BLOCK_INFORMATION {

ULONG_PTR Address;

ULONG Flags; // see flags above

SIZE_T DataSize;

SIZE_T OverheadSize;

ULONG_PTR NextBlockInformationOffset;

} HEAP_BLOCK_INFORMATION, *PHEAP_BLOCK_INFORMATION;

Chapter 8: Memory (Part 1) 223

The pattern should be pretty clear by now. A range points to its first block via FirstBlockInformationOff-

set. Here is an example for enumerating blocks given a range:

void DisplayBlocks(PBYTE buffer, HEAP_RANGE_INFORMATION* range) {

if (range->FirstBlockInformationOffset == 0)

return;

auto block = (HEAP_BLOCK_INFORMATION*)(buffer +

range->FirstBlockInformationOffset);

for (;;) {

printf(" Block Addr: 0x%p Size: 0x%04zX Overhead: %2zd %s\n",

(PVOID)block->Address, block->DataSize, block->OverheadSize,

BlockFlagsToString(block->Flags).c_str());

if (block->NextBlockInformationOffset == 0)

break;

block = (HEAP_BLOCK_INFORMATION*)(buffer +

block->NextBlockInformationOffset);

}

}

BlockFlagsToString is a little function to convert the flags to a string:

std::string BlockFlagsToString(ULONG flags) {

static const struct {

ULONG flag;

PCSTR text;

} data[] = {

{ HEAP_BLOCK_BUSY, "Busy" },

{ HEAP_BLOCK_EXTRA_INFORMATION, "Extra" },

{ HEAP_BLOCK_LARGE_BLOCK, "Large" },

{ HEAP_BLOCK_LFH_BLOCK, "LFH" },

};

std::string text;

for (auto& d : data) {

if ((d.flag & flags) == d.flag)

(text += d.text) += ", ";

}

return text.empty() ? "" : text.substr(0, text.length() - 2);

}

Chapter 8: Memory (Part 1) 224

The block level is the last, but if the HEAP_BLOCK_EXTRA_INFORMATION is set, it means there is extra

information for the block in question, immediately following HEAP_BLOCK_INFORMATION. Its header looks

like this:

typedef struct _HEAP_BLOCK_EXTRA_INFORMATION {

BOOLEAN Next;

ULONG Type;

SIZE_T Size;

// data follows

} HEAP_BLOCK_EXTRA_INFORMATION, *PHEAP_BLOCK_EXTRA_INFORMATION;

The Next member indicates whether there is another extra information block following this one. Type is the

extra information type which currently can be only 1. The extra information structure itself is as follows:

typedef struct _HEAP_BLOCK_SETTABLE_INFORMATION {

SIZE_T Settable;

USHORT TagIndex;

USHORT AllocatorBackTraceIndex;

} HEAP_BLOCK_SETTABLE_INFORMATION, *PHEAP_BLOCK_SETTABLE_INFORMATION;

We’ve seen similar information in the discussion of RtlWalkHeap.

9.7.5.1: Callback

HEAP_EXTENDED_INFORMATION has a CallbackRoutine and CallbackContext members. If CallbackRou-

tine is non-NULL, it points to a callback invoked for every item enumerated. This means the buffer provided

to RtlQueryHeapInformation needs to be sizeof(HEAP_EXTENDED_INFORMATION) and no more regardless

of the value of Level. No further allocations are needed, as the callback is invoked for each and every item

requested (heap, range, region, block) based on Level.

The callback prototype looks like the following with the given structure:

typedef struct _HEAP_INFORMATION_ITEM {

ULONG Level; // reported level

SIZE_T Size;

union {

PROCESS_HEAP_INFORMATION ProcessHeapInformation;

HEAP_INFORMATION HeapInformation;

HEAP_REGION_INFORMATION HeapRegionInformation;

HEAP_RANGE_INFORMATION HeapRangeInformation;

HEAP_BLOCK_INFORMATION HeapBlockInformation;

ULONG_PTR DynamicStart;

};

Chapter 8: Memory (Part 1) 225

} HEAP_INFORMATION_ITEM, * PHEAP_INFORMATION_ITEM;

NTSTATUS HeapInformationCallback(

In PHEAP_INFORMATION_ITEM item,

In PVOID context);

Returning STATUS_SUCCESS from the callback continues enumeration, while returning a failure status aborts

further calls and that status is returned from RtlQueryHeapInformation.

9.7.6: HeapOptimizeResources (3)

This information class is only valid with RtlSetHeapInformation and requires the following structure:

typedef struct _HEAP_OPTIMIZE_RESOURCES_INFORMATION {

ULONG Version;

ULONG Flags;

} HEAP_OPTIMIZE_RESOURCES_INFORMATION, *PHEAP_OPTIMIZE_RESOURCES_INFORMATION;

Currently, Version must be set to 1, and Flags must be set to zero.

The call attempts to optimize the heap by decommitting regions that are currently unused. if the provided

heap handle to RtlSetHeapInformation is NULL, all heaps in the process are so optimized. If a specific heap

handle is provided, only that heap is dealt with.

9.7.7: HeapMemoryLimit (6)

This information class is available RtlSetHeapInformation to set some limits on the specified heap. The

information structure must be the following:

typedef struct _RTL_HEAP_MEMORY_LIMIT_DATA {

SIZE_T CommitLimitBytes;

ULONG_PTR CommitLimitFailureCode;

SIZE_T MaxAllocationSizeBytes;

ULONG_PTR AllocationLimitFailureCode;

} RTL_HEAP_MEMORY_LIMIT_DATA, *PRTL_HEAP_MEMORY_LIMIT_DATA;

typedef struct _RTL_HEAP_MEMORY_LIMIT_INFO {

ULONG Version; // must be set to 1

RTL_HEAP_MEMORY_LIMIT_DATA Data;

} RTL_HEAP_MEMORY_LIMIT_INFO, *PRTL_HEAP_MEMORY_LIMIT_INFO;

The above members should be self explanatory. The sizes must be in bytes, but multiples of a page size.

The remaining information classes either don’t work or require more research.

Chapter 8: Memory (Part 1) 226

9.8: Summary

This chapter covered a lot of ground as it related to memory. From the Virtual APIs to heaps. This is not all

that is available, however. In chapter 13, we’ll cover more memory related APIs, including Section objects,

memory zones, and lookaside lists.

Chapter 9: I/O

In this chapter:

• Files and Devices

• File and Device API

• File Information

• NTFS Streams

• Extended Attributes

• Accessing Devices

• I/O Completion Ports

• Miscellaneous Functions

10.1: Files and Devices

File objects are an abstraction over connections with device objects. Device objects can represent physical

devices, such as a hard disk or a keyboard, or virtual devices, such as a pipe. The device object is responsible

for the actual reading and writing of data. The file object provides a convenient interface for the user to

interact with the device object.

Creating a file object is always about connecting to a device. Device objects cannot be directly opened as

such from user-mode. The Windows API function CreateFile is the main interface to creating a file object.

The “create” in CreateFile is not about creating files in the file system necessarily - files in a file system

derive from a some disk device; it’s about creating the file object itself - a kernel structure that represents a

connection to a device object. Any access to the device object is performed through the file object. Figure

9-1 shows the relationship between file objects and device objects. Note that multiple file objects can talk to

the same device object.

Chapter 9: I/O 228

Figure 9-1: File and device objects

The well-known drive names users are accustomed to, such as “C:”, “D:”, etc. are nothing more than symbolic

links - an object type we looked at in chapter 7. You can use the Windows API QueryDosDevice to get the

target device name given a symbolic link. Here is an example:

WCHAR buffer[256];

QueryDosDevice(L"c:", buffer, _countof(buffer));

On my system I get “\Device\HarddiskVolume3” as the result. This is the device object that represents the C:

drive. The symbolic links that are directly accessible by the CreateFile Windows API can be viewed with

tools like WinObj from Sysinternals or my own Object Explorer. Figure 9-2 shows the “Global??” Object

Manager directory in Object Explorer, which contains the symbolic links that can be used with CreateFile.

Except for drive letters and certain old DOS names (like CON), symbolic links passed to CreateFile

must be prefixed with “\\.\” so they are interpreted as symbolic links and not as file names.

QueryDosDevice uses NtQuerySymbolicLinkObject under the covers.

Chapter 9: I/O 229

Figure 9-2: Global?? Object Manager directory

Contrary to CreateFile, the native API allows direct access to any object in the Object Manager namespace.

10.2: File and Device API

The native APIs to use for accessing devices are NtCreateFile and NtOpenFile:

NTSTATUS NtCreateFile(

Out PHANDLE FileHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

Out PIO_STATUS_BLOCK IoStatusBlock,

_In_opt_ PLARGE_INTEGER AllocationSize,

In ULONG FileAttributes,

In ULONG ShareAccess,

In ULONG CreateDisposition,

In ULONG CreateOptions,

_In_reads_bytes_opt_(EaLength) PVOID EaBuffer,

In ULONG EaLength);

NTSTATUS NtOpenFile(

Out PHANDLE FileHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

Out PIO_STATUS_BLOCK IoStatusBlock,

Chapter 9: I/O 230

In ULONG ShareAccess,

In ULONG OpenOptions);

Fortunately, these APIs are officially documented in the WDK (under ZwCreateFile and ZwOpenFile) since

device driver developers need these APIs for I/O work. NtOpenFile is the simpler API, providing a subset of

the capabilities of NtCreateFile. Internally, both call a common function in the kernel (IopCreateFile),

where NtOpenFile passes some defaults that are configurable with NtCreateFile.

The CreateFile Windows API calls NtCreateFile internally; this can be easily observed with a

user-mode debugger.

Most of NtOpenFile parameters should be familiar by now. ObjectAttributes is where the device name

is specified. IoStatusBlock is an output parameter filled with the following details:

typedef struct _IO_STATUS_BLOCK {

union {

NTSTATUS Status;

PVOID Pointer;

};

ULONG_PTR Information;

} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

Information contains one of the following values indicating the type of operation that was performed. This

is relevant for true files/directories in a file system, but not for devices (devices must always exist before an

attempt to open them can succeed):

• FILE_CREATED (2) - a new file was created.

• FILE_OPENED (1) - an existing file was opened.

• FILE_OVERWRITTEN (3) - an existing file was overwritten.

• FILE_SUPERSEDED (0) - an existing file was superseded, which means the file was replaced.

• FILE_EXISTS (4) - an existing file was found.

• FILE_DOES_NOT_EXIST (5) - an existing file was not found.

DesiredAccess is the access mask requested. This can include specific access masks for file objects (e.g.

FILE_READ_DATA), file generic ones (FILE_GENERIC_READ), and even object-generic ones (e.g. GENERIC_-

READ); this is no different in principle than any other object type.

ShareAccess is the share mode to open/create the file; it only has meaning if a new file is actually created.

Values include FILE_SHARE_READ, FILE_SHARE_WRITE, and FILE_SHARE_DELETE. Finally, OpenOptions

allows specifying more flags to customize the operation. Many such flags exist, documented in the WDK

under ZwCreateFile.

The following example opens the Kernel32.dll file from the System32 directory:

Chapter 9: I/O 231

UNICODE_STRING path;

RtlInitUnicodeString(&path, L"\\SystemRoot\\System32\\kernel32.dll");

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&path, 0);

HANDLE hFile;

IO_STATUS_BLOCK ioStatus;

status = NtOpenFile(&hFile, FILE_READ_DATA, &attr, &ioStatus,

FILE_SHARE_READ, 0);

Why does that even work? SystemRoot is a symbolic link that points to the root directory of where

Windows is installed, typically C:\Windows from a user’s perspective, but not quite what that looks like

underneath. Looking at Object Explorer or the ObjDir tool we developed in chapter 7, we can see that

SystemRoot is a symbolic link pointing to Device\BootDevice\Window. What is Device\BootDevice? Going to

the Device directory and locating BootDevice shows that BootDevice is yet another symbolic link, pointing

to Device\HarddiskVolume3. Looking at \Global??\C: shows it points to the same device, representing the C:

drive on this machine.

Run WinObj or ObjExp with admin privileges to see the above symbolic link target.

To use common user-mode paths, like “c:\Something”, prepend “\??\” to the path. For example, “c:\Something”

should be written as “\??\c:\Something”; “\??\” is the same as “\Global??\”.

Of course we could get to theC:\Windows directory directly withDevice\HarddiskVolume3\Windows, but that

device may not be the same on every Windows system. That’s why using the symbolic links is beneficial -

they are guaranteed to be the same on every Windows system.

The example for opening the file above seems simple enough. Unfortunately, it’s not that simple. Suppose

we want to read the first 1024 bytes from the file. We can use the NtReadFile API:

typedef void (NTAPI *PIO_APC_ROUTINE)(

In PVOID ApcContext,

In PIO_STATUS_BLOCK IoStatusBlock,

In ULONG Reserved);

NTSTATUS NtReadFile(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Chapter 9: I/O 232

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID Buffer,

In ULONG Length,

_In_opt_ PLARGE_INTEGER ByteOffset,

_In_opt_ PULONG Key);

The FileHandle parameter is the handle returned from NtOpenFile or NtCreateFile. Event is an optional

event handle to signal when the operation completes. ApcRoutine is an optional APC callback that is used

to construct an APC on the calling thread when the I/O operation completes. The thread must enter an

altertable state if the APC is to be eventually executed. ApcContext is an optional context value to pass to

the APC routine. Event, ApcRoutine, and ApcContext only have meaning if the operation is asynchronous.

We’ll get to that in a moment.

Buffer is the buffer to read the data into, and Length is the number of bytes to read. ByteOffset is an

optional offset to read from. Typically, NULL is provided which indicates to read from the current file position.

Key is an optional key value to use for the operation, which has no use in user-mode.

Here is simple code to read the first 1KB from the previously opened file:

BYTE buffer[1024];

status = NtReadFile(hFile, nullptr, nullptr, nullptr, &ioStatus,

buffer, sizeof(buffer), nullptr, nullptr);

The call mysteriously fails with STATUS_INVALID_PARAMETER. What’s going on? The problem is that the file

object was opened for asynchronous access. We didn’t specify anything special in the call to NtCreateFile,

but the default is asynchronous access. This is in contrast to the CreateFile function, which creates a file

object for synchronous access by default.

To create a file object for synchronous access, we need to specify the FILE_SYNCHRONOUS_IO_NONALERT or

FILE_SYNCHRONOUS_IO_ALERT flag in the OpenOptions parameter of NtOpenFile. Here is the correct call

to NtOpenFile:

status = NtOpenFile(&hFile, FILE_READ_DATA | SYNCHRONIZE, &attr, &ioStatus,

FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_NONALERT);

Notice the access mask includes the SYNCHRONIZE flag. This is necessary because this flag is required to

wait on the file object, which is what happens internally in for synchronous operations. Now the call to

NtReadFile can succeed and data is available when the call returns.

What do we need to do to make an asynchronous call work? In this case, the call to NtReadFilemust specify

a file position in the ByteOffset parameter. This is because a file object does not keep track of a file position

if opened for asynchronous access. This makes sense, since multiple operations could start concurrently, so

there is no meaning to a single file position. Optionally, an event handle should be provided (or an APC

callback) so that a thread can tell when the operation is complete and data is available. The status returned

for a successful initiation of an async operation is STATUS_PENDING (0x103).

Here is a simple example that waits immediately after the asynchronous call:

Chapter 9: I/O 233

HANDLE hEvent;

NtCreateEvent(&hEvent, EVENT_ALL_ACCESS, nullptr, NotificationEvent, FALSE);

LARGE_INTEGER pos{}; // pos is set to zero (beginning of file)

status = NtReadFile(hFile, hEvent, nullptr, nullptr, &ioStatus,

buffer, sizeof(buffer), &pos, nullptr);

if (status != STATUS_PENDING) {

// some real error occurred

}

else {

NtWaitForSingleObject(hEvent, FALSE, nullptr);

// data is available in buffer

}

NtClose(hEvent);

In a real scenario, the waiting would not occur immediately after initiation, as that would defeat the purpose

of asynchronous I/O. Instead, the thread would do other work and periodically check the status of the

operation, or another thread would wait on the event, or the thread pool would be used to wait on the

event and execute a callback when the operation completes.

Keep in mind that for asynchronous operations, the IO_STATUS_BLOCK and buffer provided should

be kept alive until the operation completes. If these are stack-allocated, then the thread must not exit

the current function until the operation completes.

Writing to a file object is similar to reading, with NtWriteFile:

NTSTATUS NtWriteFile(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

_In_reads_bytes_(Length) PVOID Buffer,

In ULONG Length,

_In_opt_ PLARGE_INTEGER ByteOffset,

_In_opt_ PULONG Key);

The function is virtually identical to NtReadFile, except for SAL annotations and the fact that the Buffer

parameter can be declared as const.

For more information about these APIs, including NtCreateFile, consult the WDK documentation.

Chapter 9: I/O 234

10.3: File Information

File and directory information is first and foremost available with the NtQueryInformationFile and

NtSetInformationFile functions, which follow the classic model we’ve seen before:

NTSTATUS NtQueryInformationFile(

In HANDLE FileHandle,

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID FileInformation,

In ULONG Length,

In FILE_INFORMATION_CLASS FileInformationClass);

NTSTATUS NtSetInformationFile(

In HANDLE FileHandle,

Out PIO_STATUS_BLOCK IoStatusBlock,

_In_reads_bytes_(Length) PVOID FileInformation,

In ULONG Length,

In FILE_INFORMATION_CLASS FileInformationClass);

A related query function works on a file name instead of a handle:

NTSTATUS NtQueryInformationByName(

In POBJECT_ATTRIBUTES ObjectAttributes,

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID FileInformation,

In ULONG Length,

In FILE_INFORMATION_CLASS FileInformationClass);

As youmight expect, there is a long list of file information classes. Some apply to files only, some to directories

only, and others to both. In the following subsections we’ll examine some of them.

Some of the information classes and associated structures are documented in the WDK and/or SDK. Look for

ZwQueryInformationFile in the WDK and GetFileInformationByHandleEx in the SDK.

10.3.1: FileBasicInformation (4)

This information class returns the basic details for a file or directory:

Chapter 9: I/O 235

typedef struct _FILE_BASIC_INFORMATION {

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

ULONG FileAttributes;

} FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION;

The members are mostly self-explanatory, where times are expressed in 100nsec units since January 1, 1601.

FileAttributes is a set of file attributes, such as FILE_ATTRIBUTE_DIRECTORY, FILE_ATTRIBUTE_HIDDEN,

FILE_ATTRIBUTE_READONLY, etc. The difference between ChangeTime and LastWriteTime is that Change-

Time can mean change in file name or file attributes, whereas LastWriteTime is only the last time the file

contents were modified.

The same information class can be used to set these attributes. The file handle must include the FILE_-

WRITE_ATTRIBUTES access mask (FILE_GENERIC_WRITE and GENERIC_WRITE include it).

The following example sets a file’s creattion time to the given value:

NTSTATUS SetCreateTime(PCWSTR filename, LARGE_INTEGER const& createTime) {

FILE_BASIC_INFORMATION fbi;

UNICODE_STRING name;

RtlInitUnicodeString(&name, filename);

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

HANDLE hFile;

IO_STATUS_BLOCK ioStatus;

auto status = NtOpenFile(&hFile, FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES,

&attr, &ioStatus, 0, 0);

if (!NT_SUCCESS(status))

return status;

status = NtQueryInformationFile(hFile, &ioStatus, &fbi,

sizeof(fbi), FileBasicInformation);

if (!NT_SUCCESS(status))

return status;

fbi.CreationTime = createTime;

status = NtSetInformationFile(hFile, &ioStatus, &fbi,

sizeof(fbi), FileBasicInformation);

NtClose(hFile);

return status;

}

The following example sets the creation time of a file to 24 hours in the future:

Chapter 9: I/O 236

LARGE_INTEGER time;

NtQuerySystemTime(&time);

time.QuadPart += 10000000ULL * 60 * 60 * 24;

SetCreateTime(L"\\??\\C:\\Temp\\myfile.txt", time);

10.3.2: FileStandardInformation (5)

This information class returns the following structure:

typedef struct _FILE_STANDARD_INFORMATION {

LARGE_INTEGER AllocationSize;

LARGE_INTEGER EndOfFile;

ULONG NumberOfLinks;

BOOLEAN DeletePending;

BOOLEAN Directory;

} FILE_STANDARD_INFORMATION, *PFILE_STANDARD_INFORMATION;

AllocationSize is the file allocation size, which is typically a multiple of the underlying sector size of the

physical device. EndOfFile is the file size (zero for directories). NumberOfLinks is the number of hard links

to the file. DeletePending indicates whether the file is pending deletion. For example, if it was opened with

the FILE_DELETE_ON_CLOSE flag. Directory indicates whether the file is a directory.

10.3.3: FileNameInformation (9)

This information returns the full name of the file or directory in a FILE_NAME_INFORMATION structure:

typedef struct _FILE_NAME_INFORMATION {

ULONG FileNameLength; // in bytes

WCHAR FileName[1];

} FILE_NAME_INFORMATION, *PFILE_NAME_INFORMATION;

FileNameLength is the length of the filename in bytes. FileName is the filename itself, which is not

necessarily null-terminated. If the supplied buffer is not large enough to receive the full name, the function

returns STATUS_BUFFER_OVERFLOW and FileNameLength is set to the required size (at least this is what file

system drivers and filters suppose to do).

The returned file name always starts with a backslash. It does not include a drive letter or

volume name. For example, the file name returned for “C:\Windows\System32\kernel32.dll” is

“\Windows\System32\kernel32.dll”. The same file name is returned if the file was opened by the

name “\SystemRoot\System32\kernel32.dll”.

How do you get the volume name? See next information class.

10.3.4: FileVolumeNameInformation (58)

This information class returns the volume device name in a FILE_VOLUME_NAME_INFORMATION structure:

Chapter 9: I/O 237

typedef struct _FILE_VOLUME_NAME_INFORMATION {

ULONG DeviceNameLength;

WCHAR DeviceName[1];

} FILE_VOLUME_NAME_INFORMATION, *PFILE_VOLUME_NAME_INFORMATION;

It’s identical in format to FILE_NAME_INFORMATION. Here is an example of using it:

BYTE buffer[1 << 11];

status = NtQueryInformationFile(hFile, &ioStatus, buffer,

sizeof(buffer), FileVolumeNameInformation);

auto info = (FILE_VOLUME_NAME_INFORMATION*)buffer;

The return value is something like “\Device\HarddiskVolume3”. Combining it with the FileNameInforma-

tion information class produces the full path name in device form. If a drive letter is desired, you’ll need

to lookup drive letters as symbolic link names and see which points to the device name. I’ll leave that as an

exercise for the interested reader. Note that this may fail - not all volumes are mapped to drive letters - there

is no such requirement. A quick way to see what is mapped is to the fltmc.exe command line tool, which

must be run from an elevated command prompt. For example (formatted for clarity):

C:\Users\Pavel> fltmc volumes

Dos Name Volume Name FileSystem

---------------- -------------------------------- ----------

\Device\Mup Remote

D: \Device\HarddiskVolume7 NTFS

C: \Device\HarddiskVolume3 NTFS

\Device\NamedPipe NamedPipe

\Device\Mailslot Mailslot

\Device\HarddiskVolume1 FAT

\Device\HarddiskVolume5 NTFS

F: \Device\HarddiskVolume8 NTFS

\Device\HarddiskVolume4 NTFS

\Device\HarddiskVolumeShadowCopy4 NTFS

\Device\HarddiskVolumeShadowCopy6 NTFS

\Device\HarddiskVolumeShadowCopy7 NTFS

The fltmc.exe tool is in the System32 directory.

10.3.5: FileRenameInformation (10)

This information class can be used with NtSetInformationFile to rename or move a file or directory. The

structure provided is FILE_RENAME_INFORMATION:

Chapter 9: I/O 238

typedef struct _FILE_RENAME_INFORMATION {

BOOLEAN ReplaceIfExists;

HANDLE RootDirectory;

ULONG FileNameLength;

WCHAR FileName[1];

} FILE_RENAME_INFORMATION, *PFILE_RENAME_INFORMATION;

ReplaceIfExists indicates whether to replace an existing file if the new file name exists. RootDirectory

is a handle to the directory where the new file should reside. If RootDirectory is NULL, then the file is

renamed in the same directory. FileNameLength is the length of the new name in bytes and FileName is the

new name, which is not necessarily null-terminated.

Here is an example of renaming a file in the same directory:

NTSTATUS RenameFile(PCWSTR path, PCWSTR newName) {

UNICODE_STRING name;

RtlInitUnicodeString(&name, path);

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

HANDLE hFile;

IO_STATUS_BLOCK ioStatus;

auto status = NtOpenFile(&hFile, DELETE, &attr, &ioStatus, 0, 0);

if (NT_SUCCESS(status)) {

BYTE buffer[1 << 10];

auto info = (FILE_RENAME_INFORMATION*)buffer;

info->ReplaceIfExists = FALSE;

info->RootDirectory = nullptr;

info->FileNameLength = (ULONG)wcslen(newName) * sizeof(WCHAR);

memcpy(info->FileName, newName, info->FileNameLength);

status = NtSetInformationFile(hFile, &ioStatus, info,

sizeof(buffer), FileRenameInformation);

NtClose(hFile);

}

return status;

}

Notes:

• The file must be opened with the DELETE access mask. CreateOptions should be zero (not something

like FILE_SYNCHRONOUS_IO_NONALERT).

• The buffer size provided to NtSetInformationFile in the above code is larger than needed, but that’s

not an issue. Still, the buffer should be allocated dynamically based on the length of the new name.

Here is an example of usage:

Chapter 9: I/O 239

RenameFile(L"\\??\\C:\\Temp\\myfile.txt", L"somefile.txt");

We can extend the example to support moving a file to a different directory by specifying a root directory

handle. A directory handle can be opened for this purpose like so:

HANDLE OpenDirectoryForMoving(PCWSTR path) {

IO_STATUS_BLOCK ioStatus;

UNICODE_STRING name;

RtlInitUnicodeString(&name, path);

HANDLE hDir = nullptr;

OBJECT_ATTRIBUTES dirAtt = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

NtOpenFile(&hDir, FILE_GENERIC_WRITE, &dirAtt, &ioStatus,

FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_DIRECTORY_FILE);

return hDir;

}

The target directory must be in the same volume as the file being moved.

10.3.6: FileDispositionInformation (13)

This information class is used with NtSetInformationFile to delete a file or directory. The structure

required is a simple BOOLEAN:

typedef struct _FILE_DISPOSITION_INFORMATION {

BOOLEAN DeleteFile;

} FILE_DISPOSITION_INFORMATION, *PFILE_DISPOSITION_INFORMATION;

DeleteFile is set to TRUE to delete the file. The file must be opened with the DELETE access mask. The

following example deletes a file:

NTSTATUS NtDeleteFile(PCWSTR path) {

UNICODE_STRING name;

RtlInitUnicodeString(&name, path);

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

HANDLE hFile;

IO_STATUS_BLOCK ioStatus;

auto status = NtOpenFile(&hFile, DELETE, &attr, &ioStatus, 0, 0);

if (NT_SUCCESS(status)) {

FILE_DISPOSITION_INFORMATION info{ TRUE };

Chapter 9: I/O 240

status = NtSetInformationFile(hFile, &ioStatus, &info,

sizeof(info), FileDispositionInformation);

NtClose(hFile);

}

return status;

}

The file is actually deleted when the handle is closed. A simple way to delete a file is to open it with the flag

FILE_DELETE_ON_CLOSE (as part of CreateOptions), and closing the handle.

10.3.7: FilePositionInformation (14)

This information class can be used to query or set the file pointer as a LARGE_INTEGER:

typedef struct _FILE_POSITION_INFORMATION {

LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION, *PFILE_POSITION_INFORMATION;

10.3.8: FileModeInformation (16)

This information class returns the mode the file was opened with. The structure returned is FILE_MODE_-

INFORMATION, which is a glorified set of flags:

typedef struct _FILE_MODE_INFORMATION {

ULONG Mode;

} FILE_MODE_INFORMATION, *PFILE_MODE_INFORMATION;

The Mode includes flags like FILE_WRITE_THROUGH, FILE_SEQUENTIAL_ONLY, FILE_NO_INTERMEDIATE_-

BUFFERING, FILE_SYNCHRONOUS_IO_ALERT, and others. There are the ones that can be used with NtCre-

ateFile and NtOpenFile as part of CreateOptions. See the WDK docs for more information.

This information class is also partially supported with NtSetInformationFile, especially contradicting the

way the file was opened in relation to synchronous/asynchronous open.

10.3.9: FileAllInformation (18)

This information class returns many of the structures we’ve seen before as one:

Chapter 9: I/O 241

typedef struct _FILE_ALL_INFORMATION {

FILE_BASIC_INFORMATION BasicInformation;

FILE_STANDARD_INFORMATION StandardInformation;

FILE_INTERNAL_INFORMATION InternalInformation;

FILE_EA_INFORMATION EaInformation;

FILE_ACCESS_INFORMATION AccessInformation;

FILE_POSITION_INFORMATION PositionInformation;

FILE_MODE_INFORMATION ModeInformation;

FILE_ALIGNMENT_INFORMATION AlignmentInformation;

FILE_NAME_INFORMATION NameInformation;

} FILE_ALL_INFORMATION, *PFILE_ALL_INFORMATION;

This is more efficient than making multiple calls, assuming most of these details are of interest. Note that

this is a variable length structure, as the last member is a variable-length string.

10.4: Directory-Only Information

Some information classes are only applicable to directories only, when directory contents is involved. The

NtQueryDirectoryFile function is used to get this information:

NTSTATUS NtQueryDirectoryFile(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID FileInformation,

In ULONG Length,

In FILE_INFORMATION_CLASS FileInformationClass,

In BOOLEAN ReturnSingleEntry,

_In_opt_ PUNICODE_STRING FileName,

In BOOLEAN RestartScan);

FileHandle must be a directory handle (FILE_DIRECTORY_FILE specified in a call to NtOpenFile or

NtCreateFile).

The last three parameters are new. ReturnSingleEntry indicates whether to return a single entry or all

entries (remember this is a directory). FileName can be used to filter the returned items. If NULL is specified,

no filtering is performed. If non-NULL, it indicates the items of interest, supporting wildcards. For example,

specifying “Hello.*” returns all files/directories whos name is “hello” with any extension. RestartScan

indicates whether to restart the scan from the beginning or continue from the last entry. This is useful

when the buffer provided is not large enough to receive all entries. The first time NtQueryDirectoryFile

is called with a particular handle, RestartScan is ignored. It is respected on subsequent calls.

The next subsections examine the directory-contents information classes.

Chapter 9: I/O 242

10.4.1: FileDirectoryInformation (1), FileFullDirectoryInformation (2),
FileBothDirectoryInformation (3)

These information classes are similar, with the difference being the details returned. The provided handle

must be of a directory (not a file). The FileDirectoryInformation class returns the following structure:

typedef struct _FILE_DIRECTORY_INFORMATION {

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

WCHAR FileName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

It’s a variable-size structure, as the filename appears as the last member. Moving to the next structure is done

using NextEntryOffset, which indicates the number of bytes to move forward to the next entry. When

NextEntryOffset is zero, there are no more entries. The structure is described in the WDK documentation.

Here is a brief description of the members:

• FileIndex is a byte offset of the file from the parent directory. It should normally be ignored, as it’s

not used by NTFS, for example.

• CreationTime, LastAccessTime, LastWriteTime, and ChangeTime should be familiar by now.

• EndOfFile is the size of the file in bytes.

• AllocationSize is the file allocation size, which is typically a multiple of the underlying sector size

of the physical device.

• FileAttributes is a set of file attributes, such as FILE_ATTRIBUTE_DIRECTORY, FILE_ATTRIBUTE_-

HIDDEN, FILE_ATTRIBUTE_READONLY, etc.

• FileNameLength is the length of the filename in bytes.

• FileName is the filename itself, which is not necessarily null-terminated.

The following example lists the items in a given directory:

Chapter 9: I/O 243

NTSTATUS ListDirectory(PCWSTR path, PCWSTR filter) {

//

// init directory name

//

UNICODE_STRING name;

RtlInitUnicodeString(&name, path);

//

// init filter (if any)

//

UNICODE_STRING filterName;

if (filter)

RtlInitUnicodeString(&filterName, filter);

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

HANDLE hDir;

IO_STATUS_BLOCK ioStatus;

//

// open directory

//

auto status = NtOpenFile(&hDir, FILE_LIST_DIRECTORY | SYNCHRONIZE,

&attr, &ioStatus, FILE_SHARE_READ | FILE_SHARE_WRITE,

FILE_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT);

if (!NT_SUCCESS(status))

return status;

BYTE buffer[1 << 10];

for(;;) {

//

// retriueve as many items as would fit in the buffer

//

status = NtQueryDirectoryFile(hDir, nullptr, nullptr, nullptr,

&ioStatus, buffer, sizeof(buffer), FileDirectoryInformation,

FALSE, filter ? &filterName : nullptr, FALSE);

if (!NT_SUCCESS(status))

break;

auto info = (FILE_DIRECTORY_INFORMATION*)buffer;

for (;;) {

printf("%.*ws", (int)(info->FileNameLength / sizeof(WCHAR)),

info->FileName);

//

// add <DIR> in case of a directory

// otherwise, add file size in KB

Chapter 9: I/O 244

//

if(info->FileAttributes & FILE_ATTRIBUTE_DIRECTORY)

printf(" <DIR>");

else

printf(" [%llu KB]", info->EndOfFile.QuadPart >> 10);

printf("\n");

if (info->NextEntryOffset == 0)

break;

info = (FILE_DIRECTORY_INFORMATION*)((BYTE*)info +

info->NextEntryOffset);

}

}

NtClose(hDir);

return status;

}

FileFullDirectoryInformation returns an extended structure:

typedef struct _FILE_FULL_DIR_INFORMATION {

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

ULONG EaSize;

WCHAR FileName[1];

} FILE_FULL_DIR_INFORMATION, *PFILE_FULL_DIR_INFORMATION;

EaSize is the size of the extended attributes in bytes. See the subsection “Extended Attributes” later in this

chapter for more information.

Finally, FileBothDirectoryInformation returns an even extended structure that contains the “short name”

(in the old DOS format 8.3):

Chapter 9: I/O 245

typedef struct _FILE_BOTH_DIR_INFORMATION {

ULONG NextEntryOffset;

ULONG FileIndex;

LARGE_INTEGER CreationTime;

LARGE_INTEGER LastAccessTime;

LARGE_INTEGER LastWriteTime;

LARGE_INTEGER ChangeTime;

LARGE_INTEGER EndOfFile;

LARGE_INTEGER AllocationSize;

ULONG FileAttributes;

ULONG FileNameLength;

ULONG EaSize;

CCHAR ShortNameLength;

WCHAR ShortName[12];

WCHAR FileName[1];

} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION;

10.5: NTFS Streams

The NTFS file system supports alternate streams, which are additional data items stored with a file. A file

can have multiple alternate streams, each with its own name. The main stream is unnamed, and is the one

that is used by default as the file contents. Streams can be created/opened just like regular files, where the

stream name follows the file name, separated by a colon. The following example creates an alternate stream

and writes some data to it (error handling omitted):

HANDLE hFile;

UNICODE_STRING name;

IO_STATUS_BLOCK ioStatus;

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

RtlInitUnicodeString(&name, L"\\??\\C:\\Temp\\myfile.txt:mystream");

NtCreateFile(&hFile, GENERIC_WRITE | SYNCHRONIZE,

&attr, &ioStatus, nullptr, 0,

FILE_SHARE_WRITE, FILE_OPEN_IF, FILE_SYNCHRONOUS_IO_NONALERT, nullptr, 0);

char data[] = "Hello, stream!";

NtWriteFile(hFile, nullptr, nullptr, nullptr, &ioStatus,

data, (ULONG)strlen(data), nullptr, nullptr);

NtClose(hFile);

Note that NtCreateFile must be used to create alternate streams. If a stream exists, NtOpenFile works

as well. The size of the file as reflected in standard tools like Windows Explorer show the size of the main

stream only. This means you can create a file with zero size, but have alternate streams with data of any size,

practically invisible by standard tools. The Streams tool from Sysinternals will list the streams in a file:

Chapter 9: I/O 246

C:\temp>streams -nobanner myfile.txt

C:\temp\myfile.txt:

:mystream:$DATA 14

My own NTFS Streams tool can show the contents of streams as well as their name and size (figure 9-3).

Figure 9-3: NTFS Streams

As you can see, reading and writing to alternate streams is no different than “normal” file. Enumerating

streams in a file is a different story. The NtQueryInformationFile function can be used with the

FileStreamInformation (22) information class to enumerate the streams in a file. The expected structure

is FILE_STREAM_INFORMATION:

typedef struct _FILE_STREAM_INFORMATION {

ULONG NextEntryOffset;

ULONG StreamNameLength;

LARGE_INTEGER StreamSize;

LARGE_INTEGER StreamAllocationSize;

WCHAR StreamName[1];

} FILE_STREAM_INFORMATION, *PFILE_STREAM_INFORMATION;

The following example shows how to enumerate the streams in a file (see full example in the Streams sample):

NTSTATUS EnumStreams(PCWSTR filename) {

std::wstring path(filename);

// deal with a drive letter

if (filename[1] == L':')

path = L"\\??\\" + path;

UNICODE_STRING name;

RtlInitUnicodeString(&name, path.c_str());

HANDLE hFile;

Chapter 9: I/O 247

IO_STATUS_BLOCK ioStatus;

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

auto status = NtOpenFile(&hFile, FILE_READ_ACCESS | SYNCHRONIZE,

&attr, &ioStatus, FILE_SHARE_READ | FILE_SHARE_WRITE,

FILE_SYNCHRONOUS_IO_NONALERT);

if (!NT_SUCCESS(status))

return status;

BYTE buffer[1 << 10];

status = NtQueryInformationFile(hFile, &ioStatus,

buffer, sizeof(buffer), FileStreamInformation);

if (!NT_SUCCESS(status))

return status;

auto info = (FILE_STREAM_INFORMATION*)buffer;

for (;;) {

printf("Name: %.*ws Size: %llu bytes\n",

int(info->StreamNameLength / sizeof(WCHAR)), info->StreamName,

info->StreamSize.QuadPart);

if (info->NextEntryOffset == 0)

break;

info = (FILE_STREAM_INFORMATION*)((PBYTE)info + info->NextEntryOffset);

}

NtClose(hFile);

return status;

}

Here is what the output looks like for an “empty” myfile.txt from the earlier example:

C:\winnativeapibooksamples\Chapter09\>Streams.exe c:\temp\myfile.txt

Name: ::$DATA Size: 0 bytes

Name: :mystream:$DATA Size: 14 bytes

10.6: Extended Attributes

Extended attributes (EA) are a way to store additional information about a file or directory. They are not

supported by all file systems, but NTFS supports them. One way to look at EA is as another way to associate

custom information with a file.

Chapter 9: I/O 248

There are a couple of information information classes that deal with EA. The first is FileEaInformation (7),

which returns the size of the EA in bytes as a ULONG. The second, and more interesting, is FileFullEaIn-

formation (15), which returns the EA in a (possibly) chain of FILE_FULL_EA_INFORMATION structures:

typedef struct _FILE_FULL_EA_INFORMATION {

ULONG NextEntryOffset;

UCHAR Flags;

UCHAR EaNameLength;

USHORT EaValueLength;

CHAR EaName[1];

} FILE_FULL_EA_INFORMATION, *PFILE_FULL_EA_INFORMATION;

NextEntryOffset indicates the number of bytes to move to the next attribute, where zero means there are no

more attributes. Flags is either zero or FILE_NEED_EA (0x80) to indicate that the EA is required for proper

operation of the file. EaNameLength is the length of the EA name in bytes, and the name itself (EaName)

consists of ASCII characters stored internally as uppercase. EaValueLength is the length of the EA value in

bytes. The EA value follows the structure. This is depicted in figure 9-4.

Figure 9-4: Layout

There are two ways to query the EA of a file. The first is calling NtQueryInformationFile with

FileFullEaInformation and interpreting the returned buffer as a chain of FILE_FULL_EA_INFORMATION

structures. This works, but is limited in flexibility. The second is calling NtQueryEaFile, which returns the

EA, which provides more flexibility as the expense of complexity:

Chapter 9: I/O 249

NTSTATUS NtQueryEaFile(

In HANDLE FileHandle,

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID Buffer,

In ULONG Length,

In BOOLEAN ReturnSingleEntry,

_In_reads_bytes_opt_(EaListLength) PVOID EaList,

In ULONG EaListLength,

_In_opt_ PULONG EaIndex,

In BOOLEAN RestartScan);

The first four parameters should be familiar. ReturnSingleEntry indicates whether to return a single EA or

all EAs. EaList is a list of EA names to return. If NULL is specified, all EAs are returned. EaListLength is

the length of the list in bytes. EaIndex indicates the index of the EA to return. If NULL is specified, the first

EA or all EAs are returned (based on ReturnSingleEntry).

RestartScan indicates whether to restart the scan from the beginning or continue from the last entry. This

is useful when the buffer provided is not large enough to receive all entries. The first time NtQueryEaFile

is called with a particular handle, RestartScan is ignored. It is respected on subsequent calls.

The following example shows how to retrieves all EAs of a file:

BYTE buffer[1 << 10];

// hFile is an open handle to a file

for (;;) {

status = NtQueryEaFile(hFile, &ioStatus, buffer, sizeof(buffer), FALSE,

nullptr, 0, nullptr, FALSE);

if (!NT_SUCCESS(status))

break;

auto info = (FILE_FULL_EA_INFORMATION*)buffer;

for (;;) {

//

// assume for demonstration purposes that the

// EA value is a Unicode string

printf("Name: %.*s Value: %.*ws\n",

info->EaNameLength, info->EaName,

(int)(info->EaValueLength / sizeof(WCHAR)),

(PCWSTR)(info->EaName + info->EaNameLength + 1));

if (info->NextEntryOffset == 0)

break;

info = (PFILE_FULL_EA_INFORMATION)((PBYTE)info + info->NextEntryOffset);

Chapter 9: I/O 250

}

}

To write an EA, use NtSetEaFile:

NTSTATUS NtSetEaFile(

In HANDLE FileHandle,

Out PIO_STATUS_BLOCK IoStatusBlock,

_In_reads_bytes_(Length) PVOID Buffer,

In ULONG Length);

The expected buffer is a chain of FILE_FULL_EA_INFORMATION structures, as described earlier. Each one

must be formatted as shown in figure 9-4. The following example shows how to set a single EA (assuming

the value is a Unicode string):

NTSTATUS WriteEaToFile(HANDLE hFile, PCSTR name, PCWSTR value) {

//

// use a trick to allow FILE_FULL_EA_INFORMATION to extend

// beyond its static bounds without generating memory access violation

//

union {

FILE_FULL_EA_INFORMATION info{};

BYTE buffer[1 << 10];

};

//

// copy name

//

strcpy_s(info.EaName, info.EaNameLenth + 1, name);

info.NextEntryOffset = 0;

info.EaValueLength = USHORT(1 + info.EaNameLength) * sizeof(WCHAR);

wcscpy_s((PWSTR)(info.EaName + info.EaNameLength + 1),

info.EaValueLength / sizeof(WCHAR), value);

return NtSetEaFile(hFile, &ioStatus, &info, sizeof(buffer));

}

It’s ok to indicate the buffer is bigger than it actually is, because the file system driver will follow the chain

based on NextEntryOffset.

Chapter 9: I/O 251

The full sample is in the ea project.

10.7: Accessing Devices

The NtCreateFile and NtOpenFile functions can be used to open device objects that are not necessarily

file system files or volumes. Any named Device object can be potentially opened. The open operation may

fail because of access rights, but all the Object Manager’s namespace is accessible.

For example, the Beep Windows API makes a sound based on a frequency and duration. Internally, it uses

a device called Beep to do so. The Beep function is synchronous - that is, the thread waits until the sound is

complete. What if we wanted to play a sound asynchronously? We can access the Beep device directly by

opening a handle to it:

HANDLE hFile;

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"\\Device\\Beep");

OBJECT_ATTRIBUTES attr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&name, 0);

IO_STATUS_BLOCK ioStatus;

status = NtOpenFile(&hFile, FILE_WRITE_DATA | SYNCHRONIZE, &attr,

&ioStatus, FILE_SHARE_WRITE | FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_NONALERT);

The path “\Device\Beep” can be viewed withWinObj or Object Explorer (figure 9-5).

Chapter 9: I/O 252

Figure 9-5: Beep device in WinObj

We’ve seen this kind of code multiple times. Once we have a valid handle, how do we “tell” the Beep device

to play a sound? With files in a file system we called NtReadFile or NtWriteFile. With devices, it depends

on the driver for that device. It may expect some call to NtReadFile or NtWriteFile with some formatted

data that it understands, but more often than not a third API is used, NtDeviceIoControlFile:

NTSTATUS NtDeviceIoControlFile(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

In ULONG IoControlCode,

_In_reads_bytes_opt_(InputBufferLength) PVOID InputBuffer,

In ULONG InputBufferLength,

_Out_writes_bytes_opt_(OutputBufferLength) PVOID OutputBuffer,

In ULONG OutputBufferLength);

NtDeviceIoControlFile is the native (rough) equivalent of the DeviceIoControl Windows API,

just like NtReadFile and NtWriteFile are the native equivalents of ReadFile and WriteFile.

NtDeviceIoControlFile provides more flexibility when talking to devices. The IoControlCode is a 32-bit

value that is interpreted by the driver as an operation to perform. Of course, if the value is unrecognized by

Chapter 9: I/O 253

the driver, the call will fail. The InputBuffer optional buffer can be used to send input data to the driver,

while OutputBuffermay be used to receive results. This all depends on the driver and the way it expects to

be communicated with.

How do we know the correct way to communicate with the Beep device? Except for reverse engineering

its operation, we need documentation. Fortunately, for the Beep device, Microsoft provides the Ntddbeep.h

header with the information needed.

Within that file, we find the following definitions (slightly edited for clarity):

#define DD_BEEP_DEVICE_NAME "\\Device\\Beep"

#define DD_BEEP_DEVICE_NAME_U L"\\Device\\Beep"

#define IOCTL_BEEP_SET \

CTL_CODE(FILE_DEVICE_BEEP, 0, METHOD_BUFFERED, FILE_ANY_ACCESS)

typedef struct _BEEP_SET_PARAMETERS {

ULONG Frequency;

ULONG Duration;

} BEEP_SET_PARAMETERS, *PBEEP_SET_PARAMETERS;

#define BEEP_FREQUENCY_MINIMUM 0x25

#define BEEP_FREQUENCY_MAXIMUM 0x7FFF

The header includes the device name in ASCII and Unicode formats. BEEP_SET_PARAMETERS is the expected

input buffer to the driver. IOCTL_BEEP_SET is the expected control code; no need to guess anything. The

following example plays a single sound with a frequency of 600Hz for 2 seconds:

BEEP_SET_PARAMETERS params;

params.Duration = 2000; // msec

params.Frequency = 600; // Hz

status = NtDeviceIoControlFile(hFile, nullptr, nullptr, nullptr, &ioStatus,

IOCTL_BEEP_SET, ¶ms, sizeof(params), nullptr, 0);

Although the device was opened for synchronous access, as it happens, theBeep driver works asynchronously;

the call to NtDeviceIoControlFile returns immediately, while the sound is played in the background. We

can “prove” that by waiting for the sound to complete while displaying something from time to time:

Chapter 9: I/O 254

LARGE_INTEGER ticks, delay;

NtQuerySystemTime(&ticks);

delay.QuadPart = -250000; // 25msec

// calculate future time based on the duration

auto target = ticks.QuadPart + params.Duration * 10000;

while (ticks.QuadPart < target) {

printf(".");

// wait a bit

NtDelayExecution(FALSE, &delay);

NtQuerySystemTime(&ticks);

}

The full sample is in the Beep project.

In addition to NtDeviceIoControlFile, there is NtFsControlFile, which is used to communicate with file

system drivers. It’s similar to NtDeviceIoControlFile, having the exact same arguments, but the expected

control codes are different, starting with FSCTL_. For example, the NTFS file system driver supports the

FSCTL_GET_NTFS_VOLUME_DATA control code, which returns information about the volume the file handle

was opened to. It returns a NTFS_VOLUME_DATA_BUFFER structure:

typedef struct {

LARGE_INTEGER VolumeSerialNumber;

LARGE_INTEGER NumberSectors;

LARGE_INTEGER TotalClusters;

LARGE_INTEGER FreeClusters;

LARGE_INTEGER TotalReserved;

DWORD BytesPerSector;

DWORD BytesPerCluster;

DWORD BytesPerFileRecordSegment;

DWORD ClustersPerFileRecordSegment;

LARGE_INTEGER MftValidDataLength;

LARGE_INTEGER MftStartLcn;

LARGE_INTEGER Mft2StartLcn;

LARGE_INTEGER MftZoneStart;

LARGE_INTEGER MftZoneEnd;

} NTFS_VOLUME_DATA_BUFFER, *PNTFS_VOLUME_DATA_BUFFER;

Here is an example:

Chapter 9: I/O 255

NTFS_VOLUME_DATA_BUFFER data;

status = NtFsControlFile(hFile, nullptr, nullptr, nullptr, &ioStatus,

FSCTL_GET_NTFS_VOLUME_DATA, nullptr, 0, &data, sizeof(data));

The above file handle can be to any file or directory for the requested volume. Curiously enough, calling

NtDeviceIoControlFile with the same control code fails with STATUS_INVALID_PARAMETER. However,

since NtFsControlFile is not part of the documented Windows API, calling DeviceIoControl (the

documented API) with the same control code works just fine.

All standard control codes and structures that may be supported by file systems are defined in

<WinIoCtl.h>, many of which are officially documented.

10.8: I/O Completion Ports

I/O completion (port) objects are a way to invoke handlers when asynchronous I/O operations complete.

There are multiple ways to knowwhen an asynchronous I/O operation completes, such as using the (optional)

event handle provided to many I/O functions. I/O completion objects provide the most efficient way to do so,

by allowing multiple threads to respond to I/O completions, and optionally by utilizing a thread pool, from

which threads can pick up completed operations and run handlers.

An I/O completion object can be associated with multiple file objects. It can also be used independently of

any I/O operations as a mechanism to post operations that can be handled by multiple threads. Figure 9-6

shows the main ingredients of an I/O completion object.

Figure 9-6: I/O Completion (port) object

Creating an I/O completion object is done with NtCreateIoCompletion:

Chapter 9: I/O 256

NTSTATUS NtCreateIoCompletion(

Out PHANDLE IoCompletionHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ ULONG Count);

DesiredAccess is the desired access for the new object, typically IO_COMPLETION_ALL_ACCESS (defined in

<WinNt.h>). ObjectAttributes can be provided and can contain a name. Finally, Count indicates how

many threads at most can handle I/O completions. Zero is interpreted as the number of logical processors on

the system.

Curiously enough, the Windows API CreateIoCompletionPort does not allow specifying a name.

This makes some sense, as sharing I/O completion objects between processes is not very practical, so

the value of having a name is diminished; a name is supported nonetheless.

Creating named objects outside the session namespace (such as the global namespace) requires the

SeCreateGlobalPrivilege privilege, which is granted by default to the Administrators group.

Since a name is allowed, it’s possible to open a handle to an existing I/O completion object with NtOpenIo-

Completion:

NTSTATUS NtOpenIoCompletion(

Out PHANDLE IoCompletionHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

In this case, ObjectAttributes is not optional.

To associate a file handle with an I/O completion object, use NtSetInformationFile with FileComple-

tionInformation (30), where the expected buffer is FILE_COMPLETION_INFORMATION:

typedef struct _FILE_COMPLETION_INFORMATION {

HANDLE Port;

PVOID Key;

} FILE_COMPLETION_INFORMATION, *PFILE_COMPLETION_INFORMATION;

The call can be made multiple times with different file handles but the same port. Port is the port handle

returned from NtCreateIoCompletion or NtOpenIoCompletion. Key is an arbitrary value that can be used

to identify the specific file.

When an I/O operation is performed, any number of threads can call NtRemoveIoCompletion to wait

for an operation to complete. Once completed, the thread is unblocked and can do whatever is needed.

The maximum number of threads released from NtRemoveIoCompletion is based on what has been

specified in the I/O completion object creation. Here is NtRemoveIoCompletion and its extended version,

NtRemoveIoCompletionEx:

Chapter 9: I/O 257

NTSTATUS NtRemoveIoCompletion(

In HANDLE IoCompletionHandle,

Out PVOID *KeyContext,

Out PVOID *ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

_In_opt_ PLARGE_INTEGER Timeout);

NTSTATUS NtRemoveIoCompletionEx(

In HANDLE IoCompletionHandle,

_Out_writes_to_(Count, *Removed) PFILE_IO_COMPLETION_INFORMATION Information,

In ULONG Count,

Out PULONG Removed,

_In_opt_ PLARGE_INTEGER Timeout,

In BOOLEAN Alertable);

The simpler function waits until an asynchronous I/O operation completes (or the timeout elapses). If

completed, it can run any code needed at that time. The information returned for the completed operation

is the *KeyContext (the key supplied to NtSetInformationFile), *ApcContext (value passed to the

asynchronous I/O operation), and *IoStatusBlock, indicating the result of the operation.

The extended function can wait for multiple operations to complete, up to Count operations. The *Removed

parameter indicates how many operations have completed. The information for each completed operation is

returned in the Information array, of the following type:

typedef struct _FILE_IO_COMPLETION_INFORMATION {

PVOID KeyContext;

PVOID ApcContext;

IO_STATUS_BLOCK IoStatusBlock;

} FILE_IO_COMPLETION_INFORMATION, *PFILE_IO_COMPLETION_INFORMATION;

This basically bundles the same information returned individually by NtRemoveIoCompletion. Finally,

Alertable indicates whether the wait should be alertable or not.

The return values for these functions can be STATUS_SUCCESS (if an operation completed), STATUS_TIMEOUT

(if the timeout elapsed), or STATUS_USER_APC (if the wait was alertable and APC(s) executed).

As mentioned earlier, I/O completion objects can be used to post operations that can be waited on by multiple

threads regardless of (or in addition to) any I/O operation. This is done with NtSetIoCompletion or its

extended version, NtSetIoCompletionEx:

Chapter 9: I/O 258

NTSTATUS NtSetIoCompletion(

In HANDLE IoCompletionHandle,

_In_opt_ PVOID KeyContext,

_In_opt_ PVOID ApcContext,

In NTSTATUS IoStatus,

In ULONG_PTR IoStatusInformation);

NTSTATUS NtSetIoCompletionEx(

In HANDLE IoCompletionHandle,

In HANDLE IoCompletionPacketHandle,

_In_opt_ PVOID KeyContext,

_In_opt_ PVOID ApcContext,

In NTSTATUS IoStatus,

In ULONG_PTR IoStatusInformation);

NtSetIoCompletion queues an item to the I/O completion object that can be picked up by one of threads

calling NtRemoveIoCompletion(Ex). The meaning of the parameters other than the completion object handle

are up to the caller. The extended function uses a I/O Reserve object handle, which is out of scope for this

chapter.

Finally, a thread pool can be used to handle I/O completion object’s “completions”. This requires creating a

thread pool I/O with TpAllocIoCompletion. This is left as an exercise to the interested reader.

10.9: Miscellaneous Functions

The following subsection briefly discuss other I/O related APIs.

10.9.1: Drivers

A kernel driver can be loaded into the system by calling NtLoadDriver:

NTSTATUS NtLoadDriver(_In_ PUNICODE_STRING DriverServiceName);

Where DriverServiceName is the name of the driver’s Registry key stored under \HKLM\System\CurrentControlSet\Services.

Figure 9-7 shows this key and some of its subkey in RegEdit.exe.

Chapter 9: I/O 259

Figure 9-7: Services Registry Key

Drivers are typically installed using INF files, or command line tools like Sc.Exe. Loading a driver is a privilege

operation, granted by default to the Administrators group.

After a driver is loaded, its Registry key can be deleted without any adverse effect.

The opposite function, NtUnloadDriver, can be used to unload (stop) a driver:

NTSTATUS NtUnloadDriver(_In_ PUNICODE_STRING DriverServiceName);

10.9.2: Locking Files

A range of bytes in a file can be locked using NtLockFile:

NTSTATUS NtLockFile(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

In PLARGE_INTEGER ByteOffset,

In PLARGE_INTEGER Length,

Chapter 9: I/O 260

In ULONG Key,

In BOOLEAN FailImmediately,

In BOOLEAN ExclusiveLock);

The first five parameters should be familiar by now. *ByteOffset is the offset to start locking from. Note

that NULL is not a valid value, and will cause an access violation. *Length is the number of bytes to lock

(NULL is illegal). Key is an arbitrary value used to identify the lock. FailImmediately indicates whether

to fail if the lock cannot be acquired immediately - even if the lock operation is specified as asynchronous.

ExclusiveLock indicates whether to acquire an exclusive lock (TRUE) or a shared lock (FALSE).

Once the lock is no longer needed, NtUnlockFile can be used to release it:

NTSTATUS NtUnlockFile(

In HANDLE FileHandle,

Out PIO_STATUS_BLOCK IoStatusBlock,

In PLARGE_INTEGER ByteOffset,

In PLARGE_INTEGER Length,

In ULONG Key);

10.9.3: Change Notifications

Changes in a file system can be detected by calling NtNotifyChangeDirectoryFile or NtNotifyChangeDi-

rectoryFileEx:

NTSTATUS NtNotifyChangeDirectoryFile(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID Buffer, // FILE_NOTIFY_INFORMATION

In ULONG Length,

In ULONG CompletionFilter,

In BOOLEAN WatchTree);

NTSTATUS NtNotifyChangeDirectoryFileEx(

In HANDLE FileHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

_Out_writes_bytes_(Length) PVOID Buffer,

In ULONG Length,

Chapter 9: I/O 261

In ULONG CompletionFilter,

In BOOLEAN WatchTree,

_In_opt_ DIRECTORY_NOTIFY_INFORMATION_CLASS DirectoryNotifyInformationClass);

NtNotifyChangeDirectoryFile is a shortcut that calls NtNotifyChangeDirectoryFileEx with Directo-

ryNotifyInformationClass set to DirectoryNotifyInformation. DirectoryNotifyInformationClass

indicates the data buffer to return:

typedef enum _READ_DIRECTORY_NOTIFY_INFORMATION_CLASS {

ReadDirectoryNotifyInformation = 1, // FILE_NOTIFY_INFORMATION

ReadDirectoryNotifyExtendedInformation, // FILE_NOTIFY_EXTENDED_INFORMATION

#if (NTDDI_VERSION >= NTDDI_WIN10_NI)

ReadDirectoryNotifyFullInformation, // FILE_NOTIFY_FULL_INFORMATION

#endif

} READ_DIRECTORY_NOTIFY_INFORMATION_CLASS;

The associated structures are defined in <WinNt.h>. FileHandle must be a directory handle (rather than

a file handle). The operation completes when a change is detected. Buffer is where the information is

returned when the operation completes, and Length is the size of the buffer in bytes. CompletionFilter

is a set of flags that indicate the type of changes to detect (defined in <WinNt.h> as well). For example:

FILE_NOTIFY_CHANGE_FILE_NAME indicates to detect file name changes, FILE_NOTIFY_CHANGE_DIR_NAME

indicates to detect directory name changes, and FILE_NOTIFY_CHANGE_LAST_WRITE indicates to detect

changes to the last write time. WatchTree indicates whether to watch the directory tree recursively.

If called synchronously, the call blocks until a change is detected. A simple way to use this function is to call

it synchronously in a loop, handling each change as they come in.

10.10: Summary

I/O APIs are about working with files and devices. This chapter looked at the most common native I/O

APIs, some of which are officially documented in the WDK. The I/O system supports synchronous and

asynchronous access, where the requested mode is provided in the NtOpenFile or NtCreateFile call.

In the next chapter, we’ll examine one of Windows undocumented features - Asynchronous Local Procedure

Calls (ALPC).

Chapter 10: ALPC

Windows has many inter-process communication mechanisms that allow processes to communicate with

each other by passing data. Examples include window messages, shared memory, pipes, mailslots, and

COM. Advanced (or Asynchronous) Local Procedure Calls (ALPC) is another such mechanism that is used

by Windows components to communicate across process boundaries. Contrary to the other mentioned

mechanisms, ALPC is completely undocumented. This chapter provides an overview of the ALPC API and

how it can be used for inter-process communication.

ALPC is a big topic, and my research on it is not complete, so this chapter does not cover everything

about ALPC. Future editions of the book will cover more of ALPC.

In this chapter:

• ALPC Concepts

• Simple Client/Server

• Creating Server Ports

• Connecting to Ports

• Message Attributes

• Sending and Receiving Messages

11.1: ALPC Concepts

ALPC deals with sending and receiving messages. A message is a data structure that contains a header and

a body. The header contains information about the message, such as its size, the sender, and the receiver.

The main entity in ALPC is the Port. A port is a communication endpoint, not unlike network ports from a

conceptual perspective. It’s a kernel object type called ALPC Port. There are 3 types of ports:

• Server connection port - a named port that listens for incoming connections.

• Server communication port - an unnamed port used to communicate with a client.

• Client port - an unnamed port a client uses to communicate with a server.

Chapter 10: ALPC 263

Server connection ports can be viewed by tools such as WinObj, Object Explorer, Process Explorer, and

others since they are named. Figure 10-1 shows many ALPC port objects in the RPC Control object manager

directory viewed in WinObj.

Figure 10-1: ALPC ports in the WinObj

With Object Explorer, you can see handles to each port object (Figure 10-2). Double-click an object to see its

properties.

Chapter 10: ALPC 264

Figure 10-2: ALPC port handles in ObjExp

With Process Explorer and Object Explorer you can examine ALPC port handles in a given process (figure

10-3).

Chapter 10: ALPC 265

Figure 10-3: ALPC port handles in ObjExp

The kernel debugger can provide more details about ALPC ports, messages, and connections. For example,

the !alpc /lpp with a process address command shows all ALPC ports used by the given process:

lkd> !alpc /lpp ffff968f2ff62300

Ports created by the process ffff968f2ff62300:

ffff968f2ff90aa0('umpo') 0, 32 connections

ffff968f2ca9ed70 0 ->ffff968f306a2d70 0 ffff968f2ff130c0('services.exe')

ffff968f3094bb30 0 ->ffff968f30998df0 0 ffff968f2ff62300('svchost.exe')

ffff968f2c15bc60 0 ->ffff968f2c15ba00 0 ffff968f3143d080('svchost.exe')

ffff968f2c73e6e0 0 ->ffff968f2c73e070 0 ffff968f3150e080('svchost.exe')

ffff968f3534f070 0 ->ffff968f3534f530 0 ffff968f34f6e080('esif_uf.exe')

ffff968f2479add0 0 ->ffff968f243b6dd0 0 ffff968f3066c080('WUDFHost.exe')

ffff968f35fbe070 0 ->ffff968f354edce0 0 ffff968f423d0080('NVDisplay.Cont')

ffff968f45bee580 0 ->ffff968f351e4c30 0 ffff968f31260300('sihost.exe')

ffff968f24af4a80 0 ->ffff968f24af3ce0 0 ffff968f47af41c0('explorer.exe')

...

ffff968f21a18090('actkernel') 0, 19 connections

Chapter 10: ALPC 266

ffff968f30711de0 0 ->ffff968f3074edf0 0 ffff968f3074a340('svchost.exe')

ffff968f30736990 0 ->ffff968f30736730 0 ffff968f2ff62300('svchost.exe')

ffff968f30bbbdd0 0 ->ffff968f30b45a80 0 ffff968f30b11080('svchost.exe')

...

ffff968f307382f0('LRPC-a5e17d5e766d3850d2') 0, 5 connections

ffff968f243f9b80 0 ->ffff968f243f9de0 0 ffff968f31260300('sihost.exe')

ffff968f5d985510 0 ->ffff968f4bd482c0 0 ffff968f4f25e280('AcrobatNotific')

...

Ports the process ffff968f2ff62300 is connected to:

ffff968f2ff8cdf0 0 -> ffff968f2d1417e0 ('ApiPort') 0 ffff968f2cacd140 ('csrss.ex\

e')

ffff968f2ff51a80 0 -> ffff968f2ff6cd00 ('ntsvcs') 178 ffff968f2ff130c0 ('service\

s.exe')

ffff968f2ff4adc0 0 -> ffff968f02ea8070 ('PowerPort') 0 ffff968f02f02080 ('System\

')

ffff968f30730d90 0 -> ffff968f0a15f4a0 ('PdcPort') 0 ffff968f02f02080 ('System')

ffff968f217ce3a0 0 -> ffff968f2fef8c90 ('lsasspirpc') 0 ffff968f2ff55080 ('lsass\

.exe')

...

Using port addresses (the first and second values on the left in the above output) can be used to get more

details about the port:

kd> !alpc /p ffff968f2a572b50

Port ffff968f2a572b50

Type : ALPC_CLIENT_COMMUNICATION_PORT

CommunicationInfo : ffffba0de0cd1460

ConnectionPort : ffff968f3072faa0 (LRPC-68623205695bc7d55a), Connections

ClientCommunicationPort : ffff968f2a572b50

ServerCommunicationPort : ffff968f30b09530

OwnerProcess : ffff968f2ff62300 (svchost.exe), Connections

SequenceNo : 0x00000004 (4)

CompletionPort : 0000000000000000

CompletionList : 0000000000000000

ConnectionPending : No

ConnectionRefused : No

Disconnected : No

Closed : No

FlushOnClose : Yes

ReturnExtendedInfo : No

Waitable : No

Chapter 10: ALPC 267

Security : Dynamic

Wow64CompletionList : No

Main queue is empty.

Direct message queue is empty.

Large message queue is empty.

Pending queue is empty.

Canceled queue is empty.

lkd> !alpc /p ffff968f93806a20

Port ffff968f93806a20

Type : ALPC_CONNECTION_PORT

CommunicationInfo : ffffba0f1e24c7b0

ConnectionPort : ffff968f93806a20 (OLE474475C7BFB330BCB066F923BC52), Co\

nnections

ClientCommunicationPort : 0000000000000000

ServerCommunicationPort : 0000000000000000

OwnerProcess : ffff968f61ae1080 (WhatsApp.exe), Connections

SequenceNo : 0x0000002A (42)

CompletionPort : ffff968fbc5bcf40

CompletionList : 0000000000000000

ConnectionPending : No

ConnectionRefused : No

Disconnected : No

Closed : No

FlushOnClose : Yes

ReturnExtendedInfo : No

Waitable : No

Security : Static

Wow64CompletionList : No

8 thread(s) are registered with port IO completion object:

THREAD ffff968f8923b040 Cid a0a4.1a3b8 Teb: 000000a170052000 Win32Thread: ffff\

968f9441f910 WAIT

THREAD ffff968f4d1e8080 Cid a0a4.1aa00 Teb: 000000a170056000 Win32Thread: ffff\

968fe1046be0 WAIT

THREAD ffff968f4eb61080 Cid a0a4.1235c Teb: 000000a17005a000 Win32Thread: ffff\

Chapter 10: ALPC 268

968fe1048580 WAIT

THREAD ffff968f4ee19080 Cid a0a4.c494 Teb: 000000a170060000 Win32Thread: 00000\

00000000000 WAIT

...

Check out the documentation for the !alpc command for more details.

More information on ALPC can be found in the “Windows Internals, 7th edition Part 2” book in

chapter 8.

11.2: Simple Client/Server

To get started, we’ll build simple communication from a client process to a server process using ALPC in

synchronous mode. For the server, the steps are as follows:

• Create a named server listening port with NtAlpcCreatePort.

• Wait for communication requests with NtAlpcSendWaitReceivePort.

• Once a request for connection is received, accept it with NtAlpcAcceptConnectPort.

• Continue waiting for communication requests with NtAlpcSendWaitReceivePort, processing each

request as it arrives. This may include new connection requests from new clients.

The client process will do the following:

• Open the server port by name with NtAlpcConnectPort.

• Send requests to the server with NtAlpcSendWaitReceivePort.

Let’s begin with the client, as it’s simpler. The first step is connecting to a server port by name. To make it

slightly more interesting, the client will make at most 10 attempts to connect, waiting for one second between

attempts:

Chapter 10: ALPC 269

HANDLE hPort;

UNICODE_STRING portName;

RtlInitUnicodeString(&portName, L"\\RPC Control\\SimpleServerPort");

NTSTATUS status;

for (int i = 0; i < 10; i++) {

status = NtAlpcConnectPort(&hPort, &portName, nullptr, nullptr,

ALPC_MSGFLG_SYNC_REQUEST, nullptr, nullptr, nullptr,

nullptr, nullptr, nullptr);

if (NT_SUCCESS(status))

break;

printf("NtAlpcConnectPort failed: 0x%X\n", status);

Delay(1);

}

if(!NT_SUCCESS(status))

return status;

printf("Client port connected: 0x%p\n", hPort);

NtAlpcConnectPort is used to connect to the server with the name “\RPC Control\SimpleServerPort” - our

server will use this name when registering its port. There is no requirement to use the “RPC Control” object

manager directory, but it’s as good a choice as any. The ALPC_MSGFLG_SYNC_REQUEST indicates that the client

wants to send a synchronous request to the server. The function returns a handle to the server port in hPort.

We’ll look at all the parameters in the next section.

Delay is a simple function that sleeps for the specified number of seconds:

void Delay(int seconds) {

LARGE_INTEGER time;

time.QuadPart = -10000000LL * seconds;

NtDelayExecution(FALSE, &time);

}

Assuming the connection was successful, the client can now send requests to the server. This client will send

a string with the current time every second in an infinite loop until it fails. Every ALPC message must start

with a PORT_MESSAGE structure. We’ll create a simple structure to extend that with some text:

struct Message : PORT_MESSAGE {

char Text[64];

};

First, we’ll build the message:

Chapter 10: ALPC 270

LARGE_INTEGER time;

TIME_FIELDS tf;

for (;;) {

Message msg{};

NtQuerySystemTime(&time);

RtlSystemTimeToLocalTime(&time, &time);

RtlTimeToTimeFields(&time, &tf);

sprintf_s(msg.Text, "The Time is %02d:%02d:%02d.%03d",

tf.Hour, tf.Minute, tf.Second, tf.Milliseconds);

//

// set the data size and total size of the message

//

msg.u1.s1.DataLength = sizeof(msg.Text);

msg.u1.s1.TotalLength = sizeof(msg);

We use some functions we met before to get the current local time and convert it to the human-friendly

TIME_FIELDS structure before formatting it as a string. DataLengthmust be set to the length of the message

body (that is, without the PORT_MESSAGE header), and TotalLength must be set to the total length of the

message (including the header).

Now we can send the message with a possible reply:

Message reply;

SIZE_T msgLen = sizeof(reply);

status = NtAlpcSendWaitReceivePort(hPort, ALPC_MSGFLG_SYNC_REQUEST,

&msg, nullptr, &reply, &msgLen, nullptr, nullptr);

if (!NT_SUCCESS(status)) {

printf("NtAlpcSendWaitReceivePort failed: 0x%X\n", status);

break;

}

printf("Sent message %s\n", msg.Text);

printf("Received reply from PID: %u TID: %u\n",

HandleToULong(reply.ClientId.UniqueProcess),

HandleToULong(reply.ClientId.UniqueThread));

Delay(1);

}

NtAlpcSendWaitReceivePort has a lot of functionality built into it, but the above code makes a synchronous

request (ALPC_MSGFLG_SYNC_REQUEST) and prints the reply’s sender PID and TID.

The full source code is in the SimpleClient project.

Chapter 10: ALPC 271

The server is a bit more complicated. First, we’ll create a named port with NtAlpcCreatePort:

HANDLE hServerPort;

UNICODE_STRING portName;

RtlInitUnicodeString(&portName, L"\\RPC Control\\SimpleServerPort");

OBJECT_ATTRIBUTES portAttr = RTL_CONSTANT_OBJECT_ATTRIBUTES(&portName, 0);

auto status = NtAlpcCreatePort(&hServerPort, &portAttr, nullptr);

if (!NT_SUCCESS(status)) {

printf("NtAlpcCreatePort failed: 0x%X\n", status);

return 1;

}

printf("Server port created: 0x%p\n", hServerPort);

There is no requirement to create ALPC ports in the “RPC Control” object manager directory. But it is

accessible for non-admin callers. Creating ALPC ports in the root object manager namespace is only allowed

for admin-level callers by default.

Next, we need to prepare a Message structure to receive messages from clients, and optionally send amessage:

Message msg;

SIZE_T size = sizeof(msg);

PPORT_MESSAGE sendMessage = nullptr;

PPORT_MESSAGE receiveMessage = &msg;

The server initially has nothing to send (sendMessage is NULL). Now we can start the loop, waiting for calls:

for (;;) {

status = NtAlpcSendWaitReceivePort(hServerPort, ALPC_MSGFLG_RELEASE_MESSAGE,

sendMessage, nullptr, receiveMessage, &size, nullptr, nullptr);

if (!NT_SUCCESS(status))

break;

printf("Received msg type: 0x%X (ID: 0x%X)\n",

receiveMessage->u2.s2.Type, receiveMessage->MessageId);

The API is the same as the one used by the client. It sends sendMessage (initially NULL) and waits for a

reply in receiveMessage. ALPC_MSGFLG_RELEASE_MESSAGE indicates (if sendMessage is non-NULL) that

the server is not expecting a reply from the client, so the message can be released after sending.

Once the reply message is received, the server needs to process it by checking its type. We’ll handle just two

types of messages. The first is a connection request from a client:

Chapter 10: ALPC 272

switch (receiveMessage->u2.s2.Type & 0xff) {

case LPC_CONNECTION_REQUEST:

printf("Connection request received from PID: %u TID: %u\n",

HandleToULong(receiveMessage->ClientId.UniqueProcess),

HandleToULong(receiveMessage->ClientId.UniqueThread));

The type of message may contain flags starting with 0x100, so we mask them out.

The server receives details of the client (PID and TID) and any custom data sent by the client. In this example,

the server ignores all that, and allows any client to connect:

HANDLE hCommPort;

status = NtAlpcAcceptConnectPort(&hCommPort, hServerPort, 0,

nullptr, nullptr, nullptr, receiveMessage, nullptr, TRUE);

if (!NT_SUCCESS(status)) {

printf("NtAlpcAcceptConnectPort failed: 0x%X\n", status);

}

else {

printf("Client port connected: 0x%p\n", hCommPort);

}

sendMessage = nullptr;

break;

NtAlpcAcceptConnectPort accepts or denies the connection request (based on the last argument), and

creates a port for communicating with that specific client (hCommPort). Even though it’s the port to be

used with that client, the server will keep listening on the original named server port (hServerPort). Any

message sent to that client will use the correct unnamed port under the hood.

The second message handled is a “normal” synchronous message from a client:

case LPC_REQUEST:

printf("\t%s\n", msg.Text);

sendMessage = receiveMessage;

sendMessage->u1.s1.DataLength = 0;

sendMessage->u1.s1.TotalLength = sizeof(PORT_MESSAGE);

break;

Nothing fancy here - the server just prints the message and prepares an “empty” message to reply to the client

(in the next loop iteration) to acknowledge receipt and mark the message as handled.

Chapter 10: ALPC 273

The full source code is in the SimpleServer project.

Running the server process and the client process shows output similar to the following:

(Server)

Server port created: 0x00000000000000A8

Received msg type: 0x200A (ID: 0xDC30)

Connection request received from PID: 47360 TID: 38892

Client port connected: 0x00000000000000A0

Received msg type: 0x2001 (ID: 0xDC30)

The Time is 20:25:29.439

Received msg type: 0x2001 (ID: 0xAA94)

The Time is 20:25:30.455

Received msg type: 0x2001 (ID: 0x10334)

The Time is 20:25:31.468

Received msg type: 0x2001 (ID: 0xAA94)

The Time is 20:25:32.483

(Client)

Client port connected: 0x0000000000000094

Sent message The Time is 20:25:29.439.

Received reply from PID: 48168 TID: 113376

Sent message The Time is 20:25:30.455.

Received reply from PID: 48168 TID: 113376

Sent message The Time is 20:25:31.468.

Received reply from PID: 48168 TID: 113376

Sent message The Time is 20:25:32.483.

Received reply from PID: 48168 TID: 113376

11.3: Creating Server Ports

Obviously, the previous section skipped over a lot of details. The following sections will cover the ALPC API

in more detail.

Creating a server port is done with NtAlpcCreatePort:

Chapter 10: ALPC 274

NTSTATUS NtAlpcCreatePort(

Out PHANDLE PortHandle,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PALPC_PORT_ATTRIBUTES PortAttributes);

Contrary to other Create APIs, this function cannot open a handle to an existing named port - it can only

create a new one.

ObjectAttributes contains the name of the port, while the optional PortAttributes can point to a ALPC_-

PORT_ATTRIBUTES structure that contains additional information about the port:

typedef struct _ALPC_PORT_ATTRIBUTES {

ULONG Flags;

SECURITY_QUALITY_OF_SERVICE SecurityQos;

SIZE_T MaxMessageLength;

SIZE_T MemoryBandwidth; // not used

SIZE_T MaxPoolUsage; // not used directly

SIZE_T MaxSectionSize;

SIZE_T MaxViewSize; // 0=unlimited

SIZE_T MaxTotalSectionSize;

ULONG DupObjectTypes;

#ifdef _WIN64

ULONG Reserved;

#endif

} ALPC_PORT_ATTRIBUTES, *PALPC_PORT_ATTRIBUTES;

The Flags field can contain a combination of the the following flags:

typedef enum _ALPC_PORT_FLAGS {

ALPC_PORT_FLAG_ALLOW_IMPERSONATION = 0x00010000,

ALPC_PORT_FLAG_ACCEPT_REQUESTS = 0x00020000,

ALPC_PORT_FLAG_WAITABLE_PORT = 0x00040000,

ALPC_PORT_FLAG_ACCEPT_DUP_HANDLES = 0x00080000,

ALPC_PORT_FLAG_SYSTEM_PROCESS = 0x00100000,

ALPC_PORT_FLAG_SUPPRESS_WAKE = 0x00200000,

ALPC_PORT_FLAG_ALWAYS_WAKE = 0x00400000,

ALPC_PORT_FLAG_DO_NOT_DISTURB = 0x00800000,

ALPC_PORT_FLAG_NO_SHARED_SECTION = 0x01000000,

ALPC_PORT_FLAG_ACCEPT_INDIRECT_HANDLES = 0x02000000

} ALPC_PORT_FLAGS;

SecurityQos is a SECURITY_QUALITY_OF_SERVICE structure discussed in chapter 11. MaximumMessage-

Length is the maximum allowed message length through this port, which is limited to about 64KB.

If PortAttributes is NULL, default port attributes are initialized to the following values:

Chapter 10: ALPC 275

• Flags is set to zero.

• SecurityQos is set to SecurityAnonymous, SECURITY_DYNAMIC_TRACKING, and EffectiveOnly is set

to TRUE.

• MaxMessageLength is set to 512 bytes (64 bit system), or 256 bytes (32 bit system).

• MaxPoolUsage and MaxSectionSize are set to 0x4000 (16 KB).

• MaxTotalSectionSize is set to 128 KB.

• The rest of the members are set to zero.

DupObjectTypes is a bitmask indicating which object types handles can be marshalled (duplicated) to the

other process:

typedef enum _ALPC_OBJECT_TYPE {

ALPC_FILE_OBJECT_TYPE = 0x00000001,

ALPC_THREAD_OBJECT_TYPE = 0x00000004,

ALPC_SEMAPHORE_OBJECT_TYPE = 0x00000008,

ALPC_EVENT_OBJECT_TYPE = 0x00000010,

ALPC_PROCESS_OBJECT_TYPE = 0x00000020,

ALPC_MUTANT_OBJECT_TYPE = 0x00000040,

ALPC_SECTION_OBJECT_TYPE = 0x00000080,

ALPC_REG_KEY_OBJECT_TYPE = 0x00000100,

ALPC_TOKEN_OBJECT_TYPE = 0x00000200,

ALPC_COMPOSITION_OBJECT_TYPE = 0x00000400,

ALPC_JOB_OBJECT_TYPE = 0x00000800,

ALPC_ALL_OBJECT_TYPES = 0x00000FFD,

} ALPC_OBJECT_TYPE;

As part of port creation, the process owner of the port is set. If the ALPC_PORT_FLAG_SYSTEM_PROCESS flag is

specified, or the caller is from kernel mode, then the System process becomes the owner. Otherwise, the caller

process becomes the owner. The owner process is the only process that can listen for client connections.

11.4: Connecting to Ports

Once a server creates a named port, clients can connect to it with NtAlpcConnectPort or NtAlpcConnect-

PortEx:

Chapter 10: ALPC 276

NTSTATUS NtAlpcConnectPort(

Out PHANDLE PortHandle,

In PUNICODE_STRING PortName,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PALPC_PORT_ATTRIBUTES PortAttributes,

In ULONG Flags,

_In_opt_ PSID RequiredServerSid,

_Inout_updates_bytes_to_opt_(*Length, *Length) PPORT_MESSAGE ConnectionMessage,

_Inout_opt_ PULONG Length,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES OutMessageAttributes,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES InMessageAttributes,

_In_opt_ PLARGE_INTEGER Timeout);

NTSTATUS NtAlpcConnectPortEx(// Win 8+

Out PHANDLE PortHandle,

In POBJECT_ATTRIBUTES ConnectionPortObjectAttributes,

_In_opt_ POBJECT_ATTRIBUTES ClientPortObjectAttributes,

_In_opt_ PALPC_PORT_ATTRIBUTES PortAttributes,

In ULONG Flags,

_In_opt_ PSECURITY_DESCRIPTOR ServerSecurityRequirements,

_Inout_updates_bytes_to_opt_(*Length, *Length) PPORT_MESSAGE ConnectionMessage,

_Inout_opt_ PSIZE_T Length,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES OutMessageAttributes,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES InMessageAttributes,

_In_opt_ PLARGE_INTEGER Timeout);

PortName is the returned handle if the call succeeds. PortName is the full name of the port (e.g. “\RPC

Control\MyPort”). For NtAlpcConnectPortEx, ConnectionPortObjectAttributes provides the name of

the port using the standard OBJECT_ATTRIBUTES structure. PortAttributes (NtAlpcConnectPort) and

ClientPortAttributes (NtAlpcConnectPortEx) provide optional client port attributes.

Next, PortAttributes is an optional ALPC_PORT_ATTRIBUTES object specifying ALPC port specific at-

tributes for the port being created. The Flags parameter can be zero or a combination of the following

flags:

• ALPC_MSGFLG_SYNC_REQUEST (0x2000) - connect synchronously.

• ALPC_MSGFLG_RETURN_EXTENDED_INFO (0x80000) - return extended information in the output message

in case of a connection error.

RequiredServerSid is an optional SID that must be part of the server process token, or the connection

fails. If NULL is specified, any process server SID would work. ServerSecurityRequirements is an optional

security descriptor the server will be evaluated against to make the connection.

ConnectionMessage is an optional message sent from the client to the server that can contain anything. This

may be used by the server for any purpose, such as identifying the client in some way, getting a password, or

Chapter 10: ALPC 277

whatever. Length is an address that contains on input the size of ConnectionMessage in bytes, which the

server may overwrite if it returns some information back to the client.

OutMessageAttributes is an optional ALPC_MESSAGE_ATTRIBUTES structure that contains the outgoing

message attributes. Similarly, InMessageAttributes (if not NULL) receives the reply from the server.

ALPC_MESSAGE_ATTRIBUTES is a variable-sized structure that looks like this:

typedef struct _ALPC_MESSAGE_ATTRIBUTES {

ULONG AllocatedAttributes; // define the structure layout

ULONG ValidAttributes; // which attributes are valid

// message attributes follow

} ALPC_MESSAGE_ATTRIBUTES, *PALPC_MESSAGE_ATTRIBUTES;

We’ll examine the message attributes in the next sub section.

Finally, Timeout is the time to wait for a synchronous connection to be accepted. If the timeout elapses

without establishing a connection, STATUS_TIMEOUT is returned. Passing NULL indicates the client is willing

to wait for as long as it takes.

The following example shows how a client may send an initial connection request with a connection message:

struct Message : PORT_MESSAGE {

char Text[64];

};

//

// build simple connection message

//

Message connMsg{};

strcpy_s(connMsg.Text, "Abracadabra");

connMsg.u1.s1.DataLength = sizeof(connMsg.Text);

connMsg.u1.s1.TotalLength = sizeof(connMsg);

// request to connect to the server

status = NtAlpcConnectPort(&hPort, &portName, nullptr, nullptr,

ALPC_MSGFLG_SYNC_REQUEST, nullptr, &connMsg, nullptr,

nullptr, nullptr, nullptr);

11.5: Message Attributes

Any ALPC message can be accompanied by metadata in the form of message attributes. The attributes

structure seems simple enough (copied from the previous section):

Chapter 10: ALPC 278

typedef struct _ALPC_MESSAGE_ATTRIBUTES {

ULONG AllocatedAttributes; // define the structure layout

ULONG ValidAttributes; // which attributes are valid

} ALPC_MESSAGE_ATTRIBUTES, *PALPC_MESSAGE_ATTRIBUTES;

The real attributes follow the structure in a certain order that must be adhered to. The provided APIs hide

this complexity from the developer. The following are the attribute flags in order:

#define ALPC_FLG_MSG_SEC_ATTR 0x80000000

#define ALPC_FLG_MSG_DATAVIEW_ATTR 0x40000000

#define ALPC_FLG_MSG_CONTEXT_ATTR 0x20000000

#define ALPC_FLG_MSG_HANDLE_ATTR 0x10000000

#define ALPC_FLG_MSG_TOKEN_ATTR 0x08000000

#define ALPC_FLG_MSG_DIRECT_ATTR 0x04000000

#define ALPC_FLG_MSG_WORK_ON_BEHALF_ATTR 0x02000000

Any combination of attributes can be specified in the order shown above. Each attribute has its own structure

that represents its data. The AlpcInitializeMessageAttribute initialize a set of attributes after a buffer

is initialized, or returns the required buffer size:

NTSTATUS AlpcInitializeMessageAttribute(

In ULONG AttributeFlags,

_Out_opt_ PALPC_MESSAGE_ATTRIBUTES Buffer,

In SIZE_T BufferSize,

Out PSIZE_T_ RequiredBufferSize);

You could calculate the required size manually by summing up the sizes of the structures associated with the

needed attributes, but AlpcInitializeMessageAttribute can do that for you if two calls are made as in

the following example:

ULONG size;

//

// assume ALPC_FLG_MSG_CONTEXT_ATTR and ALPC_FLG_MSG_HANDLE_ATTR needed

//

auto status = AlpcInitializeMessageAttribute(

ALPC_FLG_MSG_CONTEXT_ATTR | ALPC_FLG_MSG_HANDLE_ATTR,

nullptr, 0, &size);

assert(status == STATUS_BUFFER_TOO_SMALL);

auto buffer = std::make_unique<BYTE[]>(size);

auto msgAttr = (PALPC_MESSAGE_ATTRIBUTES)buffer.get();

status = AlpcInitializeMessageAttribute(

ALPC_FLG_MSG_CONTEXT_ATTR | ALPC_FLG_MSG_HANDLE_ATTR,

msgAttr, size, &size);

Chapter 10: ALPC 279

AlpcInitializeMessageAttribute initializes AllocatedAttributes to the attribute flags requested, and

zeroes out the rest of the buffer.

Another option to get the correct size is by calling AlpcGetHeaderSize:

ULONG AlpcGetHeaderSize(_In_ ULONG Flags);

To get the pointer to the correct part of the buffer for a particular attribute, call AlpcGetMessageAttribute:

PVOID AlpcGetMessageAttribute(

In PALPC_MESSAGE_ATTRIBUTES Buffer,

In ULONG AttributeFlag);

Buffer is the attribute buffer pointer and AttributeFlag is the specific attribute of interest. For example:

auto contextAttr = AlpcGetMessageAttribute(msgAttr, ALPC_FLG_MSG_CONTEXT_ATTR);

auto handleAttr = AlpcGetMessageAttribute(msgAttr, ALPC_FLG_MSG_HANDLE_ATTR);

Don’t specify more than one flag, as the function will fail and return NULL.

11.5.1: Security Attribute (ALPC_FLG_MSG_SEC_ATTR)

Security context attributes can be initialized with NtAlpcCreateSecurityContext:

#define ALPC_SEC_CURRENT ((ALPC_HANDLE)(ULONG_PTR)(-2))

typedef struct _ALPC_SECURITY_ATTR {

ULONG Flags;

PSECURITY_QUALITY_OF_SERVICE QoS; // in, optional

ALPC_HANDLE ContextHandle; // in/out

} ALPC_SECURITY_ATTR, *PALPC_SECURITY_ATTR;

NTSTATUS NtAlpcCreateSecurityContext(

In HANDLE PortHandle,

Reserved ULONG Flags,

Inout PALPC_SECURITY_ATTR SecurityAttribute);

When the security context information object is no longer needed, it should be destroyed with

NtAlpcDeleteSecurityContext:

Chapter 10: ALPC 280

NTSTATUS NtAlpcDeleteSecurityContext(

In HANDLE PortHandle,

Reserved ULONG Flags,

In ALPC_HANDLE ContextHandle);

ContextHandle is the ContextHandle member of ALPC_SECURITY_ATTR. These structures are managed

internally as part of a private “handle table” of sorts, per port. It’s also possible to make the security context

object non-functional by revoking it:

NTSTATUS NtAlpcRevokeSecurityContext(

In HANDLE PortHandle,

Reserved ULONG Flags,

In ALPC_HANDLE ContextHandle);

11.5.2: Context Attribute (ALPC_FLG_MSG_CONTEXT_ATTR)

This attribute is represented with the following structure:

typedef struct _ALPC_CONTEXT_ATTR {

PVOID PortContext;

PVOID MessageContext;

ULONG Sequence;

ULONG MessageId;

ULONG CallbackId;

} ALPC_CONTEXT_ATTR, *PALPC_CONTEXT_ATTR;

This attribute can be used to cancel a message by calling NtAlpcCancelMessage:

NTSTATUS NtAlpcCancelMessage(

In HANDLE PortHandle,

In ULONG Flags,

In PALPC_CONTEXT_ATTR MessageContext);

11.5.3: Handle Attribute (ALPC_FLG_MSG_HANDLE_ATTR)

The structure used is ALPC_HANDLE_ATTR:

Chapter 10: ALPC 281

// may be used on 64-bit systems to represent arrays of handles

typedef struct _ALPC_HANDLE_ATTR32 {

union {

ULONG Flags;

struct {

ULONG Reserved0: 16;

ULONG SameAccess: 1;

ULONG SameAttributes: 1;

ULONG Indirect: 1;

ULONG Inherit: 1;

ULONG Reserved1: 12;

};

};

ULONG Handle;

ULONG ObjectType;

union {

ULONG DesiredAccess;

ULONG GrantedAccess;

};

} ALPC_HANDLE_ATTR32, *PALPC_HANDLE_ATTR32;

// the structure

typedef struct _ALPC_HANDLE_ATTR {

union {

ULONG Flags;

struct {

ULONG Reserved0: 16;

ULONG SameAccess: 1;

ULONG SameAttributes: 1;

ULONG Indirect:1;

ULONG Inherit :1;

ULONG Reserved1: 12;

};

};

union {

HANDLE Handle;

ALPC_HANDLE_ATTR32* HandleAttrArray;

};

union {

ULONG ObjectType;

ULONG HandleCount;

Chapter 10: ALPC 282

};

union {

ACCESS_MASK DesiredAccess;

ACCESS_MASK GrantedAccess;

};

} ALPC_HANDLE_ATTR, *PALPC_HANDLE_ATTR;

At the time of writing, the structure is not defined correctly in phnt.

This structure can be used to pass a handle from one side to the other. Handle is the handle to share (duplicate)

and ObjectType must be set the object type (constants ALPC_OBJ_*). Alternatively, an array of handles can

be passed by filling HandleCount and HandleAttrArray.

Here is an example for packing an event handle into message attributes (error handling omitted):

auto msgAttr = CreateMessageAttributes(ALPC_FLG_MSG_HANDLE_ATTR);

msgAttr->ValidAttributes = ALPC_FLG_MSG_HANDLE_ATTR;

//

// create an event to share with the server

//

HANDLE hEvent;

NtCreateEvent(&hEvent, EVENT_ALL_ACCESS, nullptr, SynchronizationEvent, FALSE);

//

// put the event handle information

//

auto handleAttr = (PALPC_HANDLE_ATTR)AlpcGetMessageAttribute(msgAttr,

ALPC_FLG_MSG_HANDLE_ATTR);

handleAttr->Flags = 0;

handleAttr->Handle = hEvent;

handleAttr->ObjectType = OB_EVENT_OBJECT_TYPE;

handleAttr->DesiredAccess = EVENT_MODIFY_STATE | SYNCHRONIZE;

11.5.4: Token Attribute (ALPC_FLG_MSG_TOKEN_ATTR)

Token information can be provided with the following structure:

Chapter 10: ALPC 283

typedef struct _ALPC_TOKEN_ATTR {

LUID TokenId;

LUID AuthenticationId;

LUID ModifiedId;

} ALPC_TOKEN_ATTR, *PALPC_TOKEN_ATTR;

These are provided to the server automatically if requested. The fields mean the same thing as the

corresponding properties of token objects. For example, AuthenticationId is the Logon Session Id of the

client.

11.5.5: Data View Attribute (ALPC_FLG_MSG_DATAVIEW_ATTR)

This attribute allows sharing a section between a client and a server. The structure requires to be filled is the

following:

#define ALPC_VIEWFLG_UNMAP_EXISTING 0x00010000

#define ALPC_VIEWFLG_AUTO_RELEASE 0x00020000

#define ALPC_VIEWFLG_SECURED_ACCESS 0x00040000

typedef struct _ALPC_DATA_VIEW_ATTR {

ULONG Flags;

ALPC_HANDLE SectionHandle;

PVOID ViewBase;

SIZE_T ViewSize;

} ALPC_DATA_VIEW_ATTR, *PALPC_DATA_VIEW_ATTR;

The members need to be filled after a section and a view are created. The first step is to call NtAlpcCre-

atePortSection:

NTSTATUS NtAlpcCreatePortSection(

In HANDLE PortHandle,

In ULONG Flags,

_In_opt_ HANDLE SectionHandle,

In SIZE_T SectionSize,

Out PALPC_HANDLE AlpcSectionHandle,

Out PSIZE_T ActualSectionSize);

The client typically makes this call with PortHandle being the opened port returned from NtAlpcConnect-

Port. Flags is zero or ALPC_VIEWFLG_SECURED_ACCESS, which makes accessing the shared section private

to the processes involved only. The SectionHandle can be a handle to an existing section object (see chapter

12 for more on Section objects), or NULL, it which case the function will create a Section object with the

size SectionSize. The return values from the call are an internal handle in *AlpcSectionHandle, which is

Chapter 10: ALPC 284

then stashed in the ALPC_DATA_VIEW_ATTR structure, and the actual size of the section (may be rounded up

compared to the requested size).

Next, the ALPC_DATA_VIEW_ATTR part of the message attributes is filled, and then a view must be created by

the client with NtAlpcCreateSectionView:

NTSTATUS NtAlpcCreateSectionView(

In HANDLE PortHandle,

Reserved ULONG Flags,

Inout PALPC_DATA_VIEW_ATTR ViewAttributes);

The following example demonstrates these steps (error handling omitted):

ALPC_HANDLE hPortSection;

SIZE_T actualSize;

//

// create a 4KB section

//

NtAlpcCreatePortSection(hPort, 0, nullptr,

1 << 12, &hPortSection, &actualSize);

auto dataView = (PALPC_DATA_VIEW_ATTR)AlpcGetMessageAttribute(

msgAttr, ALPC_FLG_MSG_DATAVIEW_ATTR);

//

// initialize section view attributes

//

dataView->Flags = 0;

dataView->SectionHandle = hPortSection;

dataView->ViewSize = actualSize;

dataView->ViewBase = nullptr; // must be NULL

//

// create the view

//

NtAlpcCreateSectionView(hPort, 0, dataView);

The server, in turn, can extract the information and use the shared section:

Chapter 10: ALPC 285

auto recvMsgAttr = CreateMessageAttributes(ALPC_FLG_MSG_ALL_ATTR);

NtAlpcSendWaitReceivePort(hServerPort, ..., recvMsgAttr, nullptr);

if (recvMsgAttr->ValidAttributes & ALPC_FLG_MSG_DATAVIEW_ATTR) {

auto dataView = (PALPC_DATA_VIEW_ATTR)AlpcGetMessageAttribute(

recvMsgAttr, ALPC_FLG_MSG_DATAVIEW_ATTR);

printf("Section map base address: 0x%p\n", dataView->ViewBase);

// use dataView->ViewBase...

}

11.6: Sending and Receiving Messages

The workhorse of ALPC is NtAlpcSendWaitReceivePort:

NTSTATUS NtAlpcSendWaitReceivePort(

In HANDLE PortHandle,

In ULONG Flags,

_In_reads_bytes_opt_(SendMessage->u1.s1.TotalLength) PPORT_MESSAGE SendMessage,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES SendMessageAttributes,

_Out_writes_bytes_to_opt_(*Length, *Length) PPORT_MESSAGE ReceiveMessage,

_Inout_opt_ PSIZE_T Length,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES ReceiveMessageAttributes,

_In_opt_ PLARGE_INTEGER Timeout);

The function is used by the client and the server. It combines two operations - send and receive (and optionally

wait in between) to minimize user/kernel transitions.

PortHandle is the port handle for communication, either from the client or server side. Flags is zero or a

combination of the following:

• ALPC_MSGFLG_SYNC_REQUEST (0x20000) - the request is synchronous. The call returns when the

message was handled or there is an error.

• ALPC_MSGFLG_RELEASE_MESSAGE (0x10000) - the message does not require a reply from the other side.

• ALPC_MSGFLG_DIRECT_RECEIVE (0x1000000) - direct messaging (async only) - further research is

required.

SendMesssage is the message to send to the receiver, which must start with a header of type PORT_MESSAGE:

Chapter 10: ALPC 286

typedef struct _PORT_MESSAGE {

union {

struct {

CSHORT DataLength;

CSHORT TotalLength;

} s1;

ULONG Length;

} u1;

union {

struct {

CSHORT Type;

CSHORT DataInfoOffset;

} s2;

ULONG ZeroInit;

} u2;

union {

CLIENT_ID ClientId;

double DoNotUseThisField;

};

ULONG MessageId;

union {

SIZE_T ClientViewSize; // Valid with LPC_CONNECTION_REQUEST

ULONG CallbackId; // Valid with LPC_REQUEST

};

// data follows

} PORT_MESSAGE, *PPORT_MESSAGE;

A typical approach would be to extend this structure with the message specific details. In C++ one could

write:

struct Message : PORT_MESSAGE {

// message members (examples)

int SomeData;

char TextData[32];

};

If only C is available, the same idea applies:

Chapter 10: ALPC 287

typedef struct _Message {

PORT_MESSAGE Header;

// message members (examples)

int SomeData;

char TextData[32];

} Message;

Of course, a more dynamic structure may be needed in some scenarios, as long as the beginning of the

memory block is treated as PORT_MESSAGE.

There is no need to fill most members, except DataLength and TotalLength. Here is an example based on

the above definitions:

Message msg;

msg.u1.s1.DataLength = sizeof(msg) - sizeof(PORT_HEADER);

msg.u1.s1.TotalLength = sizeof(msg);

The other details will be filled by the call before it reaches the receiver.

Next comes SendMessageAttributes, which is an optional pointer to the sent message attributes as

described in the sectionMessage Attributes, earlier in this chapter. It’s perfectly legal to provide no attributes.

Next, ReceiveMessage is an optional pointer to a return message from the receiver, whose maximum size

is provided in *BufferLength. If the return message is bigger than the provided buffer, the message is not

retrieved, an error is returned (STATUS_BUFFER_TOO_SMALL), and the caller must allocate a bigger buffer (the

required size is provided in *Length) before calling NtAlpcSendWaitReceivePort again.

Next up, ReceiveMessageAttributes is an optional pointer to message attributes associated with the

returned message (if any). Finally, Timeout is an optional time to wait until the call returns for synchronous

calls. If NULL is specified, the caller waits as long as it takes or an error occurs.

11.6.1: Server Operation

Once a message is received, the server must handle it by examining its type in the u2.s2.Type member (the

lower 8 bits only). The list of possible messages are defined below:

#define LPC_REQUEST 1

#define LPC_REPLY 2

#define LPC_DATAGRAM 3

#define LPC_LOST_REPLY 4

#define LPC_PORT_CLOSED 5

#define LPC_CLIENT_DIED 6

#define LPC_EXCEPTION 7

#define LPC_DEBUG_EVENT 8

#define LPC_ERROR_EVENT 9

Chapter 10: ALPC 288

#define LPC_CONNECTION_REQUEST 10

#define LPC_CONNECTION_REPLY 11

#define LPC_CANCELED 12

#define LPC_UNREGISTER_PROCESS 13

// flags

#define LPC_KERNELMODE_MESSAGE (CSHORT)0x8000

#define LPC_NO_IMPERSONATE (CSHORT)0x4000

Some messages are self explanatory, such as LPC_PORT_CLOSED and LPC_CLIENT_DIED.

The message LPC_CONNECTION_REQUEST indicates a client called NtAlpcConnectPort and wishes to connect

to the server’s port. The server can examine the incoming message to look for certain information that

would help to decided whether to grant the connection request. Once a decision is ready, the server calls

NtAlpcAcceptConnectPort:

NTSTATUS NtAlpcAcceptConnectPort(

Out PHANDLE PortHandle,

In HANDLE ConnectionPortHandle,

In ULONG Flags,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PALPC_PORT_ATTRIBUTES PortAttributes,

_In_opt_ PVOID PortContext,

_In_reads_bytes_(ConnRequest->u1.s1.TotalLength) PPORT_MESSAGE ConnRequest,

_Inout_opt_ PALPC_MESSAGE_ATTRIBUTES ConnectionMessageAttributes,

In BOOLEAN AcceptConnection);

The last parameter, AcceptConnection is the decision to accept or reject the connection. Even if denied,

a message can be passed via ConnRequest that may provide more information. PortHandle is the return

value for an unnamed port used by the server internally to communicate with that client (if the connection

is accepted). ConnectionPortHandle is the server’s port handle returned from NtAlpcCreatePort.

Flags is normally zero, but could be ALPC_PORFLG_WOW64_CALL (0x80000000) to force handles to be treated

as 32-bit, so that HANDLE pointers would not be overwritten. ObjectAttributes is normally NULL, as well as

PortAttributes (see the discussion on port attributes earlier in this chapter). PortContext is a user-defined

value, stored as part of the port object. It’s returned in any received message attributes in ALPC_CONTEXT_-

ATTR (if used). Finally, ConnectionMessageAttributes is an optional connection message attributes to

return.

The LPC_REQUESTmessage is a “normal” request message with a potential reply. LPC_DATAGRAM on the other

hand, is a “fire and forget” kind of message, where no reply is expected nor needed. This message occurs when

an asynchronous call is made (no ALPC_MSGFLG_SYNC_REQUEST), but with ALPC_MSGFLG_RELEASE_MESSAGE,

and no reply message.

Chapter 10: ALPC 289

11.6.2: Client Operation

Once a client connects with NtAlpcConnectPort, it can send and receive messages with NtAlpcSendWait-

ReceivePort.

One way to be notified when an asynchronous request completes is by using an I/O completion port. One

can be associated with an ALPC port with NtAlpcSetInformation:

NTSTATUS NtAlpcSetInformation(

In HANDLE PortHandle,

In ALPC_PORT_INFORMATION_CLASS PortInformationClass,

_In_reads_bytes_opt_(Length) PVOID PortInformation,

In ULONG Length);

A couple of information classes are supported for set operations, one of which is AlpcAssociateComple-

tionPortInformation (2) that expects the following structure:

typedef struct _ALPC_PORT_ASSOCIATE_COMPLETION_PORT {

PVOID CompletionKey;

HANDLE CompletionPort;

} ALPC_PORT_ASSOCIATE_COMPLETION_PORT, *PALPC_PORT_ASSOCIATE_COMPLETION_PORT;

CompletionKey is an arbitrary value to store, while CompletionPort is a handle to a valid I/O completion

port. Such an object can be created by the native NtCreateIoCompletion or the Windows API CreateIo-

CompletionPort. The following example creates one and associates it with an ALPC port:

ALPC_PORT_ASSOCIATE_COMPLETION_PORT iocp{};

NtCreateIoCompletion(&iocp.CompletionPort, IO_COMPLETION_ALL_ACCESS, nullptr, 0);

// or with the Windows API:

//iocp.CompletionPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr, 0, 0);

NtAlpcSetInformation(hPort, AlpcAssociateCompletionPortInformation,

&iocp, sizeof(iocp));

I/O completion ports native APIs are not described in detail, saved for a second edition of the

book. You can read more about them in the Windows SDK docs or my book “Windows 10 System

Programming part 1”.

An asynchronous operation does not specify a reply message or a length. Instead, the client makes a second

call once the I/O completion port is triggered. Here is some conceptual code:

Chapter 10: ALPC 290

// asynchronous call - input message and no received message

// flags does not contain ALPC_MSGFLG_SYNC_REQUEST

NtAlpcSendWaitReceivePort(hPort, 0, &msg,

msgAttr, nullptr, nullptr, nullptr, nullptr);

// do other work...

// at some point, possibly on another thread...

DWORD bytes; // non needed, but must be provided

ULONG_PTR key;

OVERLAPPED* ov;

// call the Windows API GetQueuedCompletionStatus(Ex)

// or the native NtRemoveIoCompletion(Ex) - not described in this book

GetQueuedCompletionStatus(iocp.CompletionPort, &bytes, &key, &ov, INFINITE);

NtAlpcSendWaitReceivePort(hPort, 0, nullptr,

nullptr, recvMsg, &recvMsgLen, nullptr, nullptr);

11.7: Summary

This chapter examined some aspects of ALPC. It’s feature rich, which adds to its complexity and flexibility.

The coverage is by no means exhaustive, and further research is needed. Hopefully, future editions of the

book will contain more details about ALPC.

Chapter 11: Security

Security is a cornerstone of Windows, and critical to any modern operating system. In this chapter we’ll

examine the native APIs related to security. We’ll start with a brief overview, followed by examination of

access tokens, used as security credentials for processes and threads. Next, we’ll examine security descriptors

APIs, used to protect access to kernel objects.

In this chapter:

• Overview

• SIDs

• Tokens

• Security Descriptors

• Access Control Lists

12.1: Overview

Principals are entities that can be referred to in the security system, such as users or groups. A principal

is identified by a Security Identifier (SID) that is a variable-sized structure. A set of Well Known SIDs are

defined that represent the same conceptual entities on every system. Examples include the Everyone group

(SID S-1-1-0, also calledWorld SID), and the Administrators alias (S-1-5-32-544).

access tokens (or simply tokens) are kernel objects that store the security context of a process or a thread.

This context includes the user’s SID, its privileges, groups it belongs to, and other details. Two types of tokens

exist: primary and impersonation. Every process is created with a primary token that cannot be replaced.

Threads automatically use their process’ token when accessing secure objects, unless they obtain their own

(impersonation) token.

Privileges represent operations that bypass security. For example, loading a driver into a system requires a

privilege (SeLoadDriver*), by default given to members of the Administrators alias. Privileges are stored in a

token, and cannot be added or removed. Administrators can add or remove privileges for a user in the user

database; the next time the user logs off and logs in again, these changes will take effect in tokens created

based on that user account.

Security descriptors are used to protect kernel objects (of all kinds). The primary elements in a security

descriptor are the object’s owner SID (the creator’s SID by default), and a DACL (Discretionary Access Control

List), that specifies who can do what with the object.

Chapter 11: Security 292

12.2: SIDs

A SID is a variable size binary structure that looks like figure 11-1.

Figure 11-1: SID structure

It can be stored as a string for readability and persistence. Converting a binary SID to a string can be done

with RtlConvertSidToUnicodeString:

NTSTATUS RtlConvertSidToUnicodeString(

Inout PUNICODE_STRING UnicodeString,

In PSID Sid,

In BOOLEAN AllocateDestinationString);

The provided UNICODE_STRING can be pre-allocated to a size that would be large enough and passing FALSE

for AllocateDestinationString. Alternatively, pass TRUE for AllocateDestinationString so that the

internal Buffer in the UNICODE_STRING is allocated for you. In that case, call RtlFreeUnicodeString to

free the allocated buffer.

PSID is typed as PVOID, so there is nothing to dereference.

The following code snippet shows an example:

Chapter 11: Security 293

SE_SID sid{};

DWORD size = sizeof(sid);

CreateWellKnownSid(WinBuiltinAdministratorsSid, nullptr, &sid, &size);

UNICODE_STRING ssid;

RtlConvertSidToUnicodeString(&ssid, &sid.Sid, TRUE);

printf("SID of Administrators: %wZ\n", &ssid);

RtlFreeUnicodeString(&ssid);

The maximum size of a SID in its binary form is defined as SECURITY_MAX_SID_SIZE (68 bytes) and

in its string form as SECURITY_MAX_SID_STRING_CHARACTERS (187 characters).

SE_SID is a helper union defined in <WinNt.h>:

typedef union _SE_SID {

SID Sid;

BYTE Buffer[SECURITY_MAX_SID_SIZE];

} SE_SID, *PSE_SID;

The expected length of the string can be obtained by calling RtlLengthSidAsUnicodeString:

NTSTATUS RtlLengthSidAsUnicodeString(

In PSID Sid,

Out PULONG StringLength);

Some simple SID-related APIs are about checking the validity of a SID (RtlValidSid), and comparing two

SIDs for equality (RtlEqualSid and RtlEqualPrefixSid):

BOOLEAN RtlValidSid(_In_ PSID Sid);

BOOLEAN RtlEqualSid(

In PSID Sid1,

In PSID Sid2);

BOOLEAN RtlEqualPrefixSid(

In PSID Sid1,

In PSID Sid2);

RtlEqualPerfixSid compares the given SIDs with all components except for the last sub-authority ID.

12.2.1: Creating and Destroying SIDs

There are a few APIs dedicated to creating SIDs. The most direct one is RtlAllocateAndInitializeSid:

Chapter 11: Security 294

typedef struct _SID_IDENTIFIER_AUTHORITY {

BYTE Value[6];

} SID_IDENTIFIER_AUTHORITY, *PSID_IDENTIFIER_AUTHORITY;

NTSTATUS RtlAllocateAndInitializeSid(

In PSID_IDENTIFIER_AUTHORITY IdentifierAuthority,

In UCHAR SubAuthorityCount,

In ULONG SubAuthority0,

In ULONG SubAuthority1,

In ULONG SubAuthority2,

In ULONG SubAuthority3,

In ULONG SubAuthority4,

In ULONG SubAuthority5,

In ULONG SubAuthority6,

In ULONG SubAuthority7,

Outptr PSID *Sid);

The function accepts the authority as an array of 6 bytes. One authority that is defined in <Winnt.h> is the

so-called NT Authority:

#define SECURITY_NT_AUTHORITY {0,0,0,0,0,5}

The maximum number of sub-authorities in a SID is 15, but this function only allows 8, which is mostly fine,

as very long SIDs not as common. SubAuthorityCount specifies the valid sub-authorities in the call.

The returned SID (last Sid parameter) is allocated by this function, which means it must be freed explicitly

by calling RtlFreeSid:

PVOID RtlFreeSid(_In_ _Post_invalid_ PSID Sid);

An extended API allows using any number of sub-authorities:

NTSTATUS RtlAllocateAndInitializeSidEx(

In PSID_IDENTIFIER_AUTHORITY IdentifierAuthority,

In UCHAR SubAuthorityCount,

_In_reads_(SubAuthorityCount) PULONG SubAuthorities,

Outptr PSID *Sid);

SubAuthorities is an array of SubAuthorityCount ULONG values used to initialize the SID. Just like

RtlAllocateAndInitializeSid, RtlFreeSid must be used to dispose of the SID allocated memory.

RtlInitializeSid(Ex) can be used to initialize a SID buffer that is already allocated:

Chapter 11: Security 295

NTSTATUS RtlInitializeSid(

Out PSID Sid,

In PSID_IDENTIFIER_AUTHORITY IdentifierAuthority,

In UCHAR SubAuthorityCount);

NTSTATUS RtlInitializeSidEx(// Windows 10+

_Out_writes_bytes_(SECURITY_SID_SIZE(SubAuthorityCount)) PSID Sid,

In PSID_IDENTIFIER_AUTHORITY IdentifierAuthority,

In UCHAR SubAuthorityCount,

...);

The extended function accepts any number of arguments (…) to initialize the sub-authorities. RtlInitial-

izeSid only initializes the authority value and the count of sub-authorities.

A SID can be created for a Windows Service so that specific access for this service can be specified even if

the service is running under a generic account like the Local System, Network Service, or Local Service. This

is accomplished with RtlCreateServiceSid:

NTSTATUS RtlCreateServiceSid(

In PUNICODE_STRING ServiceName,

_Out_writes_bytes_opt_(*ServiceSidLength) PSID ServiceSid,

Inout PULONG ServiceSidLength);

The function uses the service name (ServiceName) converted to upper case as input to the SHA-1 algorithm

to generate the final SID in the form: S-1-5-80-hash1-hash2-hash3-hash4-hash5. ServiceSidLength is

an input/output parameter indicating on input the number of bytes the SID buffer is able to accept. Upon

successful return, the value indicates the actual number of bytes written.

Here is an example:

SE_SID sid{};

UNICODE_STRING name;

RtlInitUnicodeString(&name, L"MyService");

ULONG len = sizeof(sid);

RtlCreateServiceSid(&name, &sid, &len);

// display as string

UNICODE_STRING ssid;

RtlConvertSidToUnicodeString(&ssid, &sid.Sid, TRUE);

printf("SID of MyService: %wZ\n", &ssid);

// displays S-1-5-80-517257762-1253276234-605902578-3995580692-1133959824

RtlFreeUnicodeString(&ssid);

Chapter 11: Security 296

See the Windows SDK documentation for more information on Service SIDs.

12.3: Tokens

Token objects must be attached to a process or thread to have any effect. The typical way of getting a token

is by opening one from a process with NtOpenProcessToken(Ex):

NTSTATUS NtOpenProcessToken(

In HANDLE ProcessHandle,

In ACCESS_MASK DesiredAccess,

Out PHANDLE TokenHandle);

NTSTATUS NtOpenProcessTokenEx(

In HANDLE ProcessHandle,

In ACCESS_MASK DesiredAccess,

In ULONG HandleAttributes,

Out PHANDLE TokenHandle);

NtOpenProcessToken is used directly by the OpenProcessToken Windows API.

NtOpenProcessToken simply calls NtOpenProcessTokenEx with HandleAttributes set to zero.

ProcessHandle represents the process whose token is required. The handle must have the PROCESS_QUERY_-

LIMITED_INFORMATION or PROCESS_QUERY_INFORMATION access masks to have a chance to get its token.

DesiredAccess can be any of the standard access masks or token-specific ones. A common value is TOKEN_-

QUERY to query information about the token, but others can be used. Some access masks, however, require

special privileges to be available, such as TOKEN_ADJUST_SESSIONID. HandleAttributes specifies additional

attributes (OBJ_ flags), such as OBJ_INHERIT, but is usually zero. Finally, the returned token handle is stored

in *TokenHandle.

A token can also be opened from a thread by calling NtOpenThreadToken(Ex):

Chapter 11: Security 297

NTSTATUS NtOpenThreadToken(

In HANDLE ThreadHandle,

In ACCESS_MASK DesiredAccess,

In BOOLEAN OpenAsSelf,

Out PHANDLE TokenHandle);

NTSTATUS NtOpenThreadTokenEx(

In HANDLE ThreadHandle,

In ACCESS_MASK DesiredAccess,

In BOOLEAN OpenAsSelf,

In ULONG HandleAttributes,

Out PHANDLE TokenHandle);

ThreadHandle must have THREAD_QUERY_LIMITED_INFORMATION or THREAD_QUERY_INFORMATION access

mask. DesiredAccess, HandleAttributes, and TokenHandle have the same meaning as in NtOpen-

ProcessTokenEx. OpenAsSelf indicates whether the access check for the requested token should be

made against the current security context of the caller thread (which means something if the thread is

impersonating), or to use the caller’s process token for access checks. FALSE indicates the former.

The OpenThreadToken Windows API calls NtOpenThreadToken.

Another way to get a token is by duplicating an existing token with NtDuplicateToken (and possibly making

some modifications):

NTSTATUS NtDuplicateToken(

In HANDLE ExistingTokenHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In BOOLEAN EffectiveOnly,

In TOKEN_TYPE TokenType,

Out PHANDLE NewTokenHandle);

ExistingTokenHandle represents the token to duplicate. This handle must have the TOKEN_DUPLICATE

access mask. DesiredAccess is the type of access needed for the new token (TOKEN_QUERY, TOKEN_ALL_-

ACCESS, etc.). ObjectAttributes is the usual attributes structure, that if provided is used to specify the

following:

• the handle attributes

• a optional security descriptor

• security quality of service which includes the impersonation level for new token (SECURITY_IMPER-

SONATION_LEVEL). See the documentation for DuplicateTokenEx for more information.

Chapter 11: Security 298

EffectiveOnly indicates whether the entire source token should be duplicated (FALSE), or only the enabled

parts of the token (TRUE), such as only the enabled privileges. Typically, FALSE is passed for this parameter.

The DuplicateTokenEx Windows API always passes FALSE for EffectiveOnly.

Finally, TokenType indicates what type should the new token be: TokenPrimary or TokenImpersonation.

A primary token can be attached to a process, while an impersonation token can be attached to a thread.

One of the reasons to call NtDuplicateToken is to get the other token type. For example, the Windows API

CreateProcessAsUser requires a primary token to succeed.

The new token handle is returned in *NewTokenHandle*, and should eventually be closed normally with

NtClose.

A new token can be created from an existing token by removing privileges, disabling SIDs, and/or restricting

SIDs. This is the role of NtFilterToken:

NTSTATUS NtFilterToken(

In HANDLE ExistingTokenHandle,

In ULONG Flags,

_In_opt_ PTOKEN_GROUPS SidsToDisable,

_In_opt_ PTOKEN_PRIVILEGES PrivilegesToDelete,

_In_opt_ PTOKEN_GROUPS RestrictedSids,

Out PHANDLE NewTokenHandle);

There is also NtFilterTokenEx, but this API is not currently implemented.

NtFilterToken is the workhorse of the CreateRestrictedToken Windows API. Refer to that function’s

documentation for more information. The parameters of CreateRestrictedToken are conceptually the

same as NtFilterToken, but slightly different structures are used. NtFilterToken leverages the count fields

in TOKEN_GROUPS and TOKEN_PRIVILEGES, while the Windows API uses a SID_AND_ATTRIBUTES structure,

with separate parameters for length. Other than that, the functionality is identical. The newly created token

is returned in *NewTokenHandle.

For information the the securityWindows API can also be found in chapter 16 of my book “Windows

10 System Programming, part 2”.

12.3.1: Token Information

With a token handle in hand, various attributes of a token can be queried by calling NtQueryInformation-

Token:

Chapter 11: Security 299

NTSTATUS NtQueryInformationToken(

In HANDLE TokenHandle,

In TOKEN_INFORMATION_CLASS TokenInformationClass,

_Out_writes_bytes_to_opt_(Length, *ReturnLength) PVOID TokenInformation,

In ULONG Length,

Out PULONG ReturnLength);

The Windows API GetTokenInformation calls NtQueryInformationToken with exactly the same param-

eters. Refer to the Windows SDK documentation for this API for all the various options.

The converse function exists as well:

NTSTATUS NtSetInformationToken(

In HANDLE TokenHandle,

In TOKEN_INFORMATION_CLASS TokenInformationClass,

_In_reads_bytes_(TokenInformationLength) PVOID TokenInformation,

In ULONG TokenInformationLength);

The Windows API SetTokenInformation calls NtSetInformationToken with the same arguments. Refer

to the Windows SDK documentation for the details.

NtSetInformationToken provides many of the token attributes that can be changed. However, there are

specialized functions for other changes. One is NtAdjustPrivilegesToken:

NTSTATUS NtAdjustPrivilegesToken(

In HANDLE TokenHandle,

In BOOLEAN DisableAllPrivileges,

_In_opt_ PTOKEN_PRIVILEGES NewState,

In ULONG BufferLength,

_Out_writes_bytes_to_opt_(BufferLength, *Length) PTOKEN_PRIVILEGES PreviousState,

_Out_opt_ PULONG Length);

NtAdjustPrivilegesToken allows enabling or disabling privileges. Privileges can never be added or

removed from a token - only enabled or disabled. This function is called directly by the Windows API

AdjustTokenPrivileges, please refer to that function’s documentation in the Windows SDK.

There is one difference that requires explanation. Privileges identifiers are exposed to the Windows API as

strings. For example, SE_DEBUG_NAME is defined as the string “SeDebugPrivilege”. AdjustTokenPrivileges

and NtAdjustPrivilegesToken need PTOKEN_PRIVILEGES, where privileges are identifier by a number. The

Windows API function LookupPrivilegeValue is used to retrieve the number corresponding to the privilege

string.

With the native API, privilege identifiers are given as follows:

Chapter 11: Security 300

#define SE_CREATE_TOKEN_PRIVILEGE (2L)

#define SE_ASSIGNPRIMARYTOKEN_PRIVILEGE (3L)

#define SE_LOCK_MEMORY_PRIVILEGE (4L)

#define SE_INCREASE_QUOTA_PRIVILEGE (5L)

#define SE_MACHINE_ACCOUNT_PRIVILEGE (6L)

#define SE_TCB_PRIVILEGE (7L)

#define SE_SECURITY_PRIVILEGE (8L)

#define SE_TAKE_OWNERSHIP_PRIVILEGE (9L)

#define SE_LOAD_DRIVER_PRIVILEGE (10L)

#define SE_SYSTEM_PROFILE_PRIVILEGE (11L)

#define SE_SYSTEMTIME_PRIVILEGE (12L)

#define SE_PROF_SINGLE_PROCESS_PRIVILEGE (13L)

#define SE_INC_BASE_PRIORITY_PRIVILEGE (14L)

#define SE_CREATE_PAGEFILE_PRIVILEGE (15L)

#define SE_CREATE_PERMANENT_PRIVILEGE (16L)

#define SE_BACKUP_PRIVILEGE (17L)

#define SE_RESTORE_PRIVILEGE (18L)

#define SE_SHUTDOWN_PRIVILEGE (19L)

#define SE_DEBUG_PRIVILEGE (20L)

#define SE_AUDIT_PRIVILEGE (21L)

#define SE_SYSTEM_ENVIRONMENT_PRIVILEGE (22L)

#define SE_CHANGE_NOTIFY_PRIVILEGE (23L)

#define SE_REMOTE_SHUTDOWN_PRIVILEGE (24L)

#define SE_UNDOCK_PRIVILEGE (25L)

#define SE_SYNC_AGENT_PRIVILEGE (26L)

#define SE_ENABLE_DELEGATION_PRIVILEGE (27L)

#define SE_MANAGE_VOLUME_PRIVILEGE (28L)

#define SE_IMPERSONATE_PRIVILEGE (29L)

#define SE_CREATE_GLOBAL_PRIVILEGE (30L)

#define SE_TRUSTED_CREDMAN_ACCESS_PRIVILEGE (31L)

#define SE_RELABEL_PRIVILEGE (32L)

#define SE_INC_WORKING_SET_PRIVILEGE (33L)

#define SE_TIME_ZONE_PRIVILEGE (34L)

#define SE_CREATE_SYMBOLIC_LINK_PRIVILEGE (35L)

#define SE_DELEGATE_SESSION_USER_IMPERSONATE_PRIVILEGE (36L)

Enabling or disabling a single privilege for the current process token is a common operation, and NtAdjust-

PrivilegesToken is certainly capable of doing that. However, the native API offers a much more convenient

API for this purpose (internally calling NtAdjustPrivilegesToken):

Chapter 11: Security 301

NTSTATUS RtlAdjustPrivilege(

In ULONG Privilege,

In BOOLEAN Enable,

In BOOLEAN Client,

Out PBOOLEAN WasEnabled);

Privilege is one of the constants listed above. Enable indicates whether the privilege should be enabled

or disabled. Client indicates whether to adjust the current process token (FALSE) or the current thread’s

token (TRUE). If TRUE is specified, but the current thread has no token, the function fails. Finally, WasEnabled

returns the previous state of the privilege. This could be useful for restoring the privilege state later.

Similarly to adjusting privileges, NtAdjustGroupsToken allows adjusting groups within a token:

NTSTATUS NtAdjustGroupsToken(

In HANDLE TokenHandle,

In BOOLEAN ResetToDefault,

_In_opt_ PTOKEN_GROUPS NewState,

_In_opt_ ULONG BufferLength,

_Out_writes_bytes_to_opt_(BufferLength, *Length) PTOKEN_GROUPS PreviousState,

_Out_opt_ PULONG Length);

This function is called by the Windows API AdjustTokenGroups, with basically identical parameters (the

only difference is BOOL used by theWindows API instead of BOOLEAN). See theWindows SDK documentation

for the details.

12.3.2: Impersonation

A thread can impersonate by attaching a token to itself, which must be an impersonation token. Once such

a token is obtained (e.g., by calling NtDuplicateToken), the caller thread can impersonate.

One impersonation that does not require an explicit token is for an anonymous user:

NTSTATUS NtImpersonateAnonymousToken(_In_ HANDLE ThreadHandle);

The thread handle must have the THREAD_IMPRESONATE access mask, which is always available if the current

thread handle is used (NtCurrentThread).

To impersonate an arbitrary token (i.e., assign an impersonation token to a thread), call NtSetInformation-

Thread with the ThreadImpersonationToken information class. For example:

HANDLE hToken = ...

NtSetInformationThread(NtCurrentThread(), ThreadImpersonationToken, &hToken, sizeof(\

hToken), nullptr);

Chapter 11: Security 302

The thread handle (NtCurrentThread() in the above example) must have the THREAD_SET_THREAD_TOKEN

access mask.

To revert the thread to using the process’ token, call NtSetInformationThread again, but set the provided

token handle to NULL, like so:

HANDLE hToken = nullptr; // reverting

NtSetInformationThread(NtCurrentThread(), ThreadImpersonationToken, &hToken, sizeof(\

hToken), nullptr);

12.3.2.1: Other Impersonation Functions

The NtImpersonateThread allows one thread to impersonate another directly:

NTSTATUS NtImpersonateThread(

In HANDLE ServerThreadHandle,

In HANDLE ClientThreadHandle,

In PSECURITY_QUALITY_OF_SERVICE SecurityQos);

The “server” thread is the one who impersonates - the handle must have the THREAD_IMPERSONATE access

mask. The “client” thread is the one being impersonated - its handle must have the THREAD_DIRECT_IMPER-

SONATION access mask. SecurityQos provides more details for the impersonation required:

typedef struct _SECURITY_QUALITY_OF_SERVICE {

DWORD Length;

SECURITY_IMPERSONATION_LEVEL ImpersonationLevel;

SECURITY_CONTEXT_TRACKING_MODE ContextTrackingMode;

BOOLEAN EffectiveOnly;

} SECURITY_QUALITY_OF_SERVICE, * PSECURITY_QUALITY_OF_SERVICE;

This structure is documented in the Windows SDK. Briefly, Length must be set to the size of the structure.

ImpersonationLevel is probably the most important member, indicating the “power” of the impersonating

thread:

typedef enum _SECURITY_IMPERSONATION_LEVEL {

SecurityAnonymous,

SecurityIdentification,

SecurityImpersonation,

SecurityDelegation

} SECURITY_IMPERSONATION_LEVEL, *PSECURITY_IMPERSONATION_LEVEL;

Chapter 11: Security 303

This indicates the “trust” provided to the impersonator - what can be done on the behalf of the impersonated

thread. ContextTrackingMode indicates if the the impersonator gets a snapshot of the security context of the

impersonated thread (static tracking, SECURITY_STATIC_TRACKING=0), or the context is updated dynamically

(dynamic tracking, SECURITY_DYNAMIC_TRACKING=1).

Finally, EffectiveOnly indicates if the impersonator is allowed enabling or disabling privileges.

The RtlImpersonateSelf is the workhorse of the Windows API ImpersonateSelf, which gets a copy of

the process token as an impersonation and assigns it to the current thread:

NTSTATUS RtlImpersonateSelf(_In_ SECURITY_IMPERSONATION_LEVEL ImpersonationLevel);

This could be useful for the thread to enable/disable privileges privately, not effecting the process token,

which may be used by other threads.

An extended version is available as well:

NTSTATUS RtlImpersonateSelfEx(

In SECURITY_IMPERSONATION_LEVEL ImpersonationLevel,

_In_opt_ ACCESS_MASK AdditionalAccess,

_Out_opt_ PHANDLE ThreadToken);

The functionality is identical to RtlImpersonateSelf, but allows asking for more access for the new token

(beyond TOKEN_IMPERSONATE), and optionally receiving the token handle directly.

ALPC ports provide some impersonation functions of their own (see chapter 10 for more on ALPC):

NTSTATUS NtImpersonateClientOfPort(

In HANDLE PortHandle,

In PPORT_MESSAGE Message);

#define ALPC_IMPERSONATE_ALLOW_ANONYMOUS (PVOID)(ULONG_PTR)1

#define ALPC_IMPERSONATE_LEVEL (PVOID)(ULONG_PTR)2

NTSTATUS NtAlpcImpersonateClientOfPort(

In HANDLE PortHandle,

In PPORT_MESSAGE Message,

In PVOID Flags);

NTSTATUS NtAlpcImpersonateClientContainerOfPort(

In HANDLE PortHandle,

In PPORT_MESSAGE Message,

In ULONG Flags);

Chapter 11: Security 304

NtImpersonateClientOfPort is used by an ALPC server to impersonate the connecting client, so it can

perform operations with the client’s security context. PortHandle is the port on which the clien’s message

(Message) was received.

NtAlpcImpersonateClientOfPort impersonates a client of the given port that sent the message provided,

just like NtImpersonateClientOfPort but with extra options. Flags is normally zero, but can be set to

ALPC_IMPERSONATE_ALLOW_ANONYMOUS to allow anonymous users to impersonate ports in AppContainers

(running with low integrity level). Additionally, if the ALPC_IMPERSONATE_LEVEL flag is specified, then the

impersonation level (SECURITY_IMPERSONATION_LEVEL) can be ORed by shifting the value two bits to the

left.

NtAlpcImpersonateClientContainerOfPort (Windows 10+) allows impersonation of the container of the

client of the port (containers are also called server silos). This can only work if the current process is the

ALPC server, which means the ALPC port must be owned by the current process.

12.3.3: Creating Tokens

We’ve seen token creation based on existing tokens - NtDuplicateToken and NtFilterToken. Creating a

token that is not based on an existing token is possible with NtCreateToken and NtCreateTokenEx defined

like so:

NTSTATUS NtCreateToken(

Out PHANDLE TokenHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In TOKEN_TYPE TokenType,

In PLUID AuthenticationId,

In PLARGE_INTEGER ExpirationTime,

In PTOKEN_USER User,

In PTOKEN_GROUPS Groups,

In PTOKEN_PRIVILEGES Privileges,

_In_opt_ PTOKEN_OWNER Owner,

In PTOKEN_PRIMARY_GROUP PrimaryGroup,

_In_opt_ PTOKEN_DEFAULT_DACL DefaultDacl,

In PTOKEN_SOURCE TokenSource);

NTSTATUS NtCreateTokenEx(

Out PHANDLE TokenHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

In TOKEN_TYPE TokenType,

In PLUID AuthenticationId,

In PLARGE_INTEGER ExpirationTime,

In PTOKEN_USER User,

In PTOKEN_GROUPS Groups,

Chapter 11: Security 305

In PTOKEN_PRIVILEGES Privileges,

_In_opt_ PTOKEN_SECURITY_ATTRIBUTES_INFORMATION UserAttributes,

_In_opt_ PTOKEN_SECURITY_ATTRIBUTES_INFORMATION DeviceAttributes,

_In_opt_ PTOKEN_GROUPS DeviceGroups,

_In_opt_ PTOKEN_MANDATORY_POLICY TokenMandatoryPolicy,

_In_opt_ PTOKEN_OWNER Owner,

In PTOKEN_PRIMARY_GROUP PrimaryGroup,

_In_opt_ PTOKEN_DEFAULT_DACL DefaultDacl,

In PTOKEN_SOURCE TokenSource);

Creating a token with CreateToken(Ex) requires the SeCreateToken privilege, normally available to the

Lsass.exe process only. One way to get this privilege is to duplicate Lsass’s token and use it for impersonation;

this can only be achieved by an admin level caller. Another way is to have an administrator add this privilege

to the user account - the next time that user logs in, the privilege will be available in its token.

Here is the rundown of parameters to NtCreateToken:

• TokenHandle is the returned token handle upon success.

• DesiredAccess is the access mask the returned token handle should have. The simplest would be

TOKEN_ALL_ACCESS, to allow the returned token to be used for anything.

• TokenAttributes is the usual OBJECT_ATTRIBUTES structure, optional in this case.

• TokenType indicates the required token type - TokenPrimary or TokenImpersonation.

• AuthenticationId is the logon session the resulting token should be associated with. It must represent

an existing logon session. Some logon sessions always exist:

• 999 (0x3e7) - used by the Local System account

• 997 (0x3e5) - used by the Local Service account

• 996 (0x3e4) - used by the Network Service account

Other logon sessions are created as needed. To view the entire list of logon sessions, you can use the

logonsessions Sysinternals command line tool, or graphically in my System Explorer tool (System/Logon

Sessions menu item). Here is an example output from logonsessions:

[0] Logon session 00000000:000003e7:

User name: WORKGROUP\PAVEL7760$

Auth package: NTLM

Logon type: (none)

Session: 0

Sid: S-1-5-18

Logon time: 5/7/2024 2:47:52 PM

Logon server:

DNS Domain:

UPN:

...

Chapter 11: Security 306

[2] Logon session 00000000:00021d05:

User name: Font Driver Host\UMFD-0

Auth package: Negotiate

Logon type: Interactive

Session: 0

Sid: S-1-5-96-0-0

Logon time: 5/7/2024 2:47:52 PM

Logon server:

DNS Domain:

UPN:

[3] Logon session 00000000:000003e5:

User name: NT AUTHORITY\LOCAL SERVICE

Auth package: Negotiate

Logon type: Service

Session: 0

Sid: S-1-5-19

Logon time: 5/7/2024 2:47:52 PM

Logon server:

DNS Domain:

UPN:

[4] Logon session 00000000:000003e4:

User name: WORKGROUP\PAVEL7760$

Auth package: Negotiate

Logon type: Service

Session: 0

Sid: S-1-5-20

Logon time: 5/7/2024 2:47:53 PM

Logon server:

DNS Domain:

UPN:

...

[6] Logon session 00000000:0002d1b9:

User name: Window Manager\DWM-1

Auth package: Negotiate

Logon type: Interactive

Session: 1

Sid: S-1-5-90-0-1

Logon time: 5/7/2024 2:47:53 PM

Chapter 11: Security 307

Logon server:

DNS Domain:

UPN:

...

[8] Logon session 00000000:00042bbc:

User name: PAVEL7760\Pavel

Auth package: NTLM

Logon type: Interactive

Session: 1

Sid: S-1-5-21-3968166439-3083973779-398838822-1001

Logon time: 5/7/2024 2:47:53 PM

Logon server: PAVEL7760

DNS Domain:

UPN:

...

Getting a list of logon sessions can be done with LsaEnumerateLogonSessions.

You can think of a logon session as the “source” of tokens. Put another way, a token points to its logon session.

Figure 11-2 illustrates this.

Figure 11-2: Logon Session and Tokens

Continuing with NtCreateToken parameters:

Chapter 11: Security 308

• ExpirationTime indicates when should the resulting token expire. If the value in the LARGE_INTEGER

is zero, the token never expires. Note that passing NULL as an argument here is invalid.

• User is the user of the resulting token, specified as the standard TOKEN_USER structure pointer, holding

the user’s SID. Refer to the documentation of GetTokenInformation on the definition of TOKEN_USER

and related structures.

• Groups is the list of groups the token should have, given as a TOKEN_GROUPS pointer, documented in

the Windows API.

• Privileges provides the list of privileges to place in the resulting token. This is where we can add any

power we’d like to be part of the token.

• Owner is the default owner to set for security attributes created using this token (TOKEN_OWNER). It’s

optional, but recommended. A simple argument would be the same SID used for User.

• PrimaryGroup is the primary group of this token - it must be one of the groups listed in Groups. A

primary group does not carry much meaning in Windows, since it was created for compatibility with

the POSIX subsystem; nevertheless, it is required.

• DefaultDacl is an optional DACL to be used to protect the token.

• TokenSource is the source of the token, identified by a simple string and a LUID. These can be set to

anything - it’s used to identify log entries that involve the returned token.

NtCreateTokenEx has 4 additional parameters that allow specifying the following:

• UserAttributes is an optional set of user claims, documented in the Windows SDK. The type is TOKEN_-

SECURITY_ATTRIBUTES_INFORMATION used by the native API and the kernel, but is in fact the same as

the user mode structure CLAIM_SECURITY_ATTRIBUTES_INFORMATION. Check out the SDK docs for the

details.

• DeviceAttributes is an optional set of device claims, documented in the Windows SDK.

• DeviceGroups is an optional set of groups the device the user is using is a member of.

• TokenMandatoryPolicy is an optional integrity level policy, the deualt being TOKEN_MANDATORY_POL-

ICY_NO_WRITE_UP. Check out the SDK docs for more information.

NtCreateToken calls NtCreateTokenEx with the above four argunments set to NULL.

12.3.4: Putting it All Together: Creating a Token Object from Scratch

In the following demo, we’ll create a token from scratch using NtCreateToken. For full source code is in the

CreateToken project.

Since we need the SeCreateToken privilege to successfully use NtCreateToken, we’re going to use the first

option mentioned in the previous section - duplicate Lsass’s token.

The first step is to find the Lsass process and open a handle to it. We’ll start by getting the its full path name

for comparison purposes:

Chapter 11: Security 309

HANDLE FindLsass() {

WCHAR path[MAX_PATH];

GetSystemDirectory(path, ARRAYSIZE(path));

wcscat_s(path, L"\\lsass.exe");

UNICODE_STRING lsassPath;

RtlInitUnicodeString(&lsassPath, path);

Next, we need to iterate over all processes, looking for Lsass. One way to do that is using NtQuerySystem-

Information with SystemProcessInformation, but that’s an overkill. We need to open a handle to the

Lsass process, so we may as well use NtGetNextProcess to achieve both at the same time:

BYTE buffer[256];

HANDLE hProcess = nullptr, hOld;

while (true) {

hOld = hProcess;

//

// get the next process handle

//

auto status = NtGetNextProcess(hProcess,

PROCESS_QUERY_LIMITED_INFORMATION, 0, 0, &hProcess);

if (hOld)

NtClose(hOld);

if (!NT_SUCCESS(status))

break;

//

// get path of Lsass executable

//

if (NT_SUCCESS(NtQueryInformationProcess(hProcess,

ProcessImageFileNameWin32, buffer, sizeof(buffer), nullptr))) {

auto name = (UNICODE_STRING*)buffer;

if (RtlEqualUnicodeString(&lsassPath, name, TRUE))

return hProcess;

}

}

return nullptr;

}

We call NtGetNextProcess until the correct process shows up. Finally, we return the handle to the caller.

The next step is to open Lasass process’ token, and duplicate it. Let’s open the token first:

Chapter 11: Security 310

HANDLE DuplicateLsassToken() {

auto hProcess = FindLsass();

if (hProcess == nullptr)

return nullptr;

HANDLE hToken = nullptr;

NtOpenProcessToken(hProcess, TOKEN_DUPLICATE, &hToken);

if (!hToken)

return nullptr;

We need the TOKEN_DUPLICATE access mask so we can duplicate it for impersonation purposes (we can’t use

it directly as it’s a primary token).

Now we can call NtDuplicateObject to get our own token but making it an impersonation token:

HANDLE hNewToken = nullptr;

OBJECT_ATTRIBUTES tokenAttr;

InitializeObjectAttributes(&tokenAttr, nullptr, 0, nullptr, nullptr);

//

// set this token to allow impersonation

//

SECURITY_QUALITY_OF_SERVICE qos{ sizeof(qos) };

qos.ImpersonationLevel = SecurityImpersonation;

tokenAttr.SecurityQualityOfService = &qos;

NtDuplicateToken(hToken, TOKEN_ALL_ACCESS, &tokenAttr,

FALSE, TokenImpersonation, &hNewToken);

NtClose(hToken);

return hNewToken;

}

The tricky part is to realize that in order to impersonate with the new token, it should support impersonation

- creating it as an impersonation token is not enough - an impersonation token just means it can be attached

to a thread. This is one of those rare cases where we have to set the SecurityQualityOfService member

of OBJECT_ATTRIBUTES, which is not available through the InitializeObjectAttributes macro.

Nowwe can start our main function. First, we need to enable the SeDebug privilege, without which accessing

Lsass would not work (of course the caller must be an administrator to begin with):

Chapter 11: Security 311

int main() {

BOOLEAN enabled;

auto status = RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &enabled);

if (!NT_SUCCESS(status)) {

printf("Failed to enable the debug privilege! (0x%X)\n", status);

return status;

}

Next, we duplicate Lsass’s token:

auto hDupToken = DuplicateLsassToken();

if (!hDupToken) {

printf("Failed to duplicate Lsass token\n");

return 1;

}

Next, we need to prepare for calling NtCreateToken, starting with groups we’d like to have in the newly

created token. We’ll start by creating SIDs we’ll use (as any group is represented with a SID):

SE_SID_ systemSid;

DWORD size = sizeof(systemSid);

CreateWellKnownSid(WinLocalSystemSid, nullptr, &systemSid, &size);

SE_SID adminSid;

size = sizeof(adminSid);

CreateWellKnownSid(WinBuiltinAdministratorsSid, nullptr, &adminSid, &size);

SE_SID allUsersSid;

size = sizeof(allUsersSid);

CreateWellKnownSid(WinWorldSid, nullptr, &allUsersSid, &size);

SE_SID interactiveSid;

size = sizeof(interactiveSid);

CreateWellKnownSid(WinInteractiveSid, nullptr, &interactiveSid, &size);

SE_SID authUsers;

size = sizeof(authUsers);

CreateWellKnownSid(WinAuthenticatedUserSid, nullptr, &authUsers, &size);

Some of the above groups are necessary if we would later like to create a process with the new token (which

we will).

The final group we’ll create is a integrity level, which is not a simple well known group:

Chapter 11: Security 312

PSID integritySid;

SID_IDENTIFIER_AUTHORITY auth = SECURITY_MANDATORY_LABEL_AUTHORITY;

status = RtlAllocateAndInitializeSid(&auth, 1,

SECURITY_MANDATORY_MEDIUM_RID, 0, 0, 0, 0, 0, 0, 0, &integritySid);

assert(SUCCEEDED(status));

We’ll have to free the allocated SID later with RtlFreeSid.

The groups must be stored in a TOKEN_GROUPS structure, but is supposed to be a variable-sized structure. By

default, it can only accommodate one group directly:

typedef struct _TOKEN_GROUPS {

DWORD GroupCount;

SID_AND_ATTRIBUTES Groups[ANYSIZE_ARRAY]; // = 1

} TOKEN_GROUPS, *PTOKEN_GROUPS;

Since we need multiple groups, we need to allocate some memory dynamically, cast it to TOKEN_GROUPS*

and use it. There is another way, however, to allocate the required size statically, which is more convenient

(and faster). To help out, I have defined the following helper templated structure:

template<int N>

struct MultiGroups : TOKEN_GROUPS {

MultiGroups() {

GroupCount = N;

}

SID_AND_ATTRIBUTES _Additional[N - 1]{};

};

It uses an integer as the template argument to allocate a static array of SID_AND_ATTRIBUTES structures.

With this definition, we can allocate the number of groups we need statically and just fill the array to the

allocated limit:

MultiGroups<6> groups;

groups.Groups[0].Sid = &adminSid;

groups.Groups[0].Attributes = SE_GROUP_DEFAULTED | SE_GROUP_ENABLED | SE_GROUP_OWNER;

groups.Groups[1].Sid = &allUsersSid;

groups.Groups[1].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

groups.Groups[2].Sid = &interactiveSid;

groups.Groups[2].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

groups.Groups[3].Sid = &systemSid;

groups.Groups[3].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

groups.Groups[4].Sid = integritySid;

groups.Groups[4].Attributes = SE_GROUP_INTEGRITY | SE_GROUP_INTEGRITY_ENABLED;

Chapter 11: Security 313

groups.Groups[5].Sid = &authUsers;

groups.Groups[5].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

Next, we need to set up privileges. We’re going to add two of them, SeChangeNotify (“bypass traverse

checking”), which is always needed, and SeTcb (for demonstration purposes). This is your chance to add any

privileges you want! That’s one of the main reasons to create a token from scratch.

Privileges are added in a similar manner to groups - TOKEN_PRIVILEGES can accommodate a single priviege

with extra allocations. We’ll use the same trick for allocating privileges statically:

template<int N>

struct MultiPrivileges : TOKEN_PRIVILEGES {

MultiPrivileges() {

PrivilegeCount = N;

}

LUID_AND_ATTRIBUTES _Additional[N - 1]{};

};

Now we can fill in the details:

MultiPrivileges<2> privs;

privs.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED_BY_DEFAULT;

privs.Privileges[0].Luid.LowPart = SE_CHANGE_NOTIFY_PRIVILEGE;

privs.Privileges[1].Luid.LowPart = SE_TCB_PRIVILEGE;

For a description of the various privileges, please consult the official Microsoft documentation.

Next, we need to initialize a primary group:

TOKEN_PRIMARY_GROUP primary;

primary.PrimaryGroup = &adminSid;

The user of this token will by the Local System account (can be any user, of course):

TOKEN_USER user{};

user.User.Sid = &systemSid;

We are almost ready to call NtCreateToken. It’s time to impersonate the duplicated Lsass token so we would

have the SeCreateToken privilege:

Chapter 11: Security 314

status = NtSetInformationThread(NtCurrentThread(), ThreadImpersonationToken,

&hDupToken, sizeof(hDupToken));

if (!NT_SUCCESS(status)) {

printf("Failed to impersonate! (0x%X)\n", status);

return status;

}

The final initialization step is the logon session ID (sometimes referred to as authentication Id). We must

choose an existing logon session - we’ll select the one used by the Local System account, which has the fixed

number 999:

LUID authenticationId = RtlConvertUlongToLuid(999);

Now we’re ready to call NtCreateToken. We also need a TOKEN_SOURCE which represents the logical entity

creating the token - a short string and a number. We’ll also make the created token have no expiration:

TOKEN_SOURCE source{ "Ch11", 777 };

LARGE_INTEGER expire{};

HANDLE hToken;

status = NtCreateToken(&hToken, TOKEN_ALL_ACCESS, nullptr, TokenPrimary,

&authenticationId, &expire, &user, &groups, &privs, nullptr,

&primary, nullptr, &source);

We create the new token to be a primary token, so we can use it in process creation functions, as we’ll soon

see. The token is created with all possible powers (TOKEN_ALL_ACCESS), so we can change its attributes if we

so choose.

Let’s do something interesting with the token - creating a process that is attached to the user’s console session,

so that any UI from the new process would be visible.

We can get the active console session ID and then replace it in the token. Changing the session ID stored in

a token requires the SeTcb privilege, which fortunately we have, since Lsass has it as well; we just need to

enable it before making the change:

if (NT_SUCCESS(RtlAdjustPrivilege(SE_TCB_PRIVILEGE, TRUE, TRUE, &enabled))) {

ULONG session = WTSGetActiveConsoleSessionId();

NtQueryInformationProcess(NtCurrentProcess(), ProcessSessionInformation,

&session, sizeof(session), nullptr);

NtSetInformationToken(hToken, TokenSessionId, &session, sizeof(session));

}

Next, we’ll prepare the STARTUPINFO and PROCESS_INFORMATION used in process creation, and choose

notepad as the exeutable to launch:

Chapter 11: Security 315

STARTUPINFO si{ sizeof(si) };

PROCESS_INFORMATION pi;

WCHAR desktop[] = L"winsta0\\Default";

WCHAR name[] = L"notepad.exe";

si.lpDesktop = desktop;

We can now attempt to create a process with one of the following Windows APIs: CreateProcessAsUser or

CreateProcessWithTokenW. Although these functions look similar, they are not the same. CreateProces-

sAsUser is a “local” function, which CreateProcessWithTokenW contacts a service to do the actual creation.

On the other hand, CreateProcessAsUser requires the SeAssignPrimary privilege to work.

We’ll try CreateProcessAsUser first, and if that fails, call CreateProcessWithTokenW:

status = RtlAdjustPrivilege(SE_ASSIGNPRIMARYTOKEN_PRIVILEGE, TRUE, TRUE, &enabled);

BOOL created = FALSE;

if (NT_SUCCESS(status)) {

created = CreateProcessAsUser(hToken, nullptr, name, nullptr, nullptr,

FALSE, 0, nullptr, nullptr, &si, &pi);

}

if (!created) {

created = CreateProcessWithTokenW(hToken, LOGON_WITH_PROFILE, nullptr,

name, 0, nullptr, nullptr, &si, &pi);

}

if (!created) {

printf("Failed to create process (%u)\n", GetLastError());

}

else {

printf("Process created: %u\n", pi.dwProcessId);

NtClose(pi.hProcess);

NtClose(pi.hThread);

}

Here is the full main function for easier reference:

Chapter 11: Security 316

int main() {

BOOLEAN enabled;

auto status = RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &enabled);

if (!NT_SUCCESS(status)) {

printf("Failed to enable the debug privilege! (0x%X)\n", status);

return status;

}

auto hDupToken = DuplicateLsassToken();

if (!hDupToken) {

printf("Failed to duplicate Lsass token\n");

return 1;

}

union Sid {

BYTE buffer[SECURITY_MAX_SID_SIZE];

SID Sid;

};

SE_SID systemSid;

DWORD size = sizeof(systemSid);

CreateWellKnownSid(WinLocalSystemSid, nullptr, &systemSid, &size);

DisplaySid(&systemSid);

SE_SID adminSid;

size = sizeof(adminSid);

CreateWellKnownSid(WinBuiltinAdministratorsSid, nullptr, &adminSid, &size);

DisplaySid(&adminSid);

SE_SID allUsersSid;

size = sizeof(allUsersSid);

CreateWellKnownSid(WinWorldSid, nullptr, &allUsersSid, &size);

DisplaySid(&allUsersSid);

SE_SID interactiveSid;

size = sizeof(interactiveSid);

CreateWellKnownSid(WinInteractiveSid, nullptr, &interactiveSid, &size);

DisplaySid(&interactiveSid);

SE_SID authUsers;

size = sizeof(authUsers);

CreateWellKnownSid(WinAuthenticatedUserSid, nullptr, &authUsers, &size);

DisplaySid(&authUsers);

Chapter 11: Security 317

PSID integritySid;

SID_IDENTIFIER_AUTHORITY auth = SECURITY_MANDATORY_LABEL_AUTHORITY;

status = RtlAllocateAndInitializeSid(&auth, 1,

SECURITY_MANDATORY_MEDIUM_RID, 0, 0, 0, 0, 0, 0, 0, &integritySid);

assert(SUCCEEDED(status));

//

// set up groups

//

MultiGroups<6> groups;

groups.Groups[0].Sid = &adminSid;

groups.Groups[0].Attributes = SE_GROUP_DEFAULTED | SE_GROUP_ENABLED

| SE_GROUP_OWNER;

groups.Groups[1].Sid = &allUsersSid;

groups.Groups[1].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

groups.Groups[2].Sid = &interactiveSid;

groups.Groups[2].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

groups.Groups[3].Sid = &systemSid;

groups.Groups[3].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

groups.Groups[4].Sid = integritySid;

groups.Groups[4].Attributes = SE_GROUP_INTEGRITY | SE_GROUP_INTEGRITY_ENABLED;

groups.Groups[5].Sid = &authUsers;

groups.Groups[5].Attributes = SE_GROUP_ENABLED | SE_GROUP_DEFAULTED;

//

// set up privileges

//

MultiPrivileges<2> privs;

privs.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED_BY_DEFAULT;

privs.Privileges[0].Luid.LowPart = SE_CHANGE_NOTIFY_PRIVILEGE;

privs.Privileges[1].Luid.LowPart = SE_TCB_PRIVILEGE;

TOKEN_PRIMARY_GROUP primary;

primary.PrimaryGroup = &adminSid;

TOKEN_USER user{};

user.User.Sid = &systemSid;

//

// impersonate

//

Chapter 11: Security 318

status = NtSetInformationThread(NtCurrentThread(),

ThreadImpersonationToken, &hDupToken, sizeof(hDupToken));

if (!NT_SUCCESS(status)) {

printf("Failed to impersonate! (0x%X)\n", status);

return status;

}

LUID authenticationId = RtlConvertUlongToLuid(999);

TOKEN_SOURCE source{ "Ch11", 777 };

LARGE_INTEGER expire{};

HANDLE hToken;

status = NtCreateToken(&hToken, TOKEN_ALL_ACCESS, nullptr, TokenPrimary,

&authenticationId, &expire, &user, &groups, &privs, nullptr,

&primary, nullptr, &source);

if (NT_SUCCESS(status)) {

printf("Token created successfully.\n");

if (NT_SUCCESS(RtlAdjustPrivilege(SE_TCB_PRIVILEGE, TRUE, TRUE, &enabled))) {

ULONG session = WTSGetActiveConsoleSessionId();

NtQueryInformationProcess(NtCurrentProcess(),

ProcessSessionInformation, &session, sizeof(session), nullptr);

NtSetInformationToken(hToken, TokenSessionId, &session, sizeof(session));

}

STARTUPINFO si{ sizeof(si) };

PROCESS_INFORMATION pi;

WCHAR desktop[] = L"winsta0\\Default";

WCHAR name[] = L"notepad.exe";

si.lpDesktop = desktop;

status = RtlAdjustPrivilege(SE_ASSIGNPRIMARYTOKEN_PRIVILEGE,

TRUE, TRUE, &enabled);

BOOL created = FALSE;

if (NT_SUCCESS(status)) {

created = CreateProcessAsUser(hToken, nullptr, name,

nullptr, nullptr, FALSE, 0, nullptr, nullptr, &si, &pi);

}

if (!created) {

created = CreateProcessWithTokenW(hToken, LOGON_WITH_PROFILE, nullptr,

name, 0, nullptr, nullptr, &si, &pi);

}

Chapter 11: Security 319

if (!created) {

printf("Failed to create process (%u)\n", GetLastError());

}

else {

printf("Process created: %u\n", pi.dwProcessId);

NtClose(pi.hProcess);

NtClose(pi.hThread);

}

RtlFreeSid(integritySid);

}

else {

printf("Failed to create token (0x%X)\n", status);

}

return status;

}

12.3.5: Other Token Operations

To check if a token has a given set of privileges, call NtPrivilegeCheck:

NTSTATUS NtPrivilegeCheck(

In HANDLE ClientToken,

Inout PPRIVILEGE_SET RequiredPrivileges,

Out PBOOLEAN Result);

The Windows API PrivilegeCheck is using this function directly. Check out the docs for more details.

Two tokens can be compared with NtCompareTokens:

NTSTATUS NtCompareTokens(

In HANDLE FirstTokenHandle,

In HANDLE SecondTokenHandle,

Out PBOOLEAN Equal);

The function checks if the given tokens are equivalent from an access check perspective. Obviously, if both

handles point to the same token object, then they are equivalent. The function checks the following pieces

of the tokens to determine equality:

• Every SID that is present in one token must be present in the other, including their attributes (such as

SE_GROUP_ENABLED).

• Both tokens must have the same list of privileges.

• Both or neither token are restricted tokens.

Chapter 11: Security 320

12.4: Security Descriptors

Security descriptors (SDs) are objects that can be attached to kernel objects to indicate “who can do what”

with the object. SDs have two formats: absolute and self-relative*. Absolute format uses absolute pointers

to point to the various pieces of an SD, while the self-relative uses offsets to point to its parts. A self-relative

SD can be easily moved in memory, while absolute SDs cannot be easily moved, but can be more economical

if some of their parts is shared with other SDs.

Absolute SDs are described by the SECURITY_DESCRIPTOR structure:

typedef struct _SECURITY_DESCRIPTOR {

BYTE Revision;

BYTE Sbz1;

SECURITY_DESCRIPTOR_CONTROL Control;

PSID Owner;

PSID Group;

PACL Sacl;

PACL Dacl;

} SECURITY_DESCRIPTOR, *PISECURITY_DESCRIPTOR;

Self-relative SDs are described by the SECURITY_DESCRIPTOR_RELATIVE structure:

typedef struct _SECURITY_DESCRIPTOR_RELATIVE {

BYTE Revision;

BYTE Sbz1;

SECURITY_DESCRIPTOR_CONTROL Control;

DWORD Owner;

DWORD Group;

DWORD Sacl;

DWORD Dacl;

} SECURITY_DESCRIPTOR_RELATIVE, *PISECURITY_DESCRIPTOR_RELATIVE;

As you can see, the pointers in SECURITY_DESCRIPTOR are replaced by offsets in SECURITY_DESCRIPTOR_-

RELATIVE. Regardless, for compatibility and consistency SDs are usually treated as opaque PVOID pointers.

In fact, the PSECURITY_DESCRIPTOR type is defined to be PVOID (Notice the above definitions have a “PI”

prefix for the pointer types).

Figure 11-3 shows the layout of an absolute SD, while figure 11-4 depicts a self-relative SD.

Chapter 11: Security 321

Figure 11-3: Absolute Security Descriptor

Figure 11-4: Self-relative Security Descriptor

Converting between the two formats is possible with the following APIs:

Chapter 11: Security 322

NTSTATUS RtlAbsoluteToSelfRelativeSD(

In PSECURITY_DESCRIPTOR AbsoluteSD,

_Out_writes_bytes_to_opt_(*Length, *Length)

PSECURITY_DESCRIPTOR SelfSD, _Inout_ PULONG Length);

NTSTATUS RtlSelfRelativeToAbsoluteSD(

In PSECURITY_DESCRIPTOR SelfRelativeSD,

_Out_writes_bytes_to_opt_(*SDSize, *SDSize) PSECURITY_DESCRIPTOR AbsoluteSD,

Inout PULONG SDSize,

_Out_writes_bytes_to_opt_(*DaclSize, *DaclSize) PACL Dacl,

Inout PULONG DaclSize,

_Out_writes_bytes_to_opt_(*SaclSize, *SaclSize) PACL Sacl,

Inout PULONG SaclSize,

_Out_writes_bytes_to_opt_(*OwnerSize, *OwnerSize) PSID Owner,

Inout PULONG OwnerSize,

_Out_writes_bytes_to_opt_(*PrimaryGroupLen, *PrimaryGroupLen) PSID PrimaryGroup,

Inout PULONG PrimaryGroupLen);

These functions are the workhorses of the Windows APIs MakeSelfRelativeSD and MakeAbsoluteSD. Refer

to the SDK docs for the details. In addition, the native API offers the function RtlMakeSelfRelativeSD to

convert to a self-relative format from whatever format the original SD is (creates a copy either way):

NTSTATUS RtlMakeSelfRelativeSD(

In PSECURITY_DESCRIPTOR AbsoluteSD,

_Out_writes_bytes_(*BufferLength) PSECURITY_DESCRIPTOR SelfRelativeSD,

Inout PULONG BufferLength);

If the provided buffer is too small, the function fails and returns the required buffer size in *BufferLength.

As can be seen in figures 11-3 and 11-4, a SD consists of the following:

• Control flags

• Owner SID - the owner of an object.

• Primary Group SID - used in the past for group security in POSIX subsystem applications.

• Discretionary Access Control List (DACL) - a list of Access Control Entries (ACE), specifying who-can-

do-what with the object.

• System Access Control List (SACL) - a list of ACEs, indicating which operations should cause an audit

entry to be written to the security log.

The most important pieces from a protection perspective are the owner and the DACL.

Many of the security descriptor-related Windows APIs are thin wrappers around the corresponding native

APIs. Table 11-1 summarizes many of them. The parameters to these APIs are practically identical, except the

return value being NTSTATUS for native APIs instead of BOOL for Windows APIs. Also, BOOL input parameters

to Windows APIs are replaced with BOOLEAN in native APIs.

Table 11-1: SD Windows APIs wrappers around native APIs

Chapter 11: Security 323

InitializeSecurityDescriptor RtlCreateSecurityDescriptor

IsValidSecurityDescriptor RtlValidSecurityDescriptor

IsValidRelativeSecurityDescriptor RtlValidRelativeSecurityDescriptor

GetSecurityDescriptorLength RtlLengthSecurityDescriptor

MakeSelfRelativeSD RtlMakeSelfRelativeSD

MakeAbsoluteSD RtlSelfRelativeToAbsoluteSD

GetSecurityDescriptorControl RtlGetControlSecurityDescriptor

SetSecurityDescriptorControl RtlSetControlSecurityDescriptor

SetSecurityDescriptorOwner RtlSetOwnerSecurityDescriptor

SetSecurityDescriptorGroup RtlSetGroupSecurityDescriptor

GetSecurityDescriptorDacl RtlGetDaclSecurityDescriptor

SetSecurityDescriptorDacl RtlSetDaclSecurityDescriptor

SetSecurityDescriptorRMControl RtlSetSecurityDescriptorRMControl

GetSecurityDescriptorSacl RtlGetSaclSecurityDescriptor

SetSecurityDescriptorSacl RtlSetSecurityDescriptorSacl

SetKernelObjectSecurity NtSetSecurityObject

GetKernelObjectSecurity NtQuerySecurityObject

IsValidAcl RtlValidAcl

InitializeAcl RtlCreateAcl

GetAclInformation RtlQueryInformationAcl

SetAclInformation RtlSetInformationAcl

AddAce RtlAddAce

DeleteAce RtlDeleteAce

GetAce RtlGetAce

AddAccessAllowedAce RtlAddAccessAllowedAce

AddAccessAllowedAceEx RtlAddAccessAllowedAceEx

AddMandatoryAce RtlAddMandatoryAce

AddResourceAttributeAce RtlAddResourceAttributeAce

AddAccessDeniedAce RtlAddAccessDeniedAce

AddAccessDeniedAceEx RtlAddAccessDeniedAceEx

AddAuditAccessAce RtlAddAuditAccessAce

AddAuditAccessAceEx RtlAddAuditAccessAceEx

AddAccessAllowedObjectAce RtlAddAccessAllowedObjectAce

AddAccessDeniedObjectAce RtlAddAccessDeniedObjectAce

FindFirstFreeAce RtlFirstFreeAce

Windows API Native API

See the Windows SDK documentation for a description of these functions.

12.4.1: Demo: Viewing Security Descriptors

Let’s make use of some the functions in table 11-1. We’ll write an application that displays a SD fo a kernel

object of our choosing: process, thread, any named kernel object, or any handle in any process (assuming it’s

accessible).

Chapter 11: Security 324

We’ll start by writing a DisplaySD function that focuses on the two important pieces of a SD: owner and

DACL.

void DisplaySD(const PSECURITY_DESCRIPTOR sd) {

auto len = RtlLengthSecurityDescriptor(sd);

printf("SD Length: %u (0x%X) bytes\n", len, len);

SECURITY_DESCRIPTOR_CONTROL control;

DWORD revision;

if (NT_SUCCESS(RtlGetControlSecurityDescriptor(sd, &control, &revision))) {

printf("Revision: %u Control: 0x%X (%s)\n", revision,

control, SDControlToString(control).c_str());

}

The code gets the length of the SD (RtlLengthSecurityDescriptor) and then the control flags

(RtlGetControlSecurityDescriptor). The SDControlToString function is a little helper that shows the

control flags in human readable form.

The full source code is in the sd project.

Next, we’ll grab the owner (if any):

PSID sid;

BOOLEAN defaulted;

if (NT_SUCCESS(RtlGetOwnerSecurityDescriptor(sd, &sid, &defaulted))) {

if (sid)

printf("Owner: %ws (%ws) Defaulted: %s\n",

SidToString(sid).c_str(), GetUserNameFromSid(sid).c_str(),

defaulted ? "Yes" : "No");

else

printf("No owner\n");

}

SidToString converts a binary SID to its string representation (using RtlConvertSidToUnicodeString

discussed earlier), and GetUserNameFromSid locates a friendly name of the SID (if available).

The next step is to get the DACL (if present), and go over all ACEs, displaying each one:

Chapter 11: Security 325

BOOLEAN present;

PACL dacl;

if (NT_SUCCESS(RtlGetDaclSecurityDescriptor(sd, &present, &dacl, &defaulted))) {

if (!present)

printf("NULL DACL - object is unprotected\n");

else {

printf("DACL: ACE count: %d\n", (int)dacl->AceCount);

PACE_HEADER header;

for (int i = 0; i < dacl->AceCount; i++) {

if (NT_SUCCESS(RtlGetAce(dacl, i, (PVOID*)&header))) {

DisplayAce(header, i);

}

}

}

}

RtlGetAce gets each ACE and DisplayAce shows its contents:

void DisplayAce(PACE_HEADER header, int index) {

printf("ACE %2d: Size: %2d bytes, Flags: 0x%02X Type: %s\n",

index, header->AceSize, header->AceFlags, AceTypeToString(header->AceType));

switch (header->AceType) {

case ACCESS_ALLOWED_ACE_TYPE:

case ACCESS_DENIED_ACE_TYPE: // have the same binary layout

{

auto data = (ACCESS_ALLOWED_ACE*)header;

printf("\tAccess: 0x%08X %ws (%ws)\n", data->Mask,

SidToString((PSID)&data->SidStart).c_str(),

GetUserNameFromSid((PSID)&data->SidStart).c_str());

}

break;

}

}

An ACE has three pieces: access mask, type (most commonly Allow or Deny), and a SID to which it applies.

Now that we have the DisplaySD function ready, we need to feed it a SD. Getting the security descriptor of

a kernel object can be done with NtQuerySecurityObject:

Chapter 11: Security 326

NTSTATUS NtQuerySecurityObject(

In HANDLE Handle,

In SECURITY_INFORMATION SecurityInformation,

_Out_writes_bytes_opt_(Length) PSECURITY_DESCRIPTOR SecurityDescriptor,

In ULONG Length,

Out PULONG LengthNeeded);

SECURITY_INFORMATION is a set of flags indicating what information is requested.

Before calling NtQuerySecurityObject we need a handle to the object in question. For objects that have

names, we’ll create a helper function that will try various kinds of object types until an object is found or the

object type list is exhausted:

HANDLE OpenNamedObject(PCWSTR path) {

UNICODE_STRING name;

RtlInitUnicodeString(&name, path);

OBJECT_ATTRIBUTES objAttr;

InitializeObjectAttributes(&objAttr, &name,

OBJ_CASE_INSENSITIVE, nullptr, nullptr);

HANDLE hObject = nullptr;

The code prepares a (mostly empty) OBJECT_ATTRIBUTES that has the flag OBJ_CASE_INSENSITIVE so the

search by name is case insensitive, making it more convenient for the caller.

Named objects have an “open” function we can use. Here are a few:

// event

NtOpenEvent(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

// mutex

NtOpenMutant(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

// job

NtOpenJobObject(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

// section

NtOpenSection(&hObject, READ_CONTROL, &objAttr);

Chapter 11: Security 327

if (hObject)

return hObject;

// registry key

NtOpenKey(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

// semaphore

NtOpenSemaphore(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

// timer

NtOpenTimer(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

// object manager directory

NtOpenDirectoryObject(&hObject, READ_CONTROL, &objAttr);

if (hObject)

return hObject;

The READ_CONTROL generic access mask is what we need to gain access to the SD of the object. The code

could be made somewhat more efficient if the status is captured and compared to STATUS_ACCESS_DENIED.

If that is the returned value, it’s safe to bail early since the correct object is referenced, but access cannot be

granted.

What happens if we call an “open” function for a named object that is of the wrong type? The returned status

is STATUS_OBJECT_TYPE_MISMATCH (0xC0000024), which is an error we ignore and move to the next object

type.

The last object type is a file, which requires special handling. For one, NtOpenFile has extra arguments.

Second, clients may specify a standard Win32 path, e.g. “c:\temp”, but that is not interpreted correctly by

native APIs, and we need to prepend a “\??\” to the path, so that the symbolic links directory is used as a base

for locating drive letters. Here is the code:

Chapter 11: Security 328

IO_STATUS_BLOCK ioStatus;

NtOpenFile(&hObject, FILE_GENERIC_READ, &objAttr, &ioStatus,

FILE_SHARE_READ | FILE_SHARE_WRITE, 0);

if (hObject)

return hObject;

//

// special handling for a drive letter

//

if (name.Length > 4 && path[1] == L':') {

UNICODE_STRING name2;

name2.MaximumLength = name.Length + sizeof(WCHAR) * 4;

name2.Buffer = (PWSTR)RtlAllocateHeap(RtlProcessHeap(), 0,

name2.MaximumLength);

UNICODE_STRING prefix;

RtlInitUnicodeString(&prefix, L"\\??\\");

RtlCopyUnicodeString(&name2, &prefix);

RtlAppendUnicodeStringToString(&name2, &name);

InitializeObjectAttributes(&objAttr, &name2,

OBJ_CASE_INSENSITIVE, nullptr, nullptr);

NtOpenFile(&hObject, FILE_GENERIC_READ, &objAttr, &ioStatus,

FILE_SHARE_READ | FILE_SHARE_WRITE, 0);

RtlFreeHeap(RtlProcessHeap(), 0, name2.Buffer);

}

return hObject;

}

The grunt of the work is to prepend “\??\” to the given path. For flexibility, the code allocates memory

dynamically using RtlAllocateHeap (malloc would work just as well, but I’d like to stick to native APIs if

possible), and then manipulating UNICODE_STRING objects to get the desired result. Finally, NtOpenFile is

called again with the new path, before freeing the allocated buffer.

To tie up everything together, we need to implement our main function. First, getting command line

arguments:

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: sd [[-p pid [handle] | [-t tid] | [object_name]]\n");

printf("If no arguments are specified, shows the current process SD\n");

}

Chapter 11: Security 329

The application accepts a process ID (-p flag), thread ID (-t flag), or an object name. If -p is specified, an

optional handle can be specified as well, as the target handle in the process.

Next, we’ll enable the SeDebug privilege (if available in the caller’s token) to give the app some more power

when trying to open handles to objects:

BOOLEAN enabled;

RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &enabled);

Next, we’ll prepare an empty OBJECT_ATTRIBUTES for opening processes and threads:

OBJECT_ATTRIBUTES emptyAttr;

InitializeObjectAttributes(&emptyAttr, nullptr, 0, nullptr, nullptr);

Next, we’ll start dealing with the given arguments, starting with -p:

bool thisProcess = argc == 1;

HANDLE hObject = argc == 1 ? NtCurrentProcess() : nullptr;

if (argc > 2) {

if (_wcsicmp(argv[1], L"-p") == 0) {

CLIENT_ID cid{ ULongToHandle(wcstol(argv[2], nullptr, 0)) };

HANDLE hProcess = nullptr;

NtOpenProcess(&hProcess, argc > 3 ? PROCESS_DUP_HANDLE : READ_CONTROL,

&emptyAttr, &cid);

if (hProcess && argc > 3) {

NtDuplicateObject(hProcess,

ULongToHandle(wcstoul(argv[3], nullptr, 0)),

NtCurrentProcess(), &hObject, READ_CONTROL, 0, 0);

NtClose(hProcess);

}

else {

hObject = hProcess;

}

}

If a process ID is specified, NtOpenProcess is called to open a handle to the process. If an extra argument

is provided (a handle value), it means the invoker is interested in that handle rather the process itself. In

order to access a handle in an arbitrary process we must duplicate it into the current process, which is what

NtDuplicateObject does. If no extra argument is provided, then the process handle is placed in hObject.

If the requested object is a thread, we must open a handle to it:

Chapter 11: Security 330

else if (_wcsicmp(argv[1], L"-t") == 0) {

CLIENT_ID cid{ nullptr, ULongToHandle(wcstol(argv[2], nullptr, 0)) };

NtOpenThread(&hObject, READ_CONTROL, &emptyAttr, &cid);

}

}

if we have no switches, then it’s just an object name:

else if (argc == 2) {

hObject = OpenNamedObject(argv[1]);

}

OpenNamedObject is the function we saw earlier that attempts to open a named object.

If we couldn’t get a valid handle, then we’re done:

if (!hObject) {

printf("Error opening object\n");

return 1;

}

We have a valid handle, so we can get the SD of that object (if any):

PSECURITY_DESCRIPTOR sd = nullptr;

BYTE buffer[1 << 12];

ULONG needed;

auto status = NtQuerySecurityObject(hObject,

OWNER_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION,

buffer, sizeof(buffer), &needed);

if (!NT_SUCCESS(status)) {

printf("No security descriptor available (0x%X)\n", status);

}

else {

DisplaySD((PSECURITY_DESCRIPTOR)buffer);

}

The code uses a simple scheme, assuming the SD size is no larger than 4KB (a reasonable assumption). More

robust code would query the SD size, allocate a buffer before retrieving it. I’ll leave that as an exercise for

the reader.

The only thing left to do is cleanup. Here is the full wmain function for easier reference:

Chapter 11: Security 331

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: sd [[-p pid [handle] | [-t tid] | [object_name]]\n");

printf("If no arguments are specified, shows the current process SD\n");

}

BOOLEAN enabled;

RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &enabled);

OBJECT_ATTRIBUTES emptyAttr;

InitializeObjectAttributes(&emptyAttr, nullptr, 0, nullptr, nullptr);

bool thisProcess = argc == 1;

HANDLE hObject = argc == 1 ? NtCurrentProcess() : nullptr;

if (argc > 2) {

if (_wcsicmp(argv[1], L"-p") == 0) {

CLIENT_ID cid{ ULongToHandle(wcstol(argv[2], nullptr, 0)) };

HANDLE hProcess = nullptr;

NtOpenProcess(&hProcess, argc > 3 ? PROCESS_DUP_HANDLE : READ_CONTROL,

&emptyAttr, &cid);

if (hProcess && argc > 3) {

NtDuplicateObject(hProcess,

ULongToHandle(wcstoul(argv[3], nullptr, 0)),

NtCurrentProcess(), &hObject, READ_CONTROL, 0, 0);

NtClose(hProcess);

}

else {

hObject = hProcess;

}

}

else if (_wcsicmp(argv[1], L"-t") == 0) {

CLIENT_ID cid{ nullptr, ULongToHandle(wcstol(argv[2], nullptr, 0)) };

NtOpenThread(&hObject, READ_CONTROL, &emptyAttr, &cid);

}

}

else if (argc == 2) {

hObject = OpenNamedObject(argv[1]);

}

if (!hObject) {

Chapter 11: Security 332

printf("Error opening object\n");

return 1;

}

PSECURITY_DESCRIPTOR sd = nullptr;

BYTE buffer[1 << 12];

ULONG needed;

auto status = NtQuerySecurityObject(hObject,

OWNER_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION,

buffer, sizeof(buffer), &needed);

if (!NT_SUCCESS(status)) {

printf("No security descriptor available (0x%X)\n", status);

}

else {

DisplaySD((PSECURITY_DESCRIPTOR)buffer);

}

if (hObject && !thisProcess)

NtClose(hObject);

return 0;

}

Here is some example output of sd.exe for various objects:

>sd -p 540

SD Length: 116 (0x74) bytes

Revision: 1 Control: 0x8004 (DACL Present, Self Relative)

Owner: S-1-5-32-544 (BUILTIN\Administrators) Defaulted: No

DACL: ACE count: 3

ACE 0: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001FFFFF S-1-5-32-544 (BUILTIN\Administrators)

ACE 1: Size: 20 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001FFFFF S-1-5-18 (NT AUTHORITY\SYSTEM)

ACE 2: Size: 28 bytes, Flags: 0x00 Type: ALLOW

Access: 0x00121411 S-1-5-5-0-268513 (NT AUTHORITY\LogonSessionId_0_268513)

>sd c:\windows\system32

SD Length: 392 (0x188) bytes

Revision: 1 Control: 0x9404 (DACL Present, DACL Auto Inherited, DACL Protected, Self\

Relative)

Owner: S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464 (NT SERVICE\Tr\

Chapter 11: Security 333

ustedInstaller) Defaulted: No

DACL: ACE count: 13

ACE 0: Size: 40 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001F01FF S-1-5-80-956008885-3418522649-1831038044-1853292631-22714\

78464 (NT SERVICE\TrustedInstaller)

ACE 1: Size: 40 bytes, Flags: 0x0A Type: ALLOW

Access: 0x10000000 S-1-5-80-956008885-3418522649-1831038044-1853292631-22714\

78464 (NT SERVICE\TrustedInstaller)

ACE 2: Size: 20 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001301BF S-1-5-18 (NT AUTHORITY\SYSTEM)

ACE 3: Size: 20 bytes, Flags: 0x0B Type: ALLOW

Access: 0x10000000 S-1-5-18 (NT AUTHORITY\SYSTEM)

ACE 4: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001301BF S-1-5-32-544 (BUILTIN\Administrators)

ACE 5: Size: 24 bytes, Flags: 0x0B Type: ALLOW

Access: 0x10000000 S-1-5-32-544 (BUILTIN\Administrators)

ACE 6: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001200A9 S-1-5-32-545 (BUILTIN\Users)

ACE 7: Size: 24 bytes, Flags: 0x0B Type: ALLOW

Access: 0xA0000000 S-1-5-32-545 (BUILTIN\Users)

ACE 8: Size: 20 bytes, Flags: 0x0B Type: ALLOW

Access: 0x10000000 S-1-3-0 (\CREATOR OWNER)

ACE 9: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001200A9 S-1-15-2-1 (APPLICATION PACKAGE AUTHORITY\ALL APPLICATION\

PACKAGES)

ACE 10: Size: 24 bytes, Flags: 0x0B Type: ALLOW

Access: 0xA0000000 S-1-15-2-1 (APPLICATION PACKAGE AUTHORITY\ALL APPLICATION\

PACKAGES)

ACE 11: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001200A9 S-1-15-2-2 (APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED \

APPLICATION PACKAGES)

ACE 12: Size: 24 bytes, Flags: 0x0B Type: ALLOW

Access: 0xA0000000 S-1-15-2-2 (APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED \

APPLICATION PACKAGES)

>sd \kernelobjects\memoryerrors

SD Length: 156 (0x9C) bytes

Revision: 1 Control: 0x8004 (DACL Present, Self Relative)

Owner: S-1-5-32-544 (BUILTIN\Administrators) Defaulted: No

DACL: ACE count: 5

ACE 0: Size: 20 bytes, Flags: 0x00 Type: ALLOW

Access: 0x00120001 S-1-1-0 (\Everyone)

Chapter 11: Security 334

ACE 1: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001F0003 S-1-5-32-544 (BUILTIN\Administrators)

ACE 2: Size: 20 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001F0003 S-1-5-18 (NT AUTHORITY\SYSTEM)

ACE 3: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x00120001 S-1-15-2-1 (APPLICATION PACKAGE AUTHORITY\ALL APPLICATION\

PACKAGES)

ACE 4: Size: 24 bytes, Flags: 0x00 Type: ALLOW

Access: 0x00120001 S-1-15-2-2 (APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED \

APPLICATION PACKAGES)

>sd -p 57716 8

SD Length: 20 (0x14) bytes

Revision: 1 Control: 0x8000 (Self Relative)

No owner

NULL DACL - object is unprotected

>sd -p 57716 0x48

SD Length: 140 (0x8C) bytes

Revision: 1 Control: 0x8004 (DACL Present, Self Relative)

Owner: S-1-5-21-3968166439-3083973779-398838822-1001 (PAVEL7760\Pavel) Defaulted: No

DACL: ACE count: 3

ACE 0: Size: 20 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001F0001 S-1-5-18 (NT AUTHORITY\SYSTEM)

ACE 1: Size: 36 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001F0001 S-1-5-21-3968166439-3083973779-398838822-1001 (PAVEL7760\\

Pavel)

ACE 2: Size: 28 bytes, Flags: 0x00 Type: ALLOW

Access: 0x001F0001 S-1-5-5-0-268513 (NT AUTHORITY\LogonSessionId_0_268513)

12.5: Summary

This chapter examined some of the Security related native APIs. Many security-related Windows APIs

provide a thin wrapper around these native functions, but some are more specialized and don’t have a

Windows API equivalent, such as NtCreateToken.

Chapter 12: Memory (Part 2)

Chapter 8 dealt with the standard memory related native APIs. This chapter focuses on Section kernel objects,

which provide the ability to map files to memory and to share memory between processes. Less known

memory management objects provided by NtDll.Dll are described - memory zones and lookaside lists.

In this chapter

• Sections

• Memory Zones

• Lookaside Lists

13.1: Sections

Section kernel objects provide the ability to map files to memory, while at the same time allowing sharing

that memory with multiple processes. The file used by a section may be the page file - that is, the memory is

backed by the page file, which means that once the section object is destroyed, the memory is lost.

The Windows API refers to section objects as “Memory Mapped Files”.

The term “the page file” implies there is only one, but in fact Windows supports up to 16 page files.

A section can use any page file space.

In this section (no pun intended), we’ll cover the native API as it pertains to section objects. Some of the APIs

are documented indirectly in the Windows Driver Kit, which we’ll point out explicitly.

13.1.1: Creating Sections

Section objects are optionally named, and like other optionally named object types (e.g., mutex, semaphore,

event), can be created with or without a name, or opened based on an existing named object. The simpler

function to create or open a section is NtCreateSection:

Chapter 12: Memory (Part 2) 336

NTSTATUS NtCreateSection(

Out PHANDLE SectionHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PLARGE_INTEGER MaximumSize,

In ULONG SectionPageProtection,

In ULONG AllocationAttributes,

_In_opt_ HANDLE FileHandle);

This function is documented in the WDK (under ZwCreateSection). The Windows APIs CreateFileMap-

ping(Numa) call NtCreateSection.

SectionHandle is the resulting handle upon success. DesiredAccess is the requested access, typically

SECTION_ALL_ACCESS if creating a new section. Other section access bits are defined inWinNt.h (SECTION_-

MAP_READ, SECTION_MAP_WRITE, SECTION_MAP_EXECUTE, SECTION_QUERY, and SECTION_EXTEND_SIZE).

ObjectAttributes is the usual OBJECT_ATTRIBUTES, that if specified can set a name for the section. If

the section exists, NtCreateSection fails, unless the attributes provided in OBJECT_ATTRIBUTES contain the

OBJ_OPENIF flag, in which case a handle will be returned (assuming the caller can have the requested access).

MaximumSize specifies the maximum memory size - if backed by the page file, or sets the file size - if backed

by a file. SectionPageProtection is one of the page protection constants, typically PAGE_READWRITE or

PAGE_READONLY (if mapping a file for read only access).

AllocationAttributes specifies optional flags documented in CreateFileMapping. If zero is specified,

it’s interpreted as SEC_COMMIT, which is a sensible default stating that any future mapping commits the view

upfront. Finally, FileHandle is an optional backing file, where NULL indicates no explicit backing file - a

page file will be used.

Windows 10 version 1809 and later support an extended function, NtCreateSectionEx:

NTSTATUS NtCreateSectionEx(

Out PHANDLE SectionHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ PLARGE_INTEGER MaximumSize,

In ULONG SectionPageProtection,

In ULONG AllocationAttributes,

_In_opt_ HANDLE FileHandle,

_Inout_updates_opt_(ExtParamCount) PMEM_EXTENDED_PARAMETER ExtendedParameters,

In ULONG ExtParamCount);

The Windows API CreateFileMapping2 calls NtCreateSectionEx.

Chapter 12: Memory (Part 2) 337

NtCreateSectionEx generalizes NtCreateSection by providing an extensible list of customizations based

on an array of MEM_EXTENDED_PARAMETER structures, the same ones encountered in chapter 8 with NtAllo-

cateVirtualMemoryEx. Refer to that chapter for more information.

If a section object is to be located by name, NtOpenSection can be used, where failure to locate the object

with the desired access fails the call:

NTSTATUS NtOpenSection(

Out PHANDLE SectionHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

As usual, the name must be specified in the OBJECT_ATTRIBUTES structure.

13.1.2: Mapping Sections

Once a section handle is available, the next step is to use it to map the memory represented by the section,

either the entire section or just a part, into a process address space. This is the roles of NtMapViewOfSec-

tion(Ex):

NTSTATUS NtMapViewOfSection(

In HANDLE SectionHandle,

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

In ULONG_PTR ZeroBits,

In SIZE_T CommitSize,

_Inout_opt_ PLARGE_INTEGER SectionOffset,

Inout PSIZE_T ViewSize,

In SECTION_INHERIT InheritDisposition,

In ULONG AllocationType,

In ULONG Win32Protect);

NTSTATUS NtMapViewOfSectionEx(// Win 10 version 1803+

In HANDLE SectionHandle,

In HANDLE ProcessHandle,

Inout PVOID *BaseAddress,

_Inout_opt_ PLARGE_INTEGER SectionOffset,

Inout PSIZE_T ViewSize,

In ULONG AllocationType,

In ULONG PageProtection,

_Inout_updates_opt_(ExtParamCount) PMEM_EXTENDED_PARAMETER ExtendedParameters,

In ULONG ExtParamCount);

Chapter 12: Memory (Part 2) 338

The Windows APIs MapViewOfFile/Ex/Numa call NtMapViewOfSection. MapViewOfFile2

and MapViewOfFileNuma2 call NtMapViewOfSection as well. MapViewOfFile3 calls

NtMapViewOfSectionEx.

SectionHandle is the section handle representing the mapping. ProcessHandle represents the process into

which to map the memory. Typically, this will be the calling process (NtCurrentProcess), but could be

another process where the handle must have the PROCESS_VM_OPERATION access mask.

BaseAddress is an input/output value, indicating the address in that target process to use for the mapping.

If NULL is specified, the system will find a range in the process address space. Otherwise, the specific address

will be used (rounded down to a page boundary), and if address range is not available, the mapping fails.

ZeroBits indicates the number of high-order bits that must be zero in the resulting address (if *BaseAddress

is NULL). Typically, zero is specified, indicating the caller doesn’t have any restrictions.

CommitSize is the initial memory to commit for this view (rounded up to page boundary), which has meaning

only for a page file-backed section. Typical value is zero, which will cause the memory to be committed “on

demand” (when accessed).

SectionOffset is the offset to start the mapping from (rounded down to page boundary), If NULL is passed in,

the mapping starts at offset zero (beginning of the section). ViewSize is an input/output parameter indicating

the size to map, returning the actual size being mapped. If zero is specified, the view will be mapped from

SectionOffset to the end of the section. Otherwise, the size will be rounded up to a page boundary.

InheritDisposition indicates whether the view should be inherited by all child processes (ViewShare)

or not (ViewUnmap). AllocationFlags is typically zero, but may contain flags such as MEM_LARGE_PAGES,

MEM_TOP_DOWN, and MEM_RESERVE, among others. Refer to the docs for VirtualAlloc for more details.

Finally, Win32Protect is the page protection requested for the mapped view (e.g., PAGE_READONLY, PAGE_-

READWRITE), which must be compatible with the initial section creation protection flags. The actual result

from a successful call to NtMapViewOfSection is in *BaseAddress - this is the address to use for accessing

the memory.

With NtMapViewOfSectionEx, more customization is possible using the same MEM_EXTENDED_PARAMETER

array we met before. Check out the documentation for MapViewOfFile2 for more information.

Once a view is no longer needed, it should be unmapped by calling NtUnmapViewOfSection(Ex):

NTSTATUS NtUnmapViewOfSection(

In HANDLE ProcessHandle,

_In_opt_ PVOID BaseAddress);

NTSTATUS NtUnmapViewOfSectionEx(

In HANDLE ProcessHandle,

_In_opt_ PVOID BaseAddress,

In ULONG Flags);

The required parameters are the process handle and the base address that was returned from NtMapViewOf-

Section(Ex). NtUnmapViewOfSection calls NtUnmapViewOfSectionEx with Flags set to zero. Other

available flags include MEM_UNMAP_WITH_TRANSIENT_BOOST (1), which indicates that a temporary page

Chapter 12: Memory (Part 2) 339

priority boost should apply to the paged being unmapped because the caller expects to remap these pages

again soon, and MEM_PRESERVE_PLACEHOLDER (2), which would return the pages to a “placeholder” state.

Check out the docs for MapViewOfFile2 for more information.

The Windows API NtUnmapViewOfFile2 calls NtUnmapViewOfSectionEx.

13.1.3: Demo: Simple Sharing

The following demo project uses the main section APIs described previously to create a simple two process

“chat”, where each process passes a string to the other using shared memory.

The full code is in the SharedMem project.

We’ll use an event object to synchronize access to the shared memory for read/write. When one process is

done writing, the other process reads the data, and then they switch roles.

We need to create the section object with a name so it’s easy to share. The name should be visible in the

session’s namespace, which means we need to retrieve the base directory of the current session like so:

#include <string>

#include <format>

std::wstring GetBaseDirectory() {

ULONG session;

if (!NT_SUCCESS(NtQueryInformationProcess(NtCurrentProcess(),

ProcessSessionInformation, &session, sizeof(session), nullptr)))

return L"";

return std::format(L"\\Sessions\\{}\\BaseNamedObjects\\", session);

}

The call to NtQueryInformationProcess with ProcessSessionInformation retrieves the session ID so

that the full string can be built. We could just use session 0’s namespace (“\BaseNamedObjects”), which may

be appropriate for some scenarios. Do note that creation a section object in session 0 namespace normally

requires admin privileges.

The above function uses the std::format C++ 20 function to format the name, but you can use swprintf_s

or similar function to get a similar result.

Now we can initialize an OBJECT_ATTRIBUTES to set a name of our choosing:

Chapter 12: Memory (Part 2) 340

int main() {

auto baseDir = GetBaseDirectory();

if (baseDir.empty())

return 1;

HANDLE hSection;

OBJECT_ATTRIBUTES secAttr;

UNICODE_STRING secName;

auto fullSecName = baseDir + L"MySharedMem";

RtlInitUnicodeString(&secName, fullSecName.c_str());

InitializeObjectAttributes(&secAttr, &secName, OBJ_OPENIF, nullptr, nullptr);

Notice the OBJ_OPENIF flag indicating that if the section name already exists, open a handle rather than

failing.

Now we can create/open the section with a size of 8KB (could be any size):

LARGE_INTEGER size;

size.QuadPart = 1 << 13; // 8KB

auto status = NtCreateSection(&hSection, SECTION_ALL_ACCESS,

&secAttr, &size, PAGE_READWRITE, SEC_COMMIT, nullptr);

if (!NT_SUCCESS(status)) {

printf("Failed to create/open section (0x%X)\n", status);

return status;

}

If the object existed before the call to NtCreateSection, the current process will start as a reader, and later

will wait for a notification:

bool wait = false;

if (status == STATUS_OBJECT_NAME_EXISTS) {

//

// already created by some other process

//

wait = true;

}

Nowwe’re ready to map a view into the current process. We’ll map the entire section as it’s very small (8KB):

Chapter 12: Memory (Part 2) 341

PVOID address = nullptr;

SIZE_T viewSize = 0;

status = NtMapViewOfSection(hSection, NtCurrentProcess(), &address,

0, 0, nullptr, &viewSize, ViewUnmap, 0, PAGE_READWRITE);

if (!NT_SUCCESS(status)) {

printf("Failed to map section (0x%X)\n", status);

return status;

}

Next, we’ll create the event object used for synchronization named “MySharedMemDataReady”:

OBJECT_ATTRIBUTES evtAttr;

UNICODE_STRING evtName;

auto fullEvtName = baseDir + L"MySharedMemDataReady";

RtlInitUnicodeString(&evtName, fullEvtName.c_str());

InitializeObjectAttributes(&evtAttr, &evtName, OBJ_OPENIF, nullptr, nullptr);

HANDLE hEvent;

status = NtCreateEvent(&hEvent, EVENT_ALL_ACCESS, &evtAttr,

SynchronizationEvent, FALSE);

if (!NT_SUCCESS(status)) {

printf("Failed to create/open event (0x%X)\n", status);

return status;

}

At this point we’re ready to exchange information by writing/reading into the shared memory:

char text[128];

for(;;) {

if (wait) {

printf("Waiting for data...\n");

NtWaitForSingleObject(hEvent, FALSE, nullptr);

printf("%s\n", (PCSTR)address);

}

else {

printf("> ");

gets_s(text);

strcpy_s((PSTR)address, sizeof(text), text);

NtSetEvent(hEvent, nullptr);

if (strcmp(text, "quit") == 0)

break;

}

wait = !wait;

}

Chapter 12: Memory (Part 2) 342

The currently waiting process calls NtWaitForSingleObject to wait for the event to be signaled, and then

displays the shared memory with printf. Otherwise, text is input from the user, and written to the shared

memory, after which the event is signaled (KeSetEvent).

When “quit” is entered, the loop exits, in which point we can do some cleanup:

NtUnmapViewOfSection(NtCurrentProcess(), address);

NtClose(hEvent);

NtClose(hSection);

Here is the full main function for easier reference:

int main() {

auto baseDir = GetBaseDirectory();

if (baseDir.empty())

return 1;

HANDLE hSection;

OBJECT_ATTRIBUTES secAttr;

UNICODE_STRING secName;

auto fullSecName = baseDir + L"MySharedMem";

RtlInitUnicodeString(&secName, fullSecName.c_str());

InitializeObjectAttributes(&secAttr, &secName,

OBJ_OPENIF, nullptr, nullptr);

LARGE_INTEGER size;

size.QuadPart = 1 << 13; // 8KB

auto status = NtCreateSection(&hSection, SECTION_ALL_ACCESS,

&secAttr, &size, PAGE_READWRITE, SEC_COMMIT, nullptr);

if (!NT_SUCCESS(status)) {

printf("Failed to create/open section (0x%X)\n", status);

return status;

}

bool wait = false;

if (status == STATUS_OBJECT_NAME_EXISTS) {

wait = true;

}

PVOID address = nullptr;

SIZE_T viewSize = 0;

status = NtMapViewOfSection(hSection, NtCurrentProcess(), &address,

0, 0, nullptr, &viewSize, ViewUnmap, 0, PAGE_READWRITE);

Chapter 12: Memory (Part 2) 343

if (!NT_SUCCESS(status)) {

printf("Failed to map section (0x%X)\n", status);

return status;

}

OBJECT_ATTRIBUTES evtAttr;

UNICODE_STRING evtName;

auto fullEvtName = baseDir + L"MySharedMemDataReady";

RtlInitUnicodeString(&evtName, fullEvtName.c_str());

InitializeObjectAttributes(&evtAttr, &evtName,

OBJ_OPENIF, nullptr, nullptr);

HANDLE hEvent;

status = NtCreateEvent(&hEvent, EVENT_ALL_ACCESS, &evtAttr,

SynchronizationEvent, FALSE);

if (!NT_SUCCESS(status)) {

printf("Failed to create/open event (0x%X)\n", status);

return status;

}

char text[128];

for(;;) {

if (wait) {

printf("Waiting for data...\n");

NtWaitForSingleObject(hEvent, FALSE, nullptr);

printf("%s\n", (PCSTR)address);

}

else {

printf("> ");

gets_s(text);

strcpy_s((PSTR)address, sizeof(text), text);

NtSetEvent(hEvent, nullptr);

if (strcmp(text, "quit") == 0)

break;

}

wait = !wait;

}

NtUnmapViewOfSection(NtCurrentProcess(), address);

NtClose(hEvent);

NtClose(hSection);

return 0;

Chapter 12: Memory (Part 2) 344

}

13.1.4: Querying Section Information

The NtQuerySection provides information on an existing section object:

typedef enum _SECTION_INFORMATION_CLASS {

SectionBasicInformation,

SectionImageInformation,

SectionRelocationInformation,

SectionOriginalBaseInformation,

SectionInternalImageInformation,

MaxSectionInfoClass

} SECTION_INFORMATION_CLASS;

NTSTATUS NtQuerySection(

In HANDLE SectionHandle,

In SECTION_INFORMATION_CLASS SectionInformationClass,

_Out_writes_bytes_(SectionInformationLength) PVOID SectionInformation,

In SIZE_T SectionInformationLength,

_Out_opt_ PSIZE_T ReturnLength);

SectionHandle must have the SECTION_QUERY access mask for the API to work.

The SectionBasicInformation information class requires a SECTION_BASIC_INFORMATION structure:

typedef struct _SECTION__BASIC__INFORMATION {

PVOID BaseAddress;

ULONG AllocationAttributes;

LARGE_INTEGER MaximumSize;

} SECTION_BASIC_INFORMATION, *PSECTION_BASIC_INFORMATION;

BaseAddress is the based address used if the SEC_BASED allocation attribute was specified when creating the

section (this is the address to map in any process sharing the section). AllocationAttributes are the flags

used to create the section (e.g., SEC_COMMIT, SEC_BASED). Finally, MaximumSize is the maximum size of the

memory that can be mapped with the section.

The SectionImageInformation information class returns a SECTION_IMAGE_INFORMATION:

Chapter 12: Memory (Part 2) 345

typedef struct _SECTION_IMAGE_INFORMATION {

PVOID TransferAddress;

ULONG ZeroBits;

SIZE_T MaximumStackSize;

SIZE_T CommittedStackSize;

ULONG SubSystemType;

union {

struct {

USHORT SubSystemMinorVersion;

USHORT SubSystemMajorVersion;

} DUMMYSTRUCTNAME;

ULONG SubSystemVersion;

};

union {

struct {

USHORT MajorOperatingSystemVersion;

USHORT MinorOperatingSystemVersion;

};

ULONG OperatingSystemVersion;

};

USHORT ImageCharacteristics;

USHORT DllCharacteristics;

USHORT Machine;

BOOLEAN ImageContainsCode;

union {

UCHAR ImageFlags;

struct {

UCHAR ComPlusNativeReady : 1;

UCHAR ComPlusILOnly : 1;

UCHAR ImageDynamicallyRelocated : 1;

UCHAR ImageMappedFlat : 1;

UCHAR BaseBelow4gb : 1;

UCHAR ComPlusPrefer32bit : 1;

UCHAR Reserved : 2;

};

};

ULONG LoaderFlags;

ULONG ImageFileSize;

ULONG CheckSum;

} SECTION_IMAGE_INFORMATION, *PSECTION_IMAGE_INFORMATION;

This information class is valid only for a section mapping a file as an image (SEC_IMAGE attribute). The

Chapter 12: Memory (Part 2) 346

following example shows mapping an image and reading the image information (error handling omitted):

// open file

HANDLE hFile;

OBJECT_ATTRIBUTES fileAttr;

UNICODE_STRING fileName;

RtlInitUnicodeString(&fileName, L"\\SystemRoot\\System32\\kernelbase.dll");

InitializeObjectAttributes(&fileAttr, &fileName, 0, nullptr, nullptr);

IO_STATUS_BLOCK ioStatus;

NtOpenFile(&hFile, FILE_READ_ACCESS, &fileAttr, &ioStatus, FILE_SHARE_READ, 0);

// create section based on hFile

NtCreateSection(&hSection, SECTION_ALL_ACCESS,

nullptr, nullptr, PAGE_READONLY, SEC_IMAGE, hFile);

SECTION_IMAGE_INFORMATION sii;

NtQuerySection(hSection, SectionImageInformation, &sii, sizeof(sii), nullptr);

An extended structure is available with the SectionInternalImageInformation information class:

typedef struct _SECTION_INTERNAL_IMAGE_INFORMATION {

SECTION_IMAGE_INFORMATION SectionInformation;

union {

ULONG ExtendedFlags;

struct {

ULONG ImageExportSuppressionEnabled: 1;

ULONG ImageCetShadowStacksReady: 1;

ULONG ImageXfgEnabled: 1;

ULONG ImageCetShadowStacksStrictMode: 1;

ULONG ImageCetSetContextIpValidationRelaxedMode: 1;

ULONG ImageCetDynamicApisAllowInProc: 1;

ULONG ImageCetDowngradeReserved1: 1;

ULONG ImageCetDowngradeReserved2: 1;

ULONG Reserved: 24;

};

};

} SECTION_INTERNAL_IMAGE_INFORMATION, *PSECTION_INTERNAL_IMAGE_INFORMATION;

Unfortunately, the SectionInternalImageInformation does not work - this information is not available

outside of the kernel.

The last two information classes, SectionRelocationInformation and SectionOriginalBaseInforma-

tion also apply to images only. SectionRelocationInformation returns the address into which the image

Chapter 12: Memory (Part 2) 347

is loaded (SIZE_T), while SectionOriginalBaseInformation returns the original load address of the image

(PVOID).

13.1.5: Other Section APIs

The NtExtendSection can extend the size of a file-backed section only (not mapped as image):

NTSTATUS NtExtendSection(

In HANDLE SectionHandle,

Inout PLARGE_INTEGER NewSectionSize);

The section handle must have the SECTION_EXTEND_SIZE access mask. If the provided size is smaller than

the current section size, the call is ignored.

Finally, the NtAreMappedFilesTheSame function checks if both addresses provided are mapping the same

file:

NTSTATUS NtAreMappedFilesTheSame(

In PVOID File1MappedAsAnImage,

In PVOID File2MappedAsFile);

The first address must be within a section mapping a file as image; it doesn’t have to be the start address.

The second address must be within a section mapping a file (either image or not). If these addresses refer to

the same file, STATUS_SUCCESS is returned. Otherwise, STATUS_NOT_SAME_DEVICE is returned.

13.2: Memory Zones

A Memory Zone are local (current process) object that manages a committed memory buffer, where

allocations can be made, but no explicit freeing is possible - only the entire memory zone can be released.

This is used as the basis of lookaside lists (see next section), but could also be useful on their own.

Creating a new memory zone is done with RtlCreateMemoryZone:

NTSTATUS RtlCreateMemoryZone(

Out PVOID *MemoryZone,

In SIZE_T InitialSize,

Reserved ULONG Flags); // no flags currently defined

MemoryZone is teh returned opaque pointer to the allocated memory zone object, consisting of the initial

buffer size (InitialSize bytes) and the management structure itself. The function allocates (commits) the

InitialSize bytes rounded up to the next page boundary (and taking into consideration the management

structure).

Chapter 12: Memory (Part 2) 348

Themanagement structure’s definition, RTL_MEMORY_ZONE, can be found as part of the PHNT library,

but it’s best to keep it opaque in case it changes in future version of Windows.

Once the memory zone is created, memory can be allocated by calling RtlAllocateMemoryZone:

NTSTATUS RtlAllocateMemoryZone(

In PVOID MemoryZone,

In SIZE_T BlockSize,

Out PVOID *Block);

The BlockSize is the requested allocation in bytes. The returned pointer on success is in *Block. The

allocation fails if the added request exceeds the current memory zone size. In such a case, the caller can use

RtlExtendMemoryZone to increase its size before trying the allocation again:

NTSTATUS RtlExtendMemoryZone(

In PVOID MemoryZone,

In SIZE_T Increment);

The Increment is the number of bytes to add to the memory zone.

At the time of writing, RtlExtendMemoryZone is not provided in the PHNT headers. Just add the

declaration above to use it.

Once the memory zone is no longer needed, it can be destroyed:

NTSTATUS RtlDestroyMemoryZone(_In_ _Post_invalid_ PVOID MemoryZone);

This call frees all the memory allocated by the memory zone. If the memory zone is to be reused, it’s possible

to reset its contents (empty memory) without destroying it:

NTSTATUS RtlResetMemoryZone(_In_ PVOID MemoryZone);

Currently, RtlResetMemoryZone does not seem to be part of the Ntdll.lib import library provided

with Visual Studio. Unless you create your own import library, you’ll have to bind to the API

dynamically, for example like so:

Chapter 12: Memory (Part 2) 349

auto const pRtlResetMemoryZone = (decltype(RtlResetMemoryZone)*)GetProcAddress(

GetModuleHandle(L"ntdll"), "RtlResetMemoryZone");

Finally, a memory zone can be locked into physical memory by calling RtlLockMemoryZone, and later

unlocked with RtlUnlockMemoryZone. Each lock/unlock increments/decrements an internal lock count:

NTSTATUS RtlLockMemoryZone(_In_ PVOID MemoryZone);

NTSTATUS RtlUnlockMemoryZone(_In_ PVOID MemoryZone);

13.2.1: Demo: Memory Zones

The following is an example that uses memory zones. First we create a 4KB memory zone (any size would

work):

int main() {

PVOID zone;

auto status = RtlCreateMemoryZone(&zone, 1 << 12, 0);

if (!NT_SUCCESS(status)) {

printf("Failed to create memory zone (0x%X)\n", status);

return status;

}

Next, we’ll create some allocations, and if any fails, extend the memory zone and try again:

PCHAR buffers[100]{};

for (int i = 0; i < _ARRAYSIZE(buffers); i++) {

PVOID buffer;

status = RtlAllocateMemoryZone(zone, 128 + i * 2, &buffer);

if (!NT_SUCCESS(status)) {

printf("Failed to allocate block %d (0x%X). Extending...\n",

i, status);

RtlExtendMemoryZone(zone, 256);

i--;

continue;

}

else {

buffers[i] = (PCHAR)buffer;

sprintf_s(buffers[i], 128, "Data stored in block %d", i);

}

}

Now we can walk over the allocations and access their contents:

Chapter 12: Memory (Part 2) 350

for (int i = 0; i < _ARRAYSIZE(buffers); i++) {

if (buffers[i]) {

printf("%3d: %s\n", i, buffers[i]);

}

}

Finally, we’ll destroy the memory zone:

RtlDestroyMemoryZone(zone);

return 0;

}

The full source is in the MemZones project.

13.3: Lookaside Lists

Lookaside Lists (or Memory Block Lookaside Lists) are memory management objects that allow fast

allocation/deallocation by not truly deallocating memory, but just marking it as available. They use memory

zones behind the scenes, but contrary to memory zones “freeing” an allocation is supported. These are best

used for fixed-size allocations, but more generally support a minimum and maximum block size.

Creating a lookaside list is done with RtlCreateMemoryBlockLookaside:

NTSTATUS RtlCreateMemoryBlockLookaside(

Out PVOID *MemoryBlockLookaside,

Reserved ULONG Flags, // no flags currently defined

In ULONG InitialSize,

In ULONG MinimumBlockSize,

In ULONG MaximumBlockSize);

The lookaside management object is returned via the first parameter. InitialSize is the size to allocate

(commit) upfront for the lookaside. MinimumBlockSize and MaximumBlockSize represent the range of valid

allocations using this lookaside list. These values are rounded up (maximum) / down (minimum) to the

closest power of two.

Once created, blocks can be allocated with RtlAllocateMemoryBlockLookaside:

NTSTATUS RtlAllocateMemoryBlockLookaside(

In PVOID MemoryBlockLookaside,

In ULONG BlockSize,

Out PVOID *Block);

BlockSize is the block size in bytes to allocate, which must be in the range specified when creating the

lookaside list object. The returned value on successful allocation is in *Block. If the lookaside is full (really

the internal memory zone), the allocation fails. In that case, you can extend the lookaside list.

To free a block (mark it as available), call RtlFreeMemoryBlockLookaside:

Chapter 12: Memory (Part 2) 351

NTSTATUS RtlFreeMemoryBlockLookaside(

In PVOID MemoryBlockLookaside,

In PVOID Block);

Block is a returned pointer from RtlAllocateMemoryBlockLookaside. It’s returned to the pool of availale

blocks. (The blocks are managed in buckets based on their size.)

Extending the lookaside list is needed if more memory is required than was initially requested:

NTSTATUS RtlExtendMemoryBlockLookaside(

In PVOID MemoryBlockLookaside,

In ULONG Increment);

Increment is the number of bytes to extend the lookaside list by.

Just like with memory zones, it’s possible to lock/unlock the lookaside list, or to reset it, effectively removing

all allocations:

NTSTATUS RtlLockMemoryBlockLookaside(_In_ PVOID MemoryBlockLookaside);

NTSTATUS RtlUnlockMemoryBlockLookaside(_In_ PVOID MemoryBlockLookaside);

NTSTATUS RtlResetMemoryBlockLookaside(_In_ PVOID MemoryBlockLookaside);

These are thin wrappers around the memory zone used under the hood.

Finally, a lookaside list can be destroyed completely:

NTSTATUS RtlDestroyMemoryBlockLookaside(_In_ PVOID MemoryBlockLookaside);

13.4: Summary

This chapter concludes the APIs that deal with memory management in some way. Sections are kernel

objects, while memory zones and lookaside lists are object types implemented internally by NtDll.dll - these

are not kernel objects at all, but provide useful services for applications.

Chapter 13: The Registry

The Registry is one of the most recognizable aspects of Windows. The Registry is a hierarchical database,

used to store system and user information. This chapter looks at the structure of the Registry, and examines

the native APIs used to work with the Registry.

Many of the Registry native API are documented in the Windows Driver Kit, where Nt is replaced

with Zw.

In this chapter:

• Registry Structure

• Creating and Opening Keys

• Working with Keys and Values

• Key Information

• Other Registry Functions

• Key Persistence

• Registry Notifications

• Registry Transactions

• Higher Level Registry Helpers

14.1: Registry Structure

Looking at the Registry is typically done with the built-in GUI RegEdit.exe tool. Figure 13-1 shows a

screenshot of Regedit showing the five “hives” it always shows. This view of the Registry is useful when

working with the Windows Registry API, as the API uses the shown identifiers to represent the root hives,

such as HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER.

Chapter 13: The Registry 353

Figure 13-1: Hives in RegEdit

Here is a quick summary of the hives and their use:

• HKEY_LOCAL_MACHINE - holds machine-wide information.

• HKEY_CURRENT_USER - holds the information for the user running RegEdit. It’s actually a link key

to HKEY_USERS\{UserSid}.

• HKEY_USERS - stores the user profiles for all users that have a profile on the machine. This includes all

users that ever logged in interactively to the system, as well as the three user accounts typically used to

run services: LocalSYSTEM (SID “S-1-5-18”),NetworkService (“S-1-5-20”), and LocalService (“S-1-5-19”).

• HKEY_CLASSES_ROOT - combines two keys together: HKEY_CURRENT_USER\Software\Classes and

HKEY_LOCAL_MACHINE\Software\Classes. In case of conflicting keys, the one from HKEY_CUR-

RENT_USER wins out.

• HKEY_CURRENT_CONFIG - a link key toHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Hardware

Profiles\Current (not useful in today’s systems).

This view of the Registry is just that - a view - it’s not the “true” Registry structure. We can see the true view

with my TotalRegistry tool, that shows both the “true” view and the abstraction used by the Windows API

(figure 13-2).

Chapter 13: The Registry 354

Figure 13-2: The “true” Registry in TotalRegistry

The root of the Registry is named “Registry”, and it has the following subkeys:

• MACHINE - the machine hive. Equivalent to HKEY_LOCAL_MACHINE using the abstracted Registry

view.

• USER - list of profiles for users on this machine. Equivalent to HKEY_USERS in the abstracted view.

• A - this hive is used by UWP processes for private data. It’s inaccessible by any other process. This key

may not exist on all systems.

• WC - optional key used to store information for Windows Containers (hence “WC”), also called Server

Silos.

When working with native Registry APIs, Registry paths must be specified using the “true” Registry

structure. For example, HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services (abstracted view)

must be specified as \REGISTRY\MACHINE\System\CurrentControlSet\Services for native APIs.

14.2: Creating and Opening Keys

Opening an existing Registry key is possible with NtOpenKey or NtOpenKeyEx

Chapter 13: The Registry 355

NTSTATUS NtOpenKey(

Out PHANDLE KeyHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes);

NTSTATUS NtOpenKeyEx(

Out PHANDLE KeyHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

In ULONG OpenOptions);

KeyHandle is where thewhere the returned handle is placed on success. DesiredAccess is the access required

for the key, typically KEY_READ and/or KEY_WRITE. The key path itself is stored in ObjectAttributes, as

we’ve seen many times before.

The following example shows how to open a read-only handle to \Registry\Machine\System\CurrentControlSet\Services:

HANDLE hKey;

UNICODE_STRING keyName;

RtlInitUnicodeString(&keyName,

L"\\Registry\\Machine\\System\\CurrentControlSet\\Services");

OBJECT_ATTRIBUTES keyAttr;

InitializeObjectAttributes(&keyAttr, &keyName, 0, nullptr, nullptr);

auto status = NtOpenKey(&hKey, KEY_READ, &keyAttr);

Note that the key path is not case sensitive, regardless of the use of the OBJ_CASE_INSENSITIVE attribute

within OBJECT_ATTRIBUTES. If the key does not exist, the call fails.

Using a relative path is supported by setting the RootDirectory member of OBJECT_ATTRIBUTES and using

a relative name. Here is an example for opening the ACPI subkey of the above key using a relative path:

keyAttr.RootDirectory = hKey;

HANDLE hSubKey;

RtlInitUnicodeString(&keyName, L"ACPI");

status = NtOpenKey(&hSubKey, KEY_READ, &keyAttr);

Closing key handles is done with the normal NtClose API.

The OpenOptions parameter to NtOpenKeyEx supports the following options:

• REG_OPTION_BACKUP_RESTORE - supports opening the key with read access if the SeBackupPrivilege

and/or write access if the SeRestorePrivilege is available and enabled in the caller’s token. In this case,

DesiredAccess is ignored.

• REG_OPTION_OPEN_LINK - if the key is a link key, don’t follow the link and instead open the key itself.

This also requires setting OBJ_OPENLINK as part of the attributes in the OBJECT_ATTRIBUTES structure.

Chapter 13: The Registry 356

• REG_OPTION_DONT_VIRTUALIZE - indicates that the key path should not be virtualized. This is related

to User Access Control (UAC) virtualization, where a virtualized process writing to local machine hive

“succeeds” bywriting to a per-user location. Formore information, look for “UAC virtualization” online.

RegOpenKey calls RegOpenKeyEx with OpenOptions set to zero.

Write a function to open the “standard” key HKEY_CURRENT_USER using NtOpenKey.

14.2.1: Creating a Key

For key creation (and optionally opening if it does not exist), call NtCreateKey:

NTSTATUS NtCreateKey(

Out PHANDLE KeyHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

Reserved ULONG TitleIndex, // not used

_In_opt_ PUNICODE_STRING Class,

In ULONG CreateOptions,

_Out_opt_ PULONG Disposition);

NtCreateKey creates or opens a key given its path stored in the usual ObjectAttributes. The first three

parameters in fact are identical to NtOpenKey. Class is an optional string that is attached as a kind of

“metadata” to the created key - it serves no other purpose - the application can use as a somewhat hidden

string value. The value can be later retrieved with NtQueryKey (see the section Key Information later in this

chapter).

CreateOptions can be zero or a combination of flags - three of them are described in the previous section.

Additional flags follow:

• REG_OPTION_NON_VOLATILE - indicates the key is non-volatile. That is, it’s persisted across boots. This

is the default, as the value of this flag is zero.

• REG_OPTION_VOLATILE - indicates the key is volatile, which means it will be deleted when the system

shuts down.

• REG_OPTION_CREATE_LINK - creates a link key, rather than a normal key. A special value named

“SymbolicLinkName” must be set to full key path to the target of the key.

Finally, Disposition is an optional return value that indicates if the key was actually created (REG_CRE-

ATED_NEW_KEY), or it has been opened because it existed before the call (REG_OPENED_EXISTING_KEY).

14.3: Working with Keys and Values

Once a key handle is created or opened, values can be read or written to the key with NtQueryValueKey and

NtSetValueKey:

Chapter 13: The Registry 357

NTSTATUS NtQueryValueKey(

In HANDLE KeyHandle,

In PUNICODE_STRING ValueName,

In KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,

_Out_writes_bytes_opt_(Length) PVOID KeyValueInformation,

In ULONG Length,

Out PULONG ResultLength);

NTSTATUS NtSetValueKey(

In HANDLE KeyHandle,

In PUNICODE_STRING ValueName,

_In_opt_ ULONG TitleIndex, // not used

In ULONG Type,

_In_reads_bytes_opt_(DataSize) PVOID Data,

In ULONG DataSize);

NtSetValueKey is pretty straightforward. KeyHandle must have the KEY_SET_VALUE access mask (included

as part of KEY_WRITE, which is more commonly used). ValueName is the value to set. If it exists, it’s

overridden. Type is the type of the value, one of the data types supported by the Registry, such as REG_SZ,

REG_DWORD, etc. See the Windows SDK documentation for the full list.

Finally, Data is a pointer to the data whose size if DataSize (in bytes). Note that strings (REG_SZ,REG_EX-

PAND_SZ, and REG_MULTI_SZ) are NULL-terminated UTF-16 strings (rather than UNICODE_STRING structures).

NtQueryValueKey is more involved. It accepts a key handle (with KEY_QUERY_VALUE access mask at

least, part of the more commonly used KEY_READ), the value name (ValueName), and an enumeration (in

KeyValueInformationClass) indicating what kind of information is requested:

typedef enum _KEY_VALUE_INFORMATION_CLASS {

KeyValueBasicInformation, // KEY_VALUE_BASIC_INFORMATION

KeyValueFullInformation, // KEY_VALUE_FULL_INFORMATION

KeyValuePartialInformation, // KEY_VALUE_PARTIAL_INFORMATION

KeyValueFullInformationAlign64,

KeyValuePartialInformationAlign64, // KEY_VALUE_PARTIAL_INFORMATION_ALIGN64

KeyValueLayerInformation, // KEY_VALUE_LAYER_INFORMATION

MaxKeyValueInfoClass

} KEY_VALUE_INFORMATION_CLASS;

Only two values are available for NtQueryValueKey: KeyValueBasicInformation, KeyValueFullInfor-

mation and KeyValueFullInformationAlign64 (specifies that an 8-byte alignment is needed), defined like

so:

Chapter 13: The Registry 358

typedef struct _KEY_VALUE_BASIC_INFORMATION {

ULONG TitleIndex;

ULONG Type;

ULONG NameLength;

WCHAR Name[1];

} KEY_VALUE_BASIC_INFORMATION, *PKEY_VALUE_BASIC_INFORMATION;

typedef struct _KEY_VALUE_FULL_INFORMATION {

ULONG TitleIndex;

ULONG Type;

ULONG DataOffset;

ULONG DataLength;

ULONG NameLength;

WCHAR Name[1];

// the data follows

} KEY_VALUE_FULL_INFORMATION, *PKEY_VALUE_FULL_INFORMATION;

As you can see, these are variable-length structures, as they hold name information and (for KEY_VALUE_-

FULL_INFORMATION) the data. This means that the caller must provide a buffer large enough to hold the

requested information. If the buffer is too small, the STATUS_BUFFER_OVERFLOW error status is returned. In

that case, *ResultLength returns the required size in bytes.

The information itself is returned in KeyValueInformation if the call succeeds. The Name field in

KEY_VALUE_BASIC_INFORMATION/KEY_VALUE_FULL_INFORMATION immediately follows the name length (in

bytes), and is not NULL-terminated. With KEY_VALUE_FULL_INFORMATION, the data itself follows the name,

although the DataOffset field should be used as the offset from the beginning of the structure to the actual

data. DataLength is the data size in bytes, and Type is the data type (REG_DWORD, REG_SZ, etc.).

The following example queries a couple of values and displays them:

HANDLE hKey;

UNICODE_STRING keyName;

RtlInitUnicodeString(&keyName,

L"\\Registry\\Machine\\System\\CurrentControlSet\\Services\\ACPI");

OBJECT_ATTRIBUTES keyAttr;

InitializeObjectAttributes(&keyAttr, &keyName, 0, nullptr, nullptr);

auto status = NtOpenKey(&hKey, KEY_READ, &keyAttr);

if (NT_SUCCESS(status)) {

UNICODE_STRING valueName;

RtlInitUnicodeString(&valueName, L"ImagePath");

ULONG len = 0;

//

// call NtQueryValueKey twice. First, to get the requires length

//

NtQueryValueKey(hKey, &valueName, KeyValueFullInformation, nullptr, 0, &len);

Chapter 13: The Registry 359

if (len) {

//

// allocate the buffer

//

auto info = (KEY_VALUE_FULL_INFORMATION*)RtlAllocateHeap(

NtCurrentPeb()->ProcessHeap, 0, len);

if (NT_SUCCESS(NtQueryValueKey(hKey, &valueName,

KeyValueFullInformation, info, len, &len))) {

_ASSERTE(info->Type == REG_SZ || info->Type == REG_EXPAND_SZ);

printf("ImagePath: %ws\n", (PCWSTR)((PBYTE)info + info->DataOffset));

}

RtlFreeHeap(NtCurrentPeb()->ProcessHeap, 0, info);

}

RtlInitUnicodeString(&valueName, L"Type");

len = 0;

NtQueryValueKey(hKey, &valueName, KeyValueFullInformation, nullptr, 0, &len);

if (len) {

auto info = (KEY_VALUE_FULL_INFORMATION*)RtlAllocateHeap(

NtCurrentPeb()->ProcessHeap, 0, len);

if (NT_SUCCESS(NtQueryValueKey(hKey, &valueName,

KeyValueFullInformation, info, len, &len))) {

_ASSERTE(info->Type == REG_DWORD);

printf("Type: %u\n", *(DWORD*)((PBYTE)info + info->DataOffset));

}

RtlFreeHeap(NtCurrentPeb()->ProcessHeap, 0, info);

}

NtClose(hKey);

}

On my system, the output is:

ImagePath: System32\drivers\ACPI.sys

Type: 1

Sometimes there is a need to query multiple values in the same key. Although making multiple calls to

NtQueryValueKey is possible, it could be made more efficient if a single call would be made instead. This is

the role of NtQueryMultipleValueKey:

Chapter 13: The Registry 360

typedef struct _KEY_VALUE_ENTRY {

PUNICODE_STRING ValueName;

ULONG DataLength;

ULONG DataOffset;

ULONG Type;

} KEY_VALUE_ENTRY, *PKEY_VALUE_ENTRY;

NTSTATUS NtQueryMultipleValueKey(

In HANDLE KeyHandle,

_Inout_updates_(EntryCount) PKEY_VALUE_ENTRY ValueEntries,

In ULONG EntryCount,

_Out_writes_bytes_(*BufferLength) PVOID ValueBuffer,

Inout PULONG BufferLength,

_Out_opt_ PULONG RequiredBufferLength);

NtQueryMultipleValueKey accepts an array of KEY_VALUE_ENTRY, each one specifying a value to read. The

resulting data and data type are provided in the same structure upon success. Just likewith NtQueryValueKey,

the buffer provided by the caller must be large enough to hold the results.

The following examples reads the same two values from the previous code example, but uses themore efficient

NtQueryMultipleValueKey (some error handling omitted):

// assume hKey is a handle to the key

// initialize the array of entries

UNICODE_STRING value1Name, value2Name;

RtlInitUnicodeString(&value1Name, L"ImagePath");

RtlInitUnicodeString(&value2Name, L"Type");

KEY_VALUE_ENTRY entry[] = {

{ &value1Name },

{ &value2Name },

};

// initial allocation must be made. If it's too small, reallocate as needed

ULONG len = 32, needed;

auto info = (BYTE*)RtlAllocateHeap(NtCurrentPeb()->ProcessHeap, 0, len);

status = NtQueryMultipleValueKey(hKey, entry, _ARRAYSIZE(entry),

info, &len, &needed);

if (!NT_SUCCESS(status)) {

// allocation too small, reallocate

info = (BYTE*)RtlReAllocateHeap(NtCurrentPeb()->ProcessHeap, 0, info, needed);

NtQueryMultipleValueKey(hKey, entry, _ARRAYSIZE(entry),

info, &needed, nullptr);

Chapter 13: The Registry 361

}

// display results

_ASSERTE(entry[0].Type == REG_SZ || entry[0].Type == REG_EXPAND_SZ);

_ASSERTE(entry[1].Type == REG_DWORD);

printf("ImagePath: %ws\n", (PCWSTR)(info + entry[0].DataOffset));

printf("Type: %u\n", *(DWORD*)(info + entry[1].DataOffset));

14.3.1: Enumerating Keys and Values

The subkeys under a specific key can be enumerated by calling NtEnumerateKey:

NTSTATUS NtEnumerateKey(

In HANDLE KeyHandle,

In ULONG Index,

In KEY_INFORMATION_CLASS KeyInformationClass,

_Out_writes_bytes_opt_(Length) PVOID KeyInformation,

In ULONG Length,

Out PULONG ResultLength);

The KeyHandle must have the KEY_ENUMERATE_SUB_KEY access mask (which is part of the more commonly

used KEY_READ). Index is the index of a sub key. For standard enumeration, start with zero and increment

Index by one until the function returns STATUS_NO_MORE_ENTRIES. For each key, the type of information

returned is based on KeyInformationClass, and the data itself is placed in KeyInformation. The size of the

buffer pointed to by KeyInformation is specified in Length. If the buffer is too small, the function returns

STATUS_BUFFER_OVERFLOW, and *ResultLength indicates the required buffer size.

The KEY_INFORMATION_CLASS enumeration is defined like so:

typedef enum _KEY_INFORMATION_CLASS {

KeyBasicInformation, // KEY_BASIC_INFORMATION

KeyNodeInformation, // KEY_NODE_INFORMATION

KeyFullInformation, // KEY_FULL_INFORMATION

KeyNameInformation, // KEY_NAME_INFORMATION

KeyCachedInformation, // KEY_CACHED_INFORMATION

KeyFlagsInformation, // KEY_FLAGS_INFORMATION

KeyVirtualizationInformation, // KEY_VIRTUALIZATION_INFORMATION

KeyHandleTagsInformation, // KEY_HANDLE_TAGS_INFORMATION

KeyTrustInformation, // KEY_TRUST_INFORMATION

KeyLayerInformation, // KEY_LAYER_INFORMATION

MaxKeyInfoClass

} KEY_INFORMATION_CLASS;

Chapter 13: The Registry 362

We’ll examine all the types in the next section.

The following code sample enumerates a given key and displays the name of each subkey by using the

KeyBasicInformation enumeration value and its associated structure KEY_BASIC_INFORMATION:

typedef struct _KEY_BASIC_INFORMATION {

LARGE_INTEGER LastWriteTime;

ULONG TitleIndex;

ULONG NameLength;

WCHAR Name[1];

} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION;

NTSTATUS EnumerateKey(HANDLE hKey) {

// allocate buffer big enough for key name and write time

BYTE buffer[1024];

auto info = (KEY_BASIC_INFORMATION*)buffer;

ULONG len;

for (ULONG i = 0; ; i++) {

auto status = NtEnumerateKey(hKey, i, KeyBasicInformation,

buffer, sizeof(buffer), &len);

if (status == STATUS_NO_MORE_ENTRIES)

break;

if (!NT_SUCCESS(status))

return status;

// name string is not necessarily NULL terminated

printf("Name: %ws (Last written: %s)\n",

std::wstring(info->Name, info->NameLength / sizeof(WCHAR)).c_str(),

FormatTime(info->LastWriteTime).c_str());

}

return STATUS_SUCCESS;

}

FormatTime is a little helper to convert a 64-bit date/time value to a human readable form:

Chapter 13: The Registry 363

std::string FormatTime(LARGE_INTEGER& dt) {

TIME_FIELDS tf;

RtlTimeToTimeFields(&dt, &tf);

// use std::format from C++ 20

return std::format("{:04}/{:02}/{:02} {:02}:{:02}:{:02}.{:03}",

tf.Year, tf.Month, tf.Day,

tf.Hour, tf.Minute, tf.Second, tf.Milliseconds);

}

Given a key, enumerating values in that key is possible with NtEnumerateValueKey:

NTSTATUS NtEnumerateValueKey(

In HANDLE KeyHandle,

In ULONG Index,

In KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass,

_Out_writes_bytes_opt_(Length) PVOID KeyValueInformation,

In ULONG Length,

Out PULONG ResultLength);

The idea is similar to key enumeration. The provided Index should start at zero, and incremented as long

as the returned status is not STATUS_NO_MORE_ENTRIES. The information retrieved is based on the KEY_-

VALUE_INFORMATION_CLASS and its associated structure(s).

The following example enumerates all values of a given key and displays each value’s name and data:

NTSTATUS EnumerateKeyValues(HANDLE hKey) {

ULONG len;

for (ULONG i = 0; ; i++) {

// first call to get size

auto status = NtEnumerateValueKey(hKey, i,

KeyValueFullInformation, nullptr, 0, &len);

if (status == STATUS_NO_MORE_ENTRIES)

break;

auto buffer = std::make_unique<BYTE[]>(len);

// make the real call

status = NtEnumerateValueKey(hKey, i,

KeyValueFullInformation, buffer.get(), len, &len);

if (!NT_SUCCESS(status))

continue;

auto info = (KEY_VALUE_FULL_INFORMATION*)buffer.get();

Chapter 13: The Registry 364

printf("Name: %ws Type: %s (%u) Data Size: %u bytes Data: ",

std::wstring(info->Name, info->NameLength / sizeof(WCHAR)).c_str(),

RegistryTypeToString(info->Type), info->Type,

info->DataLength);

DisplayData(info);

}

return STATUS_SUCCESS;

}

RegistryTypeToString returns a string representation of registry data type, and DisplayData displays the

data itself based on its type:

void DisplayData(KEY_VALUE_FULL_INFORMATION const* info) {

auto p = (PBYTE)info + info->DataOffset;

switch (info->Type) {

case REG_SZ:

case REG_EXPAND_SZ:

printf("%ws\n", (PCWSTR)p);

break;

case REG_MULTI_SZ:

{

auto s = (PCWSTR)p;

while (*s) {

printf("%ws ", s);

s += wcslen(s) + 1;

}

printf("\n");

break;

}

case REG_DWORD:

printf("%u (0x%X)\n", *(DWORD*)p, *(DWORD*)p);

break;

case REG_QWORD:

printf("%llu (0x%llX)\n", *(ULONGLONG*)p, *(ULONGLONG*)p);

break;

case REG_BINARY:

case REG_FULL_RESOURCE_DESCRIPTOR:

Chapter 13: The Registry 365

case REG_RESOURCE_LIST:

case REG_RESOURCE_REQUIREMENTS_LIST:

auto len = min(64, info->DataLength);

for (DWORD i = 0; i < len; i++) {

printf("%02X ", p[i]);

}

printf("\n");

break;

}

}

The full sample is in the EnumKeyValues project, where the command line accepts a key path and displays

all values within that key. Here is some example output:

c:\>EnumKeyValues \registry\machine\system\currentcontrolset\services\acpi

Name: ImagePath Type: REG_EXPAND_SZ (2) Data Size: 52 bytes Data: System32\drivers\A\

CPI.sys

Name: Type Type: REG_DWORD (4) Data Size: 4 bytes Data: 1 (0x1)

Name: Start Type: REG_DWORD (4) Data Size: 4 bytes Data: 0 (0x0)

Name: ErrorControl Type: REG_DWORD (4) Data Size: 4 bytes Data: 3 (0x3)

Name: DisplayName Type: REG_SZ (1) Data Size: 94 bytes Data: @acpi.inf,%ACPI.SvcDesc\

%;Microsoft ACPI Driver

Name: Owners Type: REG_MULTI_SZ (7) Data Size: 20 bytes Data: acpi.inf

Name: Tag Type: REG_DWORD (4) Data Size: 4 bytes Data: 2 (0x2)

Name: Group Type: REG_SZ (1) Data Size: 10 bytes Data: Core

C:\>EnumKeyValues "\registry\machine\software\microsoft\windows nt\currentversion"

Name: SystemRoot Type: REG_SZ (1) Data Size: 22 bytes Data: C:\Windows

Name: BaseBuildRevisionNumber Type: REG_DWORD (4) Data Size: 4 bytes Data: 1 (0x1)

Name: BuildBranch Type: REG_SZ (1) Data Size: 22 bytes Data: vb_release

Name: BuildGUID Type: REG_SZ (1) Data Size: 74 bytes Data: ffffffff-ffff-ffff-ffff-f\

fffffffffff

Name: BuildLab Type: REG_SZ (1) Data Size: 58 bytes Data: 19041.vb_release.191206-14\

06

Name: BuildLabEx Type: REG_SZ (1) Data Size: 80 bytes Data: 19041.1.amd64fre.vb_rele\

ase.191206-1406

Name: CompositionEditionID Type: REG_SZ (1) Data Size: 22 bytes Data: Enterprise

Name: CurrentBuild Type: REG_SZ (1) Data Size: 12 bytes Data: 19045

...

Name: DigitalProductId Type: REG_BINARY (3) Data Size: 164 bytes Data: A4 00 00 00 0\

3 00 00 00 30 30 33 33 30 2D 35 30 30 30 30 2D 30 30 30 30 30 2D ...

Name: DigitalProductId4 Type: REG_BINARY (3) Data Size: 1272 bytes Data: F8 04 00 00\

Chapter 13: The Registry 366

04 00 00 00 30 00 33 00 36 00 31 00 32 00 2D 00 30 00 33 00 33 00 ...

Name: InstallTime Type: REG_QDWORD (11) Data Size: 8 bytes Data: 132760139614416808 \

(0x1D7A8A4C20C6FA8)

Name: DisplayVersion Type: REG_SZ (1) Data Size: 10 bytes Data: 22H2

Name: RegisteredOwner Type: REG_SZ (1) Data Size: 12 bytes Data: Pavel

Name: WinREVersion Type: REG_SZ (1) Data Size: 32 bytes Data: 10.0.19041.3920

14.4: Key Information

Detailed information about a Registry key is available with NtQueryKey, while some properties of a key can

be set with NtSetInformationKey.

14.4.1: Querying Key Information

NtQueryKey is declared like so:

NTSTATUS NtQueryKey(

In HANDLE KeyHandle,

In KEY_INFORMATION_CLASS KeyInformationClass,

_Out_writes_bytes_opt_(Length) PVOID KeyInformation,

In ULONG Length,

Out PULONG ResultLength);

KeyHandle is the usual key handle whose access mask can be any non-zero value for KeyNameInformation

and KeyHandleTagsInformation, and KEY_QUERY_VALUE for all other information classes. KeyInformation

is a pointer to receive the data, and Length is the maximum size expected by the caller. The actual size is

returned in *ResultLength. If the size is not known in advance, KeyInformation can be NULL, Length zero

and *ResultLength will return the needed size.

KeyBasicInformation (0) is the simplest information class requiring KEY_BASIC_INFORMATION that we

encountered before:

typedef struct _KEY_BASIC_INFORMATION {

LARGE_INTEGER LastWriteTime;

ULONG TitleIndex;

ULONG NameLength;

WCHAR Name[1];

} KEY_BASIC_INFORMATION, *PKEY_BASIC_INFORMATION;

It provides the last write time in the key (in the usual 100 nsec units from 1/1/1601), and the name of the key

in Name; TitleIndex seems to be always zero even if it’s set explicitly to another value.

KeyNodeInformation (1) adds the “class” that was set for the key:

Chapter 13: The Registry 367

typedef struct _KEY_NODE_INFORMATION {

LARGE_INTEGER LastWriteTime;

ULONG TitleIndex;

ULONG ClassOffset; // from beginning of structure

ULONG ClassLength;

ULONG NameLength;

WCHAR Name[1];

} KEY_NODE_INFORMATION, *PKEY_NODE_INFORMATION;

KeyFullInformation (2) provides KEY_FULL_INFORMATION:

typedef struct _KEY_FULL_INFORMATION {

LARGE_INTEGER LastWriteTime;

ULONG TitleIndex;

ULONG ClassOffset;

ULONG ClassLength;

ULONG SubKeys;

ULONG MaxNameLen;

ULONG MaxClassLen;

ULONG Values;

ULONG MaxValueNameLen;

ULONG MaxValueDataLen;

WCHAR Class[1];

} KEY_FULL_INFORMATION, *PKEY_FULL_INFORMATION;

It provides the class name, maximum name length (in that key), maximum class length (in that key), the

number of subkeys (SubKeys), number of values (Values), maximum value name (in the key), and maximum

value data length (in that key).

The sample project KeyInfo displays key information taking advantage of the above information classes given

a key path.

Here is the function displaying the information given a key handle:

void DisplayInfo(HANDLE hKey) {

BYTE buffer[1024];

ULONG len;

if (NT_SUCCESS(NtQueryKey(hKey, KeyBasicInformation,

buffer, sizeof(buffer), &len))) {

auto info = (KEY_BASIC_INFORMATION*)buffer;

printf("Name: %ws\n",

std::wstring(info->Name, info->NameLength / sizeof(WCHAR)).c_str());

printf("Write time: %s\n", FormatTime(info->LastWriteTime).c_str());

Chapter 13: The Registry 368

}

if (NT_SUCCESS(NtQueryKey(hKey, KeyFullInformation,

buffer, sizeof(buffer), &len))) {

auto info = (KEY_FULL_INFORMATION*)buffer;

if (info->ClassLength) {

printf("Class: %ws\n", std::wstring(

info->Class, info->ClassLength / sizeof(WCHAR)).c_str());

}

printf("Subkeys: %u\n", info->SubKeys);

printf("Values: %u\n", info->Values);

printf("Max class length: %u\n", info->MaxClassLen);

printf("Max name length: %u\n", info->MaxNameLen);

printf("Max value name length: %u\n", info->MaxValueNameLen);

printf("Max data length: %u\n", info->MaxValueDataLen);

}

}

Here are some output examples:

c:\>keyinfo "\registry\machine\software\microsoft\windows nt\currentversion"

Name: CurrentVersion

Write time: 2024/06/07 22:19:21.716

Subkeys: 100

Values: 31

Max class length: 0

Max name length: 68

Max value name length: 50

Max data length: 1272

c:\>keyinfo \registry\machine\system\currentcontrolset\services

Name: Services

Write time: 2024/06/09 23:16:27.020

Subkeys: 937

Values: 0

Max class length: 0

Max name length: 108

Max value name length: 0

Max data length: 0

c:\>keyinfo \registry\machine\system\currentcontrolset\services\acpi

Name: ACPI

Write time: 2024/06/07 21:53:14.006

Chapter 13: The Registry 369

Subkeys: 2

Values: 8

Max class length: 0

Max name length: 20

Max value name length: 24

Max data length: 94

The KeyNameInformation (3) information class expects a KEY_NAME_INFORMATION:

typedef struct _KEY_NAME_INFORMATION {

ULONG NameLength;

WCHAR Name[1];

} KEY_NAME_INFORMATION, *PKEY_NAME_INFORMATION;

This just returns the key name. Note that the returned name is the full key name. Contrast that with KEY_-

BASIC_INFORMATION, where the returned name is just the final part.

Next, we have KeyCachedInformation (4). This information class only applies to predefined keys (like

“\Registry\Machine”) and returns KEY_CACHED_INFORMATION:

typedef struct _KEY_CACHED_INFORMATION {

LARGE_INTEGER LastWriteTime;

ULONG TitleIndex;

ULONG SubKeys;

ULONG MaxNameLen;

ULONG Values;

ULONG MaxValueNameLen;

ULONG MaxValueDataLen;

ULONG NameLength;

WCHAR Name[1];

} KEY_CACHED_INFORMATION, *PKEY_CACHED_INFORMATION;

The information is similar to KEY_FULL_INFORMATION, but lacks any class name information and the name

itself.

KeyFlagsInformation (5) returns a KEY_FLAGS_INFORMATION:

typedef struct _KEY_FLAGS_INFORMATION {

ULONG Wow64Flags;

ULONG KeyFlags;

ULONG ControlFlags;

} KEY_FLAGS_INFORMATION, *PKEY_FLAGS_INFORMATION;

Chapter 13: The Registry 370

KeyFlags is zero or a combination of REG_FLAG_VOLATILE (=1, volatile key), and REG_FLAG_LINK (=2, link

key). ControlFlags is zero or a combination of the following values: REG_KEY_DONT_VIRTUALIZE (=2, don’t

virtualize the key), REG_KEY_DONT_SILENT_FAIL (=4, force access check to fail without a true check), REG_-

KEY_RECURSE_FLAG (=8, get properties from parent key). Wow64Flags is used for user flags, so that anyone

can use these flags for whatever purpose.

The KeyVirtualizationInformation (6) information class returns virtualization information with KEY_-

VIRTUALIZATION_INFORMATION:

typedef struct _KEY_VIRTUALIZATION_INFORMATION {

// key is part of the virtualization namespace scope (only HKLM\Software for now)

ULONG VirtualizationCandidate: 1;

// virtualization is enabled on this key. Can be 1 only if above flag is 1

ULONG VirtualizationEnabled: 1;

// key is a virtual key. Can be 1 only if above 2 are 0. Valid only on the virtual s\

tore key handles

ULONG VirtualTarget: 1;

// key is a part of the virtual store path

ULONG VirtualStore: 1;

// key has ever been virtualized, can be 1 only if VirtualizationCandidate is 1

ULONG VirtualSource: 1;

ULONG Reserved : 27;

} KEY_VIRTUALIZATION_INFORMATION, *PKEY_VIRTUALIZATION_INFORMATION;

These flags are documented as part of ZwQueryKey in the WDK. The above comments summarize the

information.

The KeyHandleTagsInformation (7) information class returns the following simple structure:

typedef struct _KEY_HANDLE_TAGS_INFORMATION {

ULONG HandleTags;

} KEY_HANDLE_TAGS_INFORMATION, *PKEY_HANDLE_TAGS_INFORMATION;

This “tags” value is used to store extra information for keys, such as the KEY_WOW64_32KEY flag.

The KeyTrustInformation (8) information class returns fills a KEY_TRUST_INFORMATION structure:

Chapter 13: The Registry 371

typedef struct _KEY_TRUST_INFORMATION {

ULONG TrustedKey : 1;

ULONG Reserved : 31;

} KEY_TRUST_INFORMATION, *PKEY_TRUST_INFORMATION;

The only detail is TrustedKey, which seems to be 1 for the machine hive and subkeys, and 0 for keys under

\Registry\User.

Finally, the KeyLayerInformation (9) information class fills a KEY_LAYER_INFORMATION structure:

typedef struct _KEY_LAYER_INFORMATION {

ULONG IsTombstone : 1; // unchangeable key

ULONG IsSupersedeLocal : 1; // local Security descriptor supersedes parent

ULONG IsSupersedeTree : 1; // parent supersedes this key

ULONG ClassIsInherited : 1; // class inheirted by sub keys

ULONG Reserved : 28;

} KEY_LAYER_INFORMATION, *PKEY_LAYER_INFORMATION;

14.4.2: Setting Key Information

Setting certain information for a key is possible with NtSetInformationKey:

typedef enum _KEY_SET_INFORMATION_CLASS {

KeyWriteTimeInformation, // KEY_WRITE_TIME_INFORMATION

KeyWow64FlagsInformation, // KEY_WOW64_FLAGS_INFORMATION

KeyControlFlagsInformation, // KEY_CONTROL_FLAGS_INFORMATION

KeySetVirtualizationInformation, // KEY_SET_VIRTUALIZATION_INFORMATION

KeySetDebugInformation, // KEY_CONTROL_FLAGS_INFORMATION

KeySetHandleTagsInformation, // KEY_HANDLE_TAGS_INFORMATION

KeySetLayerInformation, // KEY_SET_LAYER_INFORMATION

MaxKeySetInfoClass

} KEY_SET_INFORMATION_CLASS;

NTSTATUS NtSetInformationKey(

In HANDLE KeyHandle,

In KEY_SET_INFORMATION_CLASS KeySetInformationClass,

_In_reads_bytes_(KeySetInformationLength) PVOID KeySetInformation,

In ULONG KeySetInformationLength);

KeyHandle is a handle to the key to modify which can have any non-zero access for KeySetHandleTagsIn-

formation and KEY_SET_VALUE for all others. Let’s examine the various information classes.

KeyWriteTimeInformation (0) allows setting the write time of the key explicitly by passing a KEY_WRITE_-

TIME_INFORMATION, essentially a 64-bit value:

Chapter 13: The Registry 372

typedef struct _KEY_WRITE_TIME_INFORMATION {

LARGE_INTEGER LastWriteTime;

} KEY_WRITE_TIME_INFORMATION, *PKEY_WRITE_TIME_INFORMATION;

The KeyWow64FlagsInformation (1) information class allows changing the “user flags” associated with the

key by passing a 32-bit value:

typedef struct _KEY_WOW64_FLAGS_INFORMATION {

ULONG UserFlags;

} KEY_WOW64_FLAGS_INFORMATION, *PKEY_WOW64_FLAGS_INFORMATION;

The KeyControlFlagsInformation (2) KeySetDebugInformation (4) information accept another set of

flags stored separately as part of the key information:

typedef struct _KEY_CONTROL_FLAGS_INFORMATION {

ULONG ControlFlags;

} KEY_CONTROL_FLAGS_INFORMATION, *PKEY_CONTROL_FLAGS_INFORMATION;

The KeySetVirtualizationInformation (3) information class stores virtualization flags for the key:

typedef struct _KEY_SET_VIRTUALIZATION_INFORMATION {

ULONG VirtualTarget : 1;

ULONG VirtualStore : 1;

ULONG VirtualSource : 1; // true if key has been virtualized at least once

ULONG Reserved : 29;

} KEY_SET_VIRTUALIZATION_INFORMATION, *PKEY_SET_VIRTUALIZATION_INFORMATION;

The KeySetHandleTagsInformation (5) requires another 32-bit value that sets the “tags” for the key. This

is used internally by the kernel. Valid flags used are:

• WOW64_HANDLE_REFLECTED (1) - reflected key prior to Windows 7

• WOW64_HANDLE_64KEY (0x100, same as KEY_WOW64_64KEY) - key was opened as a 64-bit key

• WOW64_HANDLE_32KEY (0x200, same as KEY_WOW64_32KEY) - key was opened as a 32-bit key

• WOW64_HANDLE_FINAL (0x400) - subkeys will not be redirected

• WOW64_HANDLE_WOW6432NODE (0x800) - key was opened explicitly as Wow6432Node

Finally, the KeySetLayerInformation information class allow setting the flags provided by KEY_SET_-

LAYER_INFORMATION (see the discussion of NtQueryKey).

14.5: Other Registry Functions

In this section, we’ll look at other native Registry APIs.

Renaming an existing key is supported with NtRenameKey:

Chapter 13: The Registry 373

NTSTATUS NtRenameKey(

In HANDLE KeyHandle,

In PUNICODE_STRING NewName);

KeyHandlemust have the KEY_WRITE access mask for the call to succeed. The name must be simple - that is,

does not contain path separators (backslash).

Deleting a value in a key is done with NtDeleteValueKey:

NTSTATUS NtDeleteValueKey(

In HANDLE KeyHandle,

In PUNICODE_STRING ValueName);

KeyHandle must have the KEY_SET_VALUE access mask. If the ValueName exists, it’s deleted.

To delete an entire key, call NtDeleteKey:

NTSTATUS NtDeleteKey(_In_ HANDLE KeyHandle);

KeyHandlemust have the DELETE access mask. The key is not fully deleted until the last handle to it is closed.

The NtFlushKey forces writing the key information and values to disk:

NTSTATUS NtFlushKey(_In_ HANDLE KeyHandle);

The NtCompactKeys puts the referenced keys into the same bucket internally:

NTSTATUS NtCompactKeys(

In ULONG Count,

_In_reads_(Count) HANDLE KeyArray[]);

The handles must have the KEY_WRITE access mask, and must belong to the same hive (such as the machine

hive). There doesn’t seem to be much use for this API in practice.

The NtCompressKey attempts to compress the provided key (which must be a hive root):

NTSTATUS NtCompressKey(_In_ HANDLE Key);

14.6: Key Persistence

A key can be persisted (saved) to a file with NtSaveKey or NtSaveKeyEx:

Chapter 13: The Registry 374

NTSTATUS NtSaveKey(

In HANDLE KeyHandle,

In HANDLE FileHandle);

NTSTATUS NtSaveKeyEx(

In HANDLE KeyHandle,

In HANDLE FileHandle,

In ULONG Format);

The caller must have the SeBackupPrivilege privilege enabled in its token. By default, administrators have

this privilege.

KeyHandle is the key to write to file - the key itself and all its children are included. FileHandle must be a

handle to a file open with FILE_WRITE_DATA access mask. NtSaveKey calls NtSaveKeyEx with a Format set

to REG_STANDARD_FORMAT (1). Other values include REG_LATEST_FORMAT (2) and REG_NO_COMPRESSION (4).

Refer to the documentation of the RegSaveKeyEx Windows API for more information.

The REG file format that is accepted by RegEdit and TotalRegistry is not a truly supported format. This

format is implemented privately by these tools. The formats supported by NtSaveKeyEx are binary formats,

rather than textual, to keep data as small as possible.

Saved keys can be restored with NtRestoreKey:

NTSTATUS NtRestoreKey(

In HANDLE KeyHandle,

In HANDLE FileHandle,

In ULONG Flags);

The caller must have the SeRestorePrivilege privilege enabled in its token. KeyHandle will be overwritten

with the information from the file given by FileHandle. Refer to the documentation of the RegRestoreKey

Windows API for more information.

Several functions allow loading Registry data from a file, and attaching it to a target key:

NTSTATUS NtLoadKey(

In POBJECT_ATTRIBUTES TargetKey,

In POBJECT_ATTRIBUTES SourceFile);

NTSTATUS NtLoadKey2(

In POBJECT_ATTRIBUTES TargetKey,

In POBJECT_ATTRIBUTES SourceFile,

In ULONG Flags);

NTSTATUS NtLoadKeyEx(

Chapter 13: The Registry 375

In POBJECT_ATTRIBUTES TargetKey,

In POBJECT_ATTRIBUTES SourceFile,

In ULONG Flags,

_In_opt_ HANDLE TrustClassKey, // Win10+

_In_opt_ HANDLE Event,

_In_opt_ ACCESS_MASK DesiredAccess,

_Out_opt_ PHANDLE RootHandle,

_Out_opt_ PIO_STATUS_BLOCK IoStatus);

NTSTATUS NtLoadKey3(// Windows 20H1+

In POBJECT_ATTRIBUTES TargetKey,

In POBJECT_ATTRIBUTES SourceFile,

In ULONG Flags,

_In_reads_(ExtParamCount) PCM_EXTENDED_PARAMETER ExtendedParameters,

In ULONG ExtParamCount,

_In_opt_ ACCESS_MASK DesiredAccess,

_Out_opt_ PHANDLE RootHandle,

_Out_opt_ PIO_STATUS_BLOCK IoStatus);

The SeRestorePrivilege privilege is required by callers of these APIs.

The core difference between the NtLoadKey* APIs and NtRestoreKey is that NtRestoreKey uses the file to

read data, and integrates it into the Registry; after that the file is no longer used nor needed. The NtLoadKey*

functions use the provided file as the underlying backing store of the key data.

The Windows API RegLoadKey calls NtLoadKey.

NtLoadKey calls NtLoadKeyExwith the provided TargetKey and SourceFile, and the reset of the parameters

as zero/NULL.

The TargetKey must be “\Registry\Machine” or “\Registry\User”. SourceFile is the stored key previously

saved with NtSaveKey(Ex). With NtLoadKey, that’s all that’s needed.

The sample projects SaveKey and LoadKey provided canonical examples of using NtSaveKey and NtLoadKey.

The extended NtLoadkey* functions provide more options. The Flags is either zero or a combination of

flags, some of are described below:

• REG_NO_LAZY_FLUSH (4) - don’t flush this hive lazily.

• REG_APP_HIVE (0x10) - hive is loaded so that it’s visible to the calling process only.

Chapter 13: The Registry 376

• REG_PROCESS_PRIVATE (0x20) - the hive cannot be mounted by any other process while it’s in use by

a process.

• REG_APP_HIVE_OPEN_READ_ONLY (0x2000) - open the hive in read only mode.

• REG_NO_IMPERSONATION_FALLBACK (0x8000) - Don’t try to fallback to impersonating the caller if the

file access check fails.

The Windows API RegLoadAppKey calls NtLoadKeyEx with the flags REG_APP_HIVE and optionally

REG_PROCESS_PRIVATE. It uses the \Registry\A subkey with a random GUID as the root of the load.

The other parameters available in the extended functions are described below:

• TrustClassKey is an optional key handle from which the trusted/not trusted property is obtained for

the hive key.

• Event is an optional event handle that gets signaled when the hive is unloaded.

• DesiredAccess is an optional access for the returned key if specified in the next parameter.

• RootHandle is an optional returned handle to the new hive key.

• IoStatus is currently unused.

• ExtendedParameters and ExtParamCount represent more customization options that could be ex-

tended in the future. They currently support the parameters that can be specified with NtLoadKeyEx:

typedef enum CM_EXTENDED_PARAMETER_TYPE {

CmExtendedParameterInvalidType,

CmExtendedParameterTrustClassKey,

CmExtendedParameterEvent,

CmExtendedParameterFileAccessToken,

CmExtendedParameterMax

} CM_EXTENDED_PARAMETER_TYPE, *PCM_EXTENDED_PARAMETER_TYPE;

#define CM_EXTENDED_PARAMETER_TYPE_BITS 8

typedef struct DECLSPEC_ALIGN(8) CM_EXTENDED_PARAMETER {

struct {

ULONG64 Type : CM_EXTENDED_PARAMETER_TYPE_BITS;

ULONG64 Reserved : 64 - CM_EXTENDED_PARAMETER_TYPE_BITS;

};

union {

ULONG64 ULong64;

PVOID Pointer;

SIZE_T Size;

HANDLE Handle;

Chapter 13: The Registry 377

ULONG ULong;

ACCESS_MASK AccessMask;

};

} CM_EXTENDED_PARAMETER, *PCM_EXTENDED_PARAMETER;

Once a key is loaded, it can be unloaded using one of the following functions:

NTSTATUS NtUnloadKey(_In_ POBJECT_ATTRIBUTES TargetKey);

NTSTATUS NtUnloadKey2(

In POBJECT_ATTRIBUTES TargetKey,

In ULONG Flags);

NTSTATUS NtUnloadKeyEx(

In POBJECT_ATTRIBUTES TargetKey,

_In_opt_ HANDLE Event);

TargetKey is the key path stored within the OBJECT_ATTRIBUTES. NtLoadKey fails if the hive is currently

used by an app. NtUnloadKey2 allows setting Flags to REG_FORCE_UNLOAD (1), which will unload the key

even if it’s currently used. NtUnloadKeyEx allows specifying an event object handle that is signaled when

the unload completes. NtUnloadKeyEx also sets “late unload”, which means if an unload cannot be done now,

it will complete in the future when the hive is no longer used.

14.7: Registry Notifications

The Registry supports notification of various changes to a key (or keys) using NtNotifyChangeKey and

NtNotifyChangeMultipleKeys:

NTSTATUS NtNotifyChangeKey(

In HANDLE KeyHandle,

_In_opt_ HANDLE Event,

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

In ULONG CompletionFilter,

In BOOLEAN WatchTree,

_Out_writes_bytes_opt_(BufferSize) PVOID Buffer,

In ULONG BufferSize,

In BOOLEAN Asynchronous);

NTSTATUS NtNotifyChangeMultipleKeys(

In HANDLE MasterKeyHandle,

_In_opt_ ULONG Count,

_In_reads_opt_(Count) OBJECT_ATTRIBUTES SubordinateObjects[],

_In_opt_ HANDLE Event,

Chapter 13: The Registry 378

_In_opt_ PIO_APC_ROUTINE ApcRoutine,

_In_opt_ PVOID ApcContext,

Out PIO_STATUS_BLOCK IoStatusBlock,

In ULONG CompletionFilter,

In BOOLEAN WatchTree,

_Out_writes_bytes_opt_(BufferSize) PVOID Buffer,

In ULONG BufferSize,

In BOOLEAN Asynchronous);

These APIs are invoked by the Windows API RegNotifyChangeKeyValue. NtNotifyChangeKey

calls NtNotifyChangeMultipleKeys with a single key handle.

KeyHandle (and MasterKeyHandle) is the root key to watch for, which must have the REG_NOTIFY access

mask. Event is an optional event handle that is signaled when a notification is available. This only applies

to asynchronous calls (Asynchronous set to TRUE). ApcRoutine is an optional Asynchronous Procedure Call

(APC) to be queued to the calling thread when a notification is available. If specified, then ApcContext can be

set to any value that is propagated to the APC function. IoStatusBlock is an output structure, just holding

the status of the call. It doesn’t seem to be interesting in practice (and ignored if Synchronous is TRUE), but

must be provided.

CompletionFilter indicates what kind of notifications to watch for. Possible value include REG_NOTIFY_-

CHANGE_NAME (subkeys added/deleted), REG_NOTIFY_CHANGE_ATTRIBUTES, REG_NOTIFY_CHANGE_LAST_SET

(value added/modified/deleted), REG_NOTIFY_CHANGE_SECURITY (security descriptor changed), and REG_-

NOTIFY_THREAD_AGNOSTIC (indicates any thread can wait for the event provided, not just the calling thread).

See the Windows API RegNotifyChangeKeyValue docs for more information.

WatchTree indicates wheteher to watch just the provided key (FALSE) or the entire subkey (TRUE). Buffer

and BufferSize seem to suggest that detailed information is returned when a notification is available (REG_-

NOTIFY_INFORMATION structure), but the buffer is never used in the implementation. This is hinted by the

fact that the Windows API RegNotifyChangeKeyValue has no such buffer. The net result is that it’s up to

the caller to figure out which key/value/attribute has changed.

With SubordinateObjects, it’s possible to add more keys to that are not descendants of MasterKeyHandle.

However, at this time the implementation supports just one such object, which means that Count can be at

most 1. if Count is zero, NtNotifyChangeMultipleKeys is identical to NtNotifyChangeKey.

In practice, these notifications are not as useful as they could be, as they don’t provide the details of the

changes. To get Registry notifications from user mode, it’s more useful to use Event Tracing for Windows

(ETW) with relevant providers, such as the classic kernel provider. (ETW if beyond the scope of this book.)

14.8: Registry Transactions

The Registry supports transactional operations that adhere to the classic ACID properties (Atomicity,

Consistency, Isolation, and Durability). These can even be used in tandem with NTFS transactions.

Operations within a transaction is guaranteed all to succeed or all to fail.

To get started, a key can be opened or created with as part of a transaction:

Chapter 13: The Registry 379

NTSTATUS NtCreateKeyTransacted(

Out PHANDLE KeyHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

Reserved ULONG TitleIndex,

_In_opt_ PUNICODE_STRING Class,

In ULONG CreateOptions,

In HANDLE TransactionHandle,

_Out_opt_ PULONG Disposition);

NTSTATUS NtOpenKeyTransacted(

Out PHANDLE KeyHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

In HANDLE TransactionHandle);

NTSTATUS NtOpenKeyTransactedEx(

Out PHANDLE KeyHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjectAttributes,

In ULONG OpenOptions,

In HANDLE TransactionHandle);

These APIs are extensions to the functions we met early in this chapter. The only difference is the addition

of a transaction object handle. Obtaining a transaction can be done in one of two ways. The first is creating

a “generic” transaction with NtCreateTransaction:

NTSTATUS NtCreateTransaction(

Out PHANDLE TransactionHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ LPGUID Uow,

_In_opt_ HANDLE TmHandle,

_In_opt_ ULONG CreateOptions,

_In_opt_ ULONG IsolationLevel,

_In_opt_ ULONG IsolationFlags,

_In_opt_ PLARGE_INTEGER Timeout,

_In_opt_ PUNICODE_STRING Description);

Transaction APIs are beyond the scope of this chapter, but the Windows API CreateTransaction calls

NtCreateTransaction - refer to that function documentation for more details.

Using the same idea, NtOpenTramnsaction can be called to obtain an existing transaction based on its name,

which is a GUID:

Chapter 13: The Registry 380

NTSTATUS NtOpenTransaction(

Out PHANDLE TransactionHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjectAttributes,

_In_opt_ LPGUID Uow,

_In_opt_ HANDLE TmHandle);

Again, refer to the documentation of OpenTransaction for details.

The second way to get a transaction specifically with Registry operations is available in Windows 10 version

1607 and later with the following APIs:

NTSTATUS NtCreateRegistryTransaction(

Out HANDLE *RegistryTransactionHandle,

In ACCESS_MASK DesiredAccess,

_In_opt_ POBJECT_ATTRIBUTES ObjAttributes,

Reserved ULONG CreateOptions);

NTSTATUS NtOpenRegistryTransaction(

Out HANDLE *RegistryTransactionHandle,

In ACCESS_MASK DesiredAccess,

In POBJECT_ATTRIBUTES ObjAttributes);

NtCreateRegistryTransaction creates a new registry transaction object, which can be named (using the

usual ObjectAttributes), and returns a handle to the new transaction. NtOpenRegistryTransaction

opens a handle to an existing Registry transaction object specified by name.

Registry Transaction is a kernel object type (seen as “RegistryTransaction” type in tools).

With a Registry transaction in hand, calls to NtOpenKeyTransacted and the other aforementioned APIs may

be invoked with that transaction handle.

After the various changes have been made to the key(s) used with the transaction, it must be committed or

aborted (rolled back):

NTSTATUS NtCommitRegistryTransaction(

In HANDLE RegistryTransactionHandle,

Reserved ULONG Flags);

NTSTATUS NtRollbackRegistryTransaction(

In HANDLE RegistryTransactionHandle,

Reserved ULONG Flags);

If the transaction handle is closed before committing the transaction, it’s aborted.

Here is an example that shows how to use these APIs (error handling omitted):

Chapter 13: The Registry 381

//

// initialize key name and attributes

//

UNICODE_STRING keyName;

RtlInitUnicodeString(&keyName, // example key

L"\\REGISTRY\\USER\\S-1-5-21-3456612-33973779-3838822-1001\\Zebra");

OBJECT_ATTRIBUTES keyAttr;

InitializeObjectAttributes(&keyAttr, &keyName, 0, nullptr, nullptr);

//

// create a named transaction (does not need a name in this case)

//

HANDLE hTrans;

OBJECT_ATTRIBUTES txAttr;

UNICODE_STRING txName;

RtlInitUnicodeString(&txName, L"\\BaseNamedObjects\\MyTransaction");

InitializeObjectAttributes(&txAttr, &txName, OBJ_OPENIF, nullptr, nullptr);

NtCreateRegistryTransaction(&hTrans, TRANSACTION_ALL_ACCESS, &txAttr, 0);

//

// create a new key as part of the transaction

//

HANDLE hKey;

NtCreateKeyTransacted(&hKey, KEY_WRITE, &keyAttr, 0, nullptr, 0, hTrans, nullptr);

//

// set a value in the new key

//

UNICODE_STRING valueName;

RtlInitUnicodeString(&valueName, L"SecretToUniverse");

int data = 42; // example value

NtSetValueKey(hKey, &valueName, 0, REG_DWORD, &data, sizeof(data));

//

// commit the transaction

//

NtCommitRegistryTransaction(hTrans, 0);

NtClose(hKey);

NtClose(hTrans);

Chapter 13: The Registry 382

14.9: Miscellaneous Functions

This section discussed some other Registry native APIs.

The NtQueryOpenSubKeys function returns the number of open handles to keys under a specified hive:

NTSTATUS NtQueryOpenSubKeys(

In POBJECT_ATTRIBUTES TargetKey,

Out PULONG HandleCount);

TargetKey is a key whose hive is queried. The key doesn’t need to be a root hive key. For example,

\Registry\Machine\Software is a hive root, but \Registry\Machine\Software\Microsoft is not, but would still

apply to the same hive.

To see the hives of the Registry, look at the key HKEY_LOCAL_MA-

CHINE\SYSTEM\CurrentControlSet\Control\hivelist. TotalRegistry has this key on speed dial

in the Locations\Hive List menu item.

To work, the caller must be able to open the key for KEY_READ access. If successful, it returns the number of

open handles to keys within that hive in *HandleCount.

To get more information about these keys, an extended function is available:

NTSTATUS NtQueryOpenSubKeysEx(

In POBJECT_ATTRIBUTES TargetKey,

In ULONG BufferLength,

_Out_writes_bytes_opt_(BufferLength) PVOID Buffer,

Out PULONG RequiredSize);

The function requires the SeBackupPrivilege privilege to be enabled in the caller’s token. The returned

information is provided in the following structures:

typedef struct _KEY_PID_ARRAY {

HANDLE ProcessId;

UNICODE_STRING KeyName;

} KEY_PID_ARRAY, *PKEY_PID_ARRAY;

typedef struct _KEY_OPEN_SUBKEYS_INFORMATION {

ULONG Count;

KEY_PID_ARRAY KeyArray[1];

} KEY_OPEN_SUBKEYS_INFORMATION, *PKEY_OPEN_SUBKEYS_INFORMATION;

For each handle, we get a process ID and the full key name. A typical usage would be to make two calls - the

first to get the needed size, and the second to get the actual data.

The KeyHandles sample project shows how to use these APIs. First, we’ll get the key name:

Chapter 13: The Registry 383

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: KeyHandles <key>\n");

return 0;

}

UNICODE_STRING keyName;

RtlInitUnicodeString(&keyName, argv[1]);

OBJECT_ATTRIBUTES keyAttr;

InitializeObjectAttributes(&keyAttr, &keyName, 0, nullptr, nullptr);

Next, we’ll start with the basic function since it requires no special privileges:

ULONG count;

auto status = NtQueryOpenSubKeys(&keyAttr, &count);

if (NT_SUCCESS(status)) {

printf("Handle count: %u\n", count);

If this works, we can try the extended function. First, enable the privilege:

BOOLEAN wasEnabled;

status = RtlAdjustPrivilege(SE_RESTORE_PRIVILEGE, TRUE, FALSE, &wasEnabled);

if (!NT_SUCCESS(status)) {

printf("Failed to enable Restore privilege. Launching with admin rights may help\

.\n");

return status;

}

Next, make the first call. The minimum buffer size must be sizeof(KEY_OPEN_SUBKEYS_INFORMATION)

for the call to succeed. This means the count is always returned even if the buffer is too small for all the

information:

ULONG needed;

KEY_OPEN_SUBKEYS_INFORMATION dummy;

status = NtQueryOpenSubKeysEx(&keyAttr,

sizeof(dummy), &dummy, &needed);

// allocate the buffer (a bit bigger in case new handles are created in the interim)

auto buffer = std::make_unique<BYTE[]>(needed += 1024);

Finally, we can make the real call and display the results:

Chapter 13: The Registry 384

status = NtQueryOpenSubKeysEx(&keyAttr, needed, buffer.get(), &needed);

if (NT_SUCCESS(status)) {

auto info = (KEY_OPEN_SUBKEYS_INFORMATION*)buffer.get();

for (ULONG i = 0; i < info->Count; i++) {

printf("PID: %7u Key: %wZ\n",

HandleToULong(info->KeyArray[i].ProcessId),

&info->KeyArray[i].KeyName);

}

}

The NtFreezeRegistry is able to stop any changes to the Registry for the specified number of seconds:

NTSTATUS NtFreezeRegistry(_In_ ULONG TimeOutInSeconds);

The time out can not be more than 900 seconds (15 minutes). The caller must have the SeBackupPrivilege

privilege enabled in its token. To thaw the Registry before the timeout elapsed, call NtThawRegistry:

NTSTATUS NtThawRegistry();

There is also an NtLockRegistryKey which prevents modifications to a given key - but this API only works

when called from kernel mode.

14.10: Higher Level Registry Helpers

Ntdll (and the kernel) provides some higher-level functions that deal with common Registry operations.

Normally working with the native Registry APIs is pretty verbose - these helpers simplify and shorten the

code. Many of these functions are documented in the WDK.

Creating a Registry key can be accomplished with RtlCreateRegistryKey:

NTSTATUS RtlCreateRegistryKey(

In ULONG RelativeTo,

In PWSTR Path);

RelativeTo is one of a set of values indicating “relative to what” should Path be interpreted:

Chapter 13: The Registry 385

#define RTL_REGISTRY_ABSOLUTE 0

// \Registry\Machine\System\CurrentControlSet\Services

#define RTL_REGISTRY_SERVICES 1

// \Registry\Machine\System\CurrentControlSet\Control

#define RTL_REGISTRY_CONTROL 2

// \Registry\Machine\Software\Microsoft\Windows NT\CurrentVersion

#define RTL_REGISTRY_WINDOWS_NT 3

// \Registry\Machine\Hardware\DeviceMap

#define RTL_REGISTRY_DEVICEMAP 4

// \Registry\User\CurrentUser

#define RTL_REGISTRY_USER 5

The function creates the key but does not return any open handle to it if successful.

The RtlCheckRegistryKey checks the existence of a key:

NTSTATUS RtlCheckRegistryKey(

In ULONG RelativeTo,

In PWSTR Path);

STATUS_SUCCESS is returned if the key exists.

The following is a list of other helper functions that will not be discussed here, as they are well-documented

in the WDK.

Querying multiple values may be a hassle - RtlQueryRegistryValues helps make it more manageable,

especially for large number of keys/values:

NTSTATUS RtlQueryRegistryValues(

In ULONG RelativeTo,

In PCWSTR Path,

In PRTL_QUERY_REGISTRY_TABLE QueryTable,

In PVOID Context,

_In_opt_ PVOID Environment);

Writing a value quickly without the need to get a key handle, build a value name, etc. is possible with

RtlWriteRegistryValue:

Chapter 13: The Registry 386

NTSTATUS RtlWriteRegistryValue(

In ULONG RelativeTo,

In PCWSTR Path,

In PCWSTR ValueName,

In ULONG ValueType,

In PVOID ValueData,

In ULONG ValueLength);

Other functions worth mentioning include RtlDeleteRegistryValue and RtlOpenCurrentUser (opens the

current user’s hive key without the need to query the user’s SID).

14.11: Summary

Working with the Registry is necessary in many applications and services. The native API provides powerful

functions for this purpose - from creating and opening keys, to keys and values enumeration, to transactions.

